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Instructor: Haifeng Xu
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Outline

Ø (External) Regret vs Swap Regret

Ø Convergence to Correlated Equilibrium

Ø Converting Regret Bounds to Swap Regret Bounds
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Recap: Online Learning

At each time step 𝑡 = 1,⋯ , 𝑇, the following occurs in order:
1. Learner picks a distribution 𝑝( over actions [𝑛]

2. Adversary picks cost vector 𝑐( ∈ 0,1 /

3. Action 𝑖( ∼ 𝑝( is chosen and learner incurs cost 𝑐((𝑖()

4. Learner observes 𝑐( (for use in future time steps) 
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Recap: (External) Regret

ØExternal regret

ØBenchmark min
7∈[/]

∑( 𝑐((𝑗) is the learner utility had he known 𝑐:,⋯ , 𝑐;
and is allowed to take the best single action across all rounds

ØDescribes how much the learner regrets, had he known the cost 
vector 𝑐:,⋯ , 𝑐; in hindsight

𝑅; = 𝔼>?∼@? ∑(∈[;] 𝑐( 𝑖( − min
7∈[/]

∑(∈[;] 𝑐((𝑗)
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Recap: (External) Regret

ØA closer look at external regret

= max
7∈[/]

∑(∈ ; ∑>∈[/] 𝑐( 𝑖 𝑝((𝑖) − ∑(∈[;] 𝑐((𝑗)

𝑅; = 𝔼>?∼@? ∑(∈[;] 𝑐( 𝑖( − min
7∈[/]

∑(∈[;] 𝑐((𝑗)

= ∑(∈ ; ∑>∈[/] 𝑐( 𝑖 𝑝((𝑖) − min
7∈[/]

∑(∈[;] 𝑐((𝑗)

= max
7∈[/]

∑(∈ ; ∑>∈[/][𝑐( 𝑖 − 𝑐((𝑗)]𝑝((𝑖)

Many-to-one action swap
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Recap: (External) Regret

ØA closer look at external regret

= max
7∈[/]

∑(∈ ; ∑>∈[/] 𝑐( 𝑖 𝑝((𝑖) − ∑(∈[;] 𝑐((𝑗)

𝑅; = 𝔼>?∼@? ∑(∈[;] 𝑐( 𝑖( − min
7∈[/]

∑(∈[;] 𝑐((𝑗)

= ∑(∈ ; ∑>∈[/] 𝑐( 𝑖 𝑝((𝑖) − min
7∈[/]

∑(∈[;] 𝑐((𝑗)

= max
7∈[/]

∑(∈ ; ∑>∈[/][𝑐( 𝑖 − 𝑐((𝑗)]𝑝((𝑖)

ØIn external regret, learner is allowed to swap to a single action 𝑗
and can choose the best 𝑗 in hindsight
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Swap Regret

ØA closer look at external regret

𝑅;

ØSwap regret allows many-to-many action swap
• E.g., 𝑠 1 = 2, 𝑠 2 = 1, 𝑠 3 = 4, 𝑠 4 = 4

ØFormally, 

where max is over all possible swap functions
Ø𝑛/ many swap functions, each action 𝑖 has 𝑛 choices to swap to
ØQuiz: how many many-to-one swaps?

𝑐((𝑠(𝑖))

𝑠𝑤𝑅; = max
I

∑(∈ ; ∑>∈[/][𝑐( 𝑖 − 𝑐((𝑠(𝑖))]𝑝((𝑖)

= max
7∈[/]

∑(∈ ; ∑>∈[/][𝑐( 𝑖 − 𝑐((𝑗)]𝑝((𝑖)
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Some Facts about Swap Regret

Recall swap regret
𝑠𝑤𝑅; = max

I
∑(∈ ; ∑>∈[/][𝑐( 𝑖 − 𝑐((𝑠(𝑖))]𝑝((𝑖)

Fact 1. For any algorithm:  𝑠𝑤𝑅; ≥ 𝑅;

Proof:

Ø𝑠(𝑖) only affects term  ∑(∈ ; [𝑐( 𝑖 − 𝑐((𝑠(𝑖))]𝑝((𝑖), so should be 
picked to maximize this term

Fact 2. For any algorithm execution 𝑝:,⋯ , 𝑝;, the optimal swap 
function 𝑠∗ satisfies, for any 𝑖,  

𝑠∗ 𝑖 = argmax
7∈[/]

∑(∈ ; [𝑐( 𝑖 − 𝑐((𝑗)]𝑝((𝑖)
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Some Facts about Swap Regret

Remarks: 
ØThe optimal swap can be decided “independently” for each 𝑖

Fact 1. For any algorithm:  𝑠𝑤𝑅; ≥ 𝑅;

Fact 2. For any algorithm execution 𝑝:,⋯ , 𝑝;, the optimal swap 
function 𝑠∗ satisfies, for any 𝑖,  

𝑠∗ 𝑖 = argmax
7∈[/]

∑(∈ ; [𝑐( 𝑖 − 𝑐((𝑗)]𝑝((𝑖)
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Some Facts about Swap Regret

Remarks: 
ØBenchmark of swap regret depends on the algorithm execution 
𝑝:,⋯ , 𝑝;, but benchmark of external regret does not.

ØThis raises a subtle issue: an algorithm minimize swap regret 
does not necessarily minimize the total loss
• An algorithm may intentionally take less actions so the benchmark 

does not have many opportunities to swap

Fact 1. For any algorithm:  𝑠𝑤𝑅; ≥ 𝑅;

Fact 2. For any algorithm execution 𝑝:,⋯ , 𝑝;, the optimal swap 
function 𝑠∗ satisfies, for any 𝑖,  

𝑠∗ 𝑖 = argmax
7∈[/]

∑(∈ ; [𝑐( 𝑖 − 𝑐((𝑗)]𝑝((𝑖)
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Some Facts about Swap Regret

Fact 1. For any algorithm:  𝑠𝑤𝑅; ≥ 𝑅;

Fact 2. For any algorithm execution 𝑝:,⋯ , 𝑝;, the optimal swap 
function 𝑠∗ satisfies, for any 𝑖,  

𝑠∗ 𝑖 = argmax
7∈[/]

∑(∈ ; [𝑐( 𝑖 − 𝑐((𝑗)]𝑝((𝑖)

is also called the internal regret

max
>∈[/]

max
7∈[/]

∑(∈ ; [𝑐( 𝑖 − 𝑐((𝑗)]𝑝((𝑖)

pick worst 𝑖
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Outline

Ø (External) Regret vs Swap Regret

Ø Convergence to Correlated Equilibrium

Ø Converting Regret Bounds to Swap Regret Bounds
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Recap: Normal-Form Games and CE

Ø 𝑛 players, denoted by set 𝑛 = {1,⋯ , 𝑛}
Ø Player 𝑖 takes action 𝑎> ∈ 𝐴>
Ø Player utility depends on the outcome of the game, i.e., an action 

profile 𝑎 = (𝑎:,⋯ , 𝑎/)
• Player 𝑖 receives payoff 𝑢>(𝑎) for any outcome 𝑎 ∈ Π>T:/ 𝐴>

Ø Correlated equilibrium is an action recommendation policy 

A recommendation policy 𝜋 is a correlated equilibrium if
∑VWX 𝑢> 𝑎>, 𝑎Y> ⋅ 𝜋(𝑎>, 𝑎Y>) ≥ ∑VWX 𝑢> 𝑎

[
>, 𝑎Y> ⋅ 𝜋 𝑎>, 𝑎Y> , ∀ 𝑎[> ∈ 𝐴>, ∀𝑖 ∈ 𝑛 .

Ø That is, for any recommended action 𝑎>, player 𝑖 does not want
to “swap” to another 𝑎>[
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Repeated Games with No-Swap-Regret Players

ØThe game is played repeatedly for 𝑇 rounds
ØEach player uses an online learning algorithm to select a mixed 

strategy at each round 𝑡

ØFor any player 𝑖’s perspective, the following occurs in order at 𝑡
• Picks a mixed strategy 𝑥>( ∈ Δ|`X| over actions in 𝐴>
• Any other player 𝑗 ≠ 𝑖 picks a mixed strategy 𝑥7( ∈ Δ|`b|
• Player 𝑖 receives expected utility 𝑢> 𝑥>(, 𝑥Y>( = 𝔼V∼(cX?,cWX? ) 𝑢>(𝑎)

• Player 𝑖 learns 𝑥Y>( (for future use)
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From No Swap Regret to Correlated Equ

Remarks:

ØIn mixed strategy profile 𝑥:(, 𝑥d( ,⋯ , 𝑥/( , prob. of 𝑎 is Π>∈ / 𝑥>((𝑎>)

Ø𝜋;(𝑎) is simply the average of Π>∈ / 𝑥>((𝑎>) over 𝑇 rounds 

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥>( (∈[;] for 𝑖. The following recommendation

policy 𝜋; converges to a CE: 𝜋; 𝑎 = :
;
∑( Π>∈ / 𝑥>((𝑎>) , ∀ 𝑎 ∈ 𝐴.
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∑V∈`
:
;
∑( Π>∈ / 𝑥>((𝑎>) ⋅ 𝑢>(𝑎)

= :
;
∑( ∑V∈` Π>∈ / 𝑥>((𝑎>) ⋅ 𝑢>(𝑎)

Proof:
ØDerive player 𝑖’s expected utility from 𝜋;

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥>( (∈[;] for 𝑖. The following recommendation

policy 𝜋; converges to a CE: 𝜋; 𝑎 = :
;
∑( Π>∈ / 𝑥>((𝑎>) , ∀ 𝑎 ∈ 𝐴.

From No Swap Regret to Correlated Equ
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∑V∈`
:
;
∑( Π>∈ / 𝑥>((𝑎>) ⋅ 𝑢>(𝑎)

= :
;
∑( ∑V∈` Π>∈ / 𝑥>((𝑎>) ⋅ 𝑢>(𝑎)

= :
;
∑( 𝑢>(𝑥>(, 𝑥Y>( )

Proof:
ØDerive player 𝑖’s expected utility from 𝜋;

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥>( (∈[;] for 𝑖. The following recommendation

policy 𝜋; converges to a CE: 𝜋; 𝑎 = :
;
∑( Π>∈ / 𝑥>((𝑎>) , ∀ 𝑎 ∈ 𝐴.

From No Swap Regret to Correlated Equ
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∑V∈`
:
;
∑( Π>∈ / 𝑥>((𝑎>) ⋅ 𝑢>(𝑎)

= :
;
∑( ∑V∈` Π>∈ / 𝑥>((𝑎>) ⋅ 𝑢>(𝑎)

= :
;
∑( 𝑢>(𝑥>(, 𝑥Y>( )

Proof:
ØDerive player 𝑖’s expected utility from 𝜋;

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥>( (∈[;] for 𝑖. The following recommendation

policy 𝜋; converges to a CE: 𝜋; 𝑎 = :
;
∑( Π>∈ / 𝑥>((𝑎>) , ∀ 𝑎 ∈ 𝐴.

= :
;
∑VX∈`X ∑(T:

; 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>((𝑎>)

From No Swap Regret to Correlated Equ

ØPlayer 𝑖’s expected utility conditioned on being recommended 𝑎> is 
:
;
∑(T:; 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>((𝑎>) (normalization factor omitted)
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Proof:
ØThe CE condition requires for all player 𝑖 and all 𝑎> ∈ 𝐴>

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥>( (∈[;] for 𝑖. The following recommendation

policy 𝜋; converges to a CE: 𝜋; 𝑎 = :
;
∑( Π>∈ / 𝑥>((𝑎>) , ∀ 𝑎 ∈ 𝐴.

From No Swap Regret to Correlated Equ

≥ :
;
∑(T:; 𝑢> 𝑠(𝑎>), 𝑥Y>( ⋅ 𝑥>( 𝑎> , ∀𝑠 𝑎> ∈ 𝐴>

:
;
∑(T:; 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>( 𝑎>
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Proof:
ØThe CE condition requires for all player 𝑖 and all 𝑎> ∈ 𝐴>

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥>( (∈[;] for 𝑖. The following recommendation

policy 𝜋; converges to a CE: 𝜋; 𝑎 = :
;
∑( Π>∈ / 𝑥>((𝑎>) , ∀ 𝑎 ∈ 𝐴.

From No Swap Regret to Correlated Equ

≥ :
;
∑(T:; 𝑢> 𝑠(𝑎>), 𝑥Y>( ⋅ 𝑥>( 𝑎> , ∀𝑠 𝑎> ∈ 𝐴>

ØLet 𝑠∗ be the optimal swap function in the swap regret:
𝑠𝑤𝑅;> = max

I
∑(T:; ∑VX∈`X[𝑢> 𝑠 𝑎> , 𝑥Y> − 𝑢> 𝑎>, 𝑥Y>( ] ⋅ 𝑥>((𝑎>)

= ∑VX ∑(T:; [𝑢> 𝑠∗ 𝑎> , 𝑥Y> − 𝑢> 𝑎>, 𝑥Y>( ] ⋅ 𝑥>((𝑎>)

≥ ∑(T:; 𝑢> 𝑠∗ 𝑎> , 𝑥Y> − 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>( 𝑎> , ∀𝑎>

:
;
∑(T:; 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>( 𝑎>
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Proof:
ØThe CE condition requires for all player 𝑖 and all 𝑎> ∈ 𝐴>

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥>( (∈[;] for 𝑖. The following recommendation

policy 𝜋; converges to a CE: 𝜋; 𝑎 = :
;
∑( Π>∈ / 𝑥>((𝑎>) , ∀ 𝑎 ∈ 𝐴.

From No Swap Regret to Correlated Equ

:
;
∑(T:; 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>( 𝑎> ≥ :

;
∑(T:; 𝑢> 𝑠(𝑎>), 𝑥Y>( ⋅ 𝑥>( 𝑎> , ∀𝑠 𝑎> ∈ 𝐴>

ØLet 𝑠∗ be the optimal swap function in the swap regret:
𝑠𝑤𝑅;> ≥ ∑(T:; 𝑢> 𝑠∗ 𝑎> , 𝑥Y> − 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>( 𝑎> , ∀𝑎>
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Proof:
ØThe CE condition requires for all player 𝑖 and all 𝑎> ∈ 𝐴>

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥>( (∈[;] for 𝑖. The following recommendation

policy 𝜋; converges to a CE: 𝜋; 𝑎 = :
;
∑( Π>∈ / 𝑥>((𝑎>) , ∀ 𝑎 ∈ 𝐴.

From No Swap Regret to Correlated Equ

:
;
∑(T:; 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>( 𝑎> ≥ :

;
∑(T:; 𝑢> 𝑠(𝑎>), 𝑥Y>( ⋅ 𝑥>( 𝑎> , ∀𝑠 𝑎> ∈ 𝐴>

ØLet 𝑠∗ be the optimal swap function in the swap regret:
𝑠𝑤𝑅;> ≥ ∑(T:; 𝑢> 𝑠∗ 𝑎> , 𝑥Y> − 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>( 𝑎> , ∀𝑎>

ØFrom Fact 2 before, optimal swap function 𝑠∗ satisfies 
𝑠∗ 𝑎> = arg max

I VX ∈`X
∑(T:; 𝑢> 𝑠 𝑎> , 𝑥Y> − 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>((𝑎>)

ØThis implies
𝑠𝑤𝑅;> ≥ ∑(T:; 𝑢> 𝑠 𝑎> , 𝑥Y> − 𝑢> 𝑎>, 𝑥Y>( ⋅ 𝑥>( 𝑎> , ∀𝑎> and 𝑠(𝑎>)

Thm follows by diving both sides by 𝑇(→ ∞)
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Outline

Ø (External) Regret vs Swap Regret

Ø Convergence to Correlated Equilibrium

Ø Converting Regret Bounds to Swap Regret Bounds
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Good External Regret ≠ Good Swap Regret

ØAn algorithm with small swap regret also has small external regret
ØThe reverse is not true – an algorithm with small external regret 

does not necessarily have small swap regret
• Examples are not difficult to construct

Do there exist online learning algorithms with sublinear regret?
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Ø𝐻 utilizes 𝐴 but is different and more complicated
ØThere exists no-swap-regret online learning algorithm

• Since there exists online algorithm with O( 𝑇 ln 𝑛) regret

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

𝑛 = number of actions
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Proof Overview:
ØThe idea starts from the following observations

Let 𝑠∗ be the optimal swap function, then:
𝑠𝑤𝑅; = max

I
∑(∈ ; ∑>∈[/][𝑐( 𝑖 − 𝑐((𝑠(𝑖))]𝑝((𝑖)

= ∑>∈[/] ∑(∈ ; [𝑐( 𝑖 − 𝑐((𝑠∗(𝑖))]𝑝((𝑖)

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.
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Proof Overview:
ØThe idea starts from the following observations

Let 𝑠∗ be the optimal swap function, then:
𝑠𝑤𝑅; = max

I
∑(∈ ; ∑>∈[/][𝑐( 𝑖 − 𝑐((𝑠(𝑖))]𝑝((𝑖)

= ∑>∈[/] ∑(∈ ; [𝑐( 𝑖 − 𝑐((𝑠∗(𝑖))]𝑝((𝑖)

Two observations:
1. The red terms “looks like” an external regret term

• Swap to a single action, but ∑(∈ ; 𝑐( 𝑖 𝑝((𝑖) does not look quite right yet

2. If the red term is less than 𝑅 for any 𝑖, then we are done

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

regret from action 𝑖’s swap 
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Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 1: constructing 𝐻
ØMake 𝑛 copies of algorithm 𝐴 as 𝐴:,⋯ , 𝐴/

• Intuitively, 𝐴> takes care of the regret from action 𝑖’s swap 

ØConstruction of 𝐻
• At round 𝑡, 𝐻 picks action 𝑖 with probability 𝑝((𝑖) (to be designed)
• Let 𝑞(> ∈ Δ/ be the randomized action of 𝐴> generated at round 𝑡
• Choose 𝑝((𝑖) ∈ [0,1] to satisfy the following:

∑> 𝑝((𝑖) = 1

∑> 𝑝( 𝑖 𝑞(>(𝑗) = 𝑝((𝑗) , ∀𝑗 ∈ [𝑛]

𝑝( is a distribution

𝑝( is stationary

That is, following two ways for 𝐻 to select actions are equivalent
1. Select 𝑖 with probability 𝑝((𝑖)
2. Select algorithm 𝐴> with prob 𝑝((𝑖), then use 𝐴> to pick an action 
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Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 1: constructing 𝐻
ØMake 𝑛 copies of algorithm 𝐴 as 𝐴:,⋯ , 𝐴/

• Intuitively, 𝐴> takes care of the regret from action 𝑖’s swap 

ØConstruction of 𝐻
• At round 𝑡, 𝐻 picks action 𝑖 with probability 𝑝((𝑖) (to be designed)
• Let 𝑞(> ∈ Δ/ be the randomized action of 𝐴> generated at round 𝑡
• Choose 𝑝((𝑖) ∈ [0,1] to satisfy the following:

• After observing cost vector 𝑐(, allocate  𝑝((𝑖) ⋅ 𝑐( as the “simulated 
cost” to algorithm 𝐴> for its future use 

∑> 𝑝((𝑖) = 1

∑> 𝑝( 𝑖 𝑞(>(𝑗) = 𝑝((𝑗) , ∀𝑗 ∈ [𝑛]

𝑝( is a distribution

𝑝( is stationary
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Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 2: deriving regret bound
Ø𝐴> has external regret 𝑅, so 

∑(∈ ; ∑7 𝑞(>(𝑗) [𝑝( 𝑖 𝑐( 𝑗 − 𝑝( 𝑖 𝑐((𝑗′)] ≤ 𝑅 ∀𝑗[ ∈ 𝑛 (1)

ØSwap regret of 𝐻

By our construction: ∑> 𝑝( 𝑖 𝑞(>(𝑗) = 𝑝((𝑗) , ∀𝑗 ∈ [𝑛]

Need to somehow relate 𝑠𝑤𝑅; to 𝑞(> ’s, because Inequality (1) 
is the only bound we have

𝑠𝑤𝑅; = max
I

∑(∈ ; ∑7∈[/] 𝑝((𝑗)[𝑐( 𝑗 − 𝑐((𝑠(𝑗))]
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Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 2: deriving regret bound
Ø𝐴> has external regret 𝑅, so 

∑(∈ ; ∑7 𝑞(>(𝑗) [𝑝( 𝑖 𝑐( 𝑗 − 𝑝( 𝑖 𝑐((𝑗′)] ≤ 𝑅 ∀𝑗[ ∈ 𝑛 (1)

ØSwap regret of 𝐻

By our construction: ∑> 𝑝( 𝑖 𝑞(>(𝑗) = 𝑝((𝑗) , ∀𝑗 ∈ [𝑛]

= max
I

∑(∈ ; ∑7∈[/] ∑> 𝑝( 𝑖 𝑞(>(𝑗) [𝑐( 𝑗 − 𝑐((𝑠(𝑗))]

𝑠𝑤𝑅; = max
I

∑(∈ ; ∑7∈[/] 𝑝((𝑗)[𝑐( 𝑗 − 𝑐((𝑠(𝑗))]
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Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 2: deriving regret bound
Ø𝐴> has external regret 𝑅, so 

∑(∈ ; ∑7 𝑞(>(𝑗) [𝑝( 𝑖 𝑐( 𝑗 − 𝑝( 𝑖 𝑐((𝑗′)] ≤ 𝑅 ∀𝑗[ ∈ 𝑛 (1)

ØSwap regret of 𝐻

= max
I

∑>(∑(∈ ; ∑7∈[/] 𝑝( 𝑖 𝑞(>(𝑗)[𝑐( 𝑗 − 𝑐((𝑠(𝑗))] )

= max
I

∑(∈ ; ∑7∈[/] ∑> 𝑝( 𝑖 𝑞(> 𝑗 [𝑐( 𝑗 − 𝑐( 𝑠 𝑗 ]

𝑠𝑤𝑅; = max
I

∑(∈ ; ∑7∈[/] 𝑝((𝑗)[𝑐( 𝑗 − 𝑐((𝑠(𝑗))]
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Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 2: deriving regret bound
Ø𝐴> has external regret 𝑅, so 

∑(∈ ; ∑7 𝑞(>(𝑗) [𝑝( 𝑖 𝑐( 𝑗 − 𝑝( 𝑖 𝑐((𝑗′)] ≤ 𝑅 ∀𝑗[ ∈ 𝑛 (1)

ØSwap regret of 𝐻

= max
I

∑> ∑(∈ ; ∑7∈[/] 𝑝( 𝑖 𝑞(>(𝑗)[𝑐( 𝑗 − 𝑐((𝑠(𝑗))]

= max
I

∑(∈ ; ∑7∈[/] ∑> 𝑝( 𝑖 𝑞(>(𝑗) [𝑐( 𝑗 − 𝑐((𝑠(𝑗))]

𝑠𝑤𝑅; = max
I

∑(∈ ; ∑7∈[/] 𝑝((𝑗)[𝑐( 𝑗 − 𝑐((𝑠(𝑗))]

≤ 𝑛 ⋅ 𝑅



Thank  You

Haifeng Xu 
University of Virginia

hx4ad@virginia.edu

mailto:hx4ad@virginia.edu

