Announcements

>»HW 1 is due now

CS6501: Topics in Learning and Game Theory
(Fall 2019)

Adversarial Multi-Armed Bandits

Instructor: Haifeng Xu

Outline

» The Adversarial Multi-armed Bandit Problem

> A Basic Algorithm: Exp3

> Regret Analysis of Exp3

Recap: Online Learning So Far

Setup: T rounds; the following occurs at round t:
1. Learner picks a distribution p; over actions [n]

2. Adversary picks cost vector ¢, € [0,1]"
3. Action i; ~ p; is chosen and learner incurs cost c¢;(i;)
4. Learner observes c; (for use in future time steps)

Performance is typically measured by regret:
Ry = Xiepn) Zeerr) Ce (D) pe(§) — Jrg[gl] 2terr) €t ()

The multiplicative weight update algorithm has regret O (VT Inn).

Recap: Online Learning So Far

Convergence to equilibrium

> In repeated zero-sum games, if both players use a no-regret
learning algorithm, their average strategy converges to an NE

>In general games, the average strategy converges to a CCE

Swap regret — a “stronger” regret concept and better convergence

> Def: each action i has a chance to deviate to another action s(i)

>In repeated general games, if both players use a no-swap-regret
learning algorithm, their average strategy converges to a CE

There is a general reduction, converting any learning algorithm
with regret R to one with swap regret nR.

This Lecture: Address Partial Feedback

> In online learning, the whole cost vector ¢, can be observed by
the learner, despite she only takes a single action i,

- Realistic in some applications, e.g., stock investment

»In many cases, we only see the reward of the action we take
- For example: slot machines, a.k.a., multi-armed bandits

Other Applications with Partial Feedback

»>Online advertisement placement or web ranking
- Action: ad placement or ranking of webs

- Cannot see the feedback for untaken actions

Go gle pirate pants $ n

Web Shopping Images Videos News More v Search tools

About 1,990,000 results (0.51 seconds)

Shop for pirate pants on Google Sponsored ®
Men Pirate Pants at Amazon
> . www.amazon.com/fashion ¥
l 4.4 Yk kK rating for amazon.com
| Shop hundreds of favorite brands.
_ Free Shipping on Qualified Orders.
Renaissance Joma Sport Velvet Pirate Joma Sport Pirate Pants,
Medieval Pirat... Youth Combi... Adult Womens... Adult Combi P... Brown, XL 29... Pirate Print Pants
$47.95 $23.19 $16.99 $23.19 $39.00 www.loudmouthgolf.com/Pants ~
ToBeAPirate.... Epic Sports TrendyHallow... Epic Sports By The Sword Eashion That Comes In Loud Colors
Choose Your Style. Order Now!
Images for pirate pants Report .
9 pirate p eportimages Pirate Pants & Trousers
. PR . - www.tobeapirate.com/ v
g ﬂ . I Complete your Pirate Outfit
a] with authentic-design Pirate Pants
g
\ Target™ - Pirate Pants Kids

www.target.com/ ¥

. . 4.3 %k kK3 rating for target.com

More images for pirate pants Free Shipping On All Orders $25+.

Shop Pirate Pants Kids at Target™

9 2099 Skokie Valley Rd, Highland Park
(847) 266-8022

Dress Like A Pirate - Dresslikeapirate.com
https://dresslikeapirate.com/ v

Wench Garb, Gypsy Jewels, Frock Coats, Velvet Vests, Pirate Shirts, Lace Jabots,)
Harem Pants, Pirate Boots, Bellydance Wear, Leather Belts, Bodices, Gypsy ... Pirate Pants 75% off

Dress Like a Pirate - Pirate Men - Pirate Wenches - All Women's www.sale-fire.com/Pirate+Pants ~
Save on Pirate Pants.

. . . Order today with free shipping!
Pirate Pants, Knee Breeches N Slops — Pirate Fashions

piratefashions.com/collections/pirate-pants-knee-breeches-n-slops v See your ad here »
We have many options fer ye: 2 versions of the classic Knee Breeches fer pirates who
want confort, Buccaneer Pants fer gentlemen of fortune, n' 2 versions of th.

Dirata rlathinA nirata chirte Dirata Pante Dirata Rante and

Other Applications with Partial Feedback

»>Online advertisement placement or web ranking
- Action: ad placement or ranking of webs

- Cannot see the feedback for untaken actions

»Recommendation system:
- Action = recommended option (e.g., a restaurant)
- Do not know other options’ feedback

English ~ Sign Up for Yelp LogIn

Search for (e.qg. taco, cheap dinner, Max's Near (Address, City, State or Zip

Lexington, MA 02420

WWEUE AooutMe Write aReview FindReviews FindFriends Messaging Talk Events Member Search
Yelp Lexington Boston SanFrancisco NewYork SanJose LosAngeles Chicago More Cities »

z 5 < Review of the Day
Yelp is the best way to find great local businesses

< Sarah D. reviewed Beantown
People use Yelp to search for everything from the city's tastiest burger to the most Taqueria

renowned cardiologist. What will you uncover in your neighborhood? Doooo
I have been putting off writing this

L Create Your Free Account because | always getthe same thing and
I feel like | should probably branch out,
but, nah

Beantown Carnitas tacos. Hot, if you're

The Best of Lexington nasty. Medium if you're a lady.... Read
more
¥ Restaurants Restaurants ST Archive
y Migntiife 1. Royal India Bistro Yelp on the Go
W]l Getthe Yelp app on your mobile
@ Food Category: Indian phone. Its free and helps you
) HEBE. David O.: 1 had my favorite chicken tikka find grleat. local businesses on
4 Shopping masala and it was really... the go!
o Get it for free now
Y Bars -

o American (New) - 2. Wagon Wheel Nursery and Farm Stand
i 4 re 0000 - ews

Other Applications with Partial Feedback

»Online advertisement placement or web ranking
- Action: ad placement or ranking of webs

- Cannot see the feedback for untaken actions

»Recommendation system:
- Action = recommended option (e.g., a restaurant)

- Do not know other options’ feedback

> Clinical trials
- Action = a treatment
- Don’t know what would happen for treatments not chosen

> Playing strategic games
- Cannot observe opponents’ strategies but only know the payoff of the
taken action

- E.g., Poker games, competition in markets

Adversarial Multi-Armed Bandits (MAB)

»>Very much like online learning, except partial feedback
- The name “bandit” is inspired by slot machines

»Model: at each time step t = 1, -+, T; the following occurs in order
1. Learner picks a distribution p, over arms [n]
2. Adversary picks cost vector c; € [0,1]"
3. Armi; ~ p; is chosen and learner incurs cost ¢, (i;)
4. Learner only observes c;(i;) (for use in future time steps)

»Though we cannot observe c;, adversary still picks c; before i; is
sampled

Q: since learner does not observe c;(i) for i # i;, can adversary
arbitrarily modify these c(i)’s after i; has been selected?

No, because this makes c¢; depends on sampled i; which is not allowed

10

Outline

> The Adversarial Multi-armed Bandit Problem

» A Basic Algorithm: Exp3

> Regret Analysis of Exp3

11

Recall the algorithm for full information setting:

/Parameter: €

Initialize weight w, (i) = 1,Vi=1,-'n

Fort=1,---,T

1. Let W, = Yiem e (1), pick arm i with probability w, (i)/W;
2. Observe cost vector c; € [0,1]"

3. Foralli € [n], update w; 4 (i) = w (i) - (1 — ecs(i))

o

~

/

12

Recall the algorithm for full information setting:

/Parameter: €

Fort=1,---,T

2. Observe cost vector c; € [0,1]"

o

Initialize weight w, (i) = 1,Vi=1,-'n
1. Let W, = X;cpy we(0), pick arm i with probability w, (i) /W,

3. Foralli € [n], update w4 (i) = we(i) - e €t @

~

/

Recall 1 — 6 ~ e~? for small 6

13

Recall the algorithm for full information setting:

/Parameter: €
Initialize weight w, (i) = 1,Vi =1, -
Fort=1,--,T

2. Observe cost vector c; € [0,1]"

o

'n
1. Let W, = X;cpy we(0), pick arm i with probability w, (i) /W,

3. Foralli € [n], update w4 (i) = we(i) - e €t @

~

/

> In this lecture we will use this exponential-weight variant, and

prove its regret bound en route

> Also called Exponential Weight Update (EWU)

Recall 1 — 6 ~ e~? for small 6

14

Recall the algorithm for full information setting:

/Parameter: € \

Initialize weight w, (i) = 1,Vi=1,-'n

Fort=1,---,T

1. Let W, = Yiem e (1), pick arm i with probability w, (i)/W;
2. Observe cost vector c; € [0,1]"

3. Foralli € [n], update w,,, (i) = w,(i) - =€t ®)

o v

Basic idea of Exp3

»Want to use EWU, but do not know vector ¢; - try to estimate c,!

>Well, we really only have c,(i;), what can we do?

Estimate ¢; = (0,---,0,¢.(i),0,-- 0)T? >< Too optimistic

; T
Estimate ¢, = (O,---,O, %,0,---0) /
t\tt

15

Exp3:a Basic Algorithm for Adversarial MAB

/Parameter: €
Initialize weight w, (i) = 1,Vi=1,-'n
Fort=1,--,T
1. Let W, = Yiem e (1), pick arm i with probability w, (i)/W;
2. Observe cost vector c; € [0,1]"

K 0,-+,0, ¢ (i) /p: (i), 0, -+)

3. Foralli € [n], update w;,; (i) = we(i) - e €t () where ¢, =

~

/

> That is, weight is updated only for the pulled arm
- Because we really don’t know how good are other arms at t

- But i; is more heavily penalized now
- Attention: c;(i;)/p;(i;) may be extremely large if p,(i;) is small

> Called Exp3: Exponential-weight algorithm for Exploration and
Exploitation

16

A Closer Look at the Estimator ¢;

»C; IS random — it depends on the randomly sampled i; ~ p;

> C; IS an unbiased estimator of ¢, i.e., [E;
- Because given p;, for any i we have

_ 0,
Ei~p, (i) = P, =10)- 1. ()

Lt~pt Ct — Ct

+ P(i; # i)-0

= pe(@) -
= ¢¢(1)

> This is exactly the reason for our choice of ¢,

17

Regret
Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[%l] ZtE[T] ct(J)

Some key differences from online learning

>R, is random (even it already takes expectation over i; ~ p;)
- Because distribution p; itself is random, depends on sampled i, - i;_;

- That is, if we run the same algorithm for multiple times, we will get
different R value even when facing the same adversary!

18

Regret
Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[lfll] ZtE[T] ct(J)

Some key differences from online learning

>R, is random (even it already takes expectation over i; ~ p;)
- Because distribution p; itself is random, depends on sampled i, - i;_;

- That is, if we run the same algorithm for multiple times, we will get
different R value even when facing the same adversary!

wy (i) =1, Vi w (i) =1,Vi+1
1 pull wy (1) < 1
arm 1
round 1 round 2

19

Regret
Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[lfll] ZtE[T] ct(J)

Some key differences from online learning

>R, is random (even it already takes expectation over i; ~ p;)
- Because distribution p; itself is random, depends on sampled i, - i;_;

- That is, if we run the same algorithm for multiple times, we will get
different R value even when facing the same adversary!

wy (i) =1, Vi wy(i) = 1,Vi # 2
1 pull w,(2) < 1
arm 2
round 1 round 2

20

Regret

Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[%l] ZtE[T] ct(J)

Some key differences from online learning

>R, is random (even it already takes expectation over i; ~ p;)
- Because distribution p; itself is random, depends on sampled i, - i;_;

- That is, if we run the same algorithm for multiple times, we will get
different R value even when facing the same adversary

»Cost vector c; is also random as it generally depends on p;
- Adversary maps distribution p; to a cost vector c;

> This is not the case in online learning

- If we run the same algorithm for multiple times, we shall obtain the
same R, value if facing the same adversary

21

Regret

Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[%l] ZtE[T] ct(J)

> Therefore, in principle, we have to upper bound E(R;) where
expectation is over the randomness of arm sampling

E(Rr) = E [Zie[n] 2irerr] e (D) pe (@) — }2[1151] 2te[r] Ct(j)]

= Zie[n] Zte['r] Elc:(Dp:(D)] — E [}2[11?] ZtE[T] Ct(j)]

by linearity of expectation

22

Regret

Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[%l] ZtE[T] ct(J)

> Therefore, in principle, we have to upper bound E(R;) where
expectation is over the randomness of arm sampling

E(Rr) = E [Zie[n] Zte[T] (1) pe (i) — }2[1151] ZtE[T] Ct(j)]
= Zie[n] Zte['r] Elc:(Dp:(D)] — E [}2[11?] ZtE[T] Ct(j)]
= Zie[n] Zte[Elc:(Dp: (D] — mln Zte E[c: ()]

because mmztE 1 E[cc ()] >E[m1n2te Ct(j)]

j€E[n]

(proof: homework exercise)

2]

Regret

Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[%l] ZtE[T] ct(J)

> Therefore, in principle, we have to upper bound E(R;) where
expectation is over the randomness of arm sampling

E(Rr) = E [Zie[n] Zte[T] (1) pe (i) — }2[1151] ZtE[T] Ct(j)]
= Zie[n] Zte[T] Elc:(Dp:(D)] — E [}2[17?] ZtE[T] Ct(j)]
= Zie[n] Zte[Elc:(Dp: (D] — mln Zte E[c: ()]
\ J

Y
Pseudo-Regret R,

»(Good regret guarantees good pseudo-regret, but not the reverse

24

Bounding regret turns out to be challenging

>EXxp3 is not sufficient to guarantee small regret

>Next, we instead prove that Exp3 has small pseudo-regret
- As is typical in many works

> A slight modification of Exp3 can be proved to have small regret

25

Outline

> The Adversarial Multi-armed Bandit Problem

> A Basic Algorithm: Exp3

» Regret Analysis of Exp3

26

Theorem. The pseudo regret of Exp3 is O(vnT Inn).

High-level idea of the proof

> Pretend to be in the full information setting with cost equal the
estimated c;

> Relate c¢; to ¢; since we know it is an unbiased estimator of c;

T

Imitate a Full-Info Setting with Cost ¢;

> Recall regret bound for full information setting

Inn
RIM < — +eT
€

> This holds for any cost vector, thus also ¢;
»But...one issue is that ¢;(i;) may be greater than 1

»>Not a big issue — the same analysis yields the following bound

n _1 — (-
R;u < % + € miaX Zte[T] [Ct(l)]z

{Real Issue: ¢;(i) may be too large that we cannot bound Ri“” }

28

Imitate a Full-Info Setting with Cost ¢;

A regret bound as follows turns out to work for our proof
1 N T
RPM <=2 4 €3, %, p. () [(]2

> That is, instead of max;, the bound here averages over i

>Why more useful?
- The p;(i) term will help to cancel out a p;(i) demominator in ¢;(i) =

¢t (1)/pe(i)

- This turns out to be enough to bound the regret

29

Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

iztzipt(i) [¢;()]# for any cost vector ¢; > 0.

/Parameter: € \

Initialize weight w; (i) = 1,Vi=1,--'n

Fort=1,--,T

1. Let W, = Xiemwe (), pick arm i with probability w, (i) /W,

2. Observe cost vectorc; > 0

Q. For all i € [n], update w,, (i) = w,(i) - e~ € W /

Note: this yields a bound " +§T when ¢, € [0,1]"

€

30

Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

%thipt(i) [¢;()]# for any cost vector ¢; > 0.

Proof: similar technique — carefully bound certain quantity

>Consider quantity ¥.;¢(, pe (e ~¢t®

31

Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most Inn +

€
%thipt(i) [¢;()]# for any cost vector ¢; > 0.

Proof: similar technique — carefully bound certain quantity

>Consider quantity ¥.;¢(, pe (e ~¢t®

/Why this term??
» It tracks weight decrease (will be clear in next slide)

> The algebraic reasons, e =~ 1 — § + §2/2, which will give
rise to both the term p,(i)c; (i) and p,(i)[c; ()]

/

a2

Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

gztzipt(i) [¢;()]? for any cost vector & = 0.
>Consider quantity ¥, pe(i)e¢ct®
Fact 1. Y., pc(De W) = Wy, /W,, where W, = ¥, w,(0).

* The term X, pe (e €W is the decreasing rate of W,
Formal proof: HW exercise

33

Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

gztzipt(i) [¢;()]? for any cost vector & = 0.
>Consider quantity ¥, pe(i)e¢ct®
Fact 1. Y., pc(De W) = Wy, /W,, where W, = ¥, w,(0).

* The term X, pe (e €W is the decreasing rate of W,
* Formal proof: HW exercise

Corollary. Y. log|Ycin pe(De t®] =logWr,,; —logn

 Telescope sumand W; =n

34

Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

E.Zt ¥ p: () [z (0)]? for any cost vector ¢; = 0.

>Consider quantity ¥, pe(i)e¢ct®

Fact 2. Ztlog[Zie[n] pt(i)e_ect(i)] < —€ X i e (D () +€_22 Dt pe(D[c, (D]* .

Follows from algebraic calculation

35

Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

%thipt(i) [¢;()]# for any cost vector ¢; > 0.

>Consider quantity ¥, pe(i)e¢ct®

Fact 2. Ztlog[ZiE[n] pt(i)e_ect(i)] < —€ Zt,ipt(i)ct(i) +€_2 Dt pe (D[(D]? .
Follows from algebraic calculation
Ne 10g] R Pe (e D] < R log [Tieq pe (D1 — €, (1) +5 [(D1]]

Bye d<1-6+62%/2

36

Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most Inn +

€

E.Zt ¥ p: () [z (0)]? for any cost vector ¢; = 0.

>Consider quantity ¥, pe(i)e¢ct®

Fact 2. Ztlog[Zie[n] pt(i)e_ect(i)] < —€ X i e (D () +€_22 Dt pe(D[c, (D]* .

Follows from algebraic calculation
Ztlog[ZiE[n] pe(De W] < ¥, log

= X log

Siepm P (DL — ec, (D) +5 [e (DI2]]

1= B Pe@Dec () + e pe) S [ee (T2

Since Y pe(i) =1

S

Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most Inn +

€

E.Zt ¥ p: () [z (0)]? for any cost vector ¢; = 0.

>Consider quantity ¥, pe(i)e¢ct®

Fact 2. Ztlog[Zie[n] pt(i)e_ect(i)] < —€ X i e (D () +€_22 Dt pe(D[c, (D]* .

Follows from algebraic calculation
Ztlog[ZiE[n] pe(De W] < ¥, log

= X log

Siepm P (DL — €c, (D) +5 [e (D]

1 B Pe@Decc) + e pe) S [ee (DT

< —€ 30 peDee() + 5 i e (DI (DI

Since log(1 + §) < 6 forany 6

38

Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

%thipt(i) [¢;()]# for any cost vector ¢; > 0.

>Consider quantity ¥, pe(i)e¢ct®

»Combining the two facts yields the lemma
- HW exercise

39

Step 2: Relate ¢; to Pseudo-Regret

Recall pseudo-regret definition

Ry = Zte T] Elc; - pe] — min ZtE[T] Elc: ()]

JE[n]
= max | Xeerr Elee - pel = Zeepr) Elec (D] |
= mMax Zte IE[Ct "Pr — Ct(j)]
JE[n] | J

Y
Pseudo-regret from action j

40

Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. ZtE[T] Elc, -pr —c: ()] = Zte[T] Elc; - pe — ()]

> That is, expected pseudo regret from j w.r.t. true cost ¢, equals
that w.r.t. the estimated cost c;

Recall pseudo-regret definition

Ry = ZtE[T] Elc; - pe] — min Zte[T] Elc: ()]

JE[n]
= max | Xeerr Elee - pel = Zeepr) Elec (D] |
= mMax Zte IE[Ct "Pr — Ct(j)]
JE[n] | J

Y
Pseudo-regret from action j

41

Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. ZtE[T] Elc, -pr —c: ()] = Zte[T] Elc; - pe — ()]

> Proof:

Elc; - p: — (D] = E|E[¢; - pe — & ()| pel]

Because the randomness of ¢; comes:

1. Randomness of i; ~ p;

2. Randomness of p, itself which depends
on iy, ,it_q

42

Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. ZtE[T] Elc, -pr —c: ()] = Zte[T] Elc; - pe — ()]

> Proof:

Elc; - p: — (D] = E|E[¢; - pe — & ()| pel]

= IE[IE[Ct Pe — ¢t (J)] pt]]

Because conditioning on p;, ¢; is an
unbiased estimator of c;

43

Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. X7 Elc, - pe — ct(D] = Xeepr Elt - pe — & ()]
> Proof:
E[¢; - p. — & ()] = E[E[& - pe — (D] pe]]

= IE[IE[Ct ‘Pe — ¢ ()] pt]]
= Elc; - pr — ¢ (§)]

44

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +

~ Y 2 pe (@) [E:(D)]? for any cost vector & = 0.
Lemma 2. Zte[T] IE[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»For any j, we have
ZtE[T] Elce - pe —ce(D] = IIE:[Zte[T][C_t "Pt — C_t(])]]

3 R I XOIEAGIY

By Lemma 1

45

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +

~ Y 2 pe (@) [E:(D)]? for any cost vector & = 0.
Lemma 2. Zte[T] E[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»For any j, we have
Yeeir Elee - e — ce(D] = E[Zeemle - pe — (D]
<E[="+58 20 () [G (0]
=22+ SE[E[X: 5 pe (D) [G (D] [pe]]

By conditional expectation

46

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +

E.Zt ¥, p: (i) [¢;(0)]? for any cost vector ¢; = 0.

Lemma 2. Zte[T] E[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»Forany j, we have
Zte[T] Elc: - pr — ()] = IE[ZtE[T][C_t P C_t(j)]]
<E["" 4+ €5, 500 [GOF]
=22+ SE[E[X: 5 pe (D) [G (D1 [pe]]
ln_n_l_ E[th p: () E[[c: (D% |pe]]

By linearity of expectation

47

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +

%Zt ¥, p: (i) [¢;(0)]? for any cost vector ¢; = 0.

Lemma 2. Zte[T] IE[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»Forany j, we have
Seerm Elee - pe — ce(D] = E[Zeermle - pe — & (D]
<B4 £5, 00 (G OF]
=22+ SE[E[X: 5 pe (D) [G (D1 [pe]]
ln_n_l_ E[th p: () E[[c:(D1%|pe]]

Observer E|[¢;(D]%|p:] =0 - [1 — p. (D] + [;t?; - pe(l) = [szfg

48

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +

E.Zt ¥, p: (i) [¢;(0)]? for any cost vector ¢; = 0.

Lemma 2. Zte[T] E[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»Forany j, we have
Seerm Elee - pe — ce(D] = E[Zeermle - pe — & (D]
<B4 £5, 00 (G OF]
=22+ SE[E[X: 5 pe (D) [G (D1 [pe]]
m_n+ “E[S, 24 () E[[6 (D121p:]]

Observer E[[()]2]p,] = 0 - [1 — p.(D)] +L§t?§ pe(i) = (0

49

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +
thZipt(i) [c.(i)]# for any cost vector ¢; = 0.

Lemma 2. Zte[T] IE[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»For any j, we have
Yeeir Elee - e — ce(D] = E[Zeemle - pe — (D]
<E[="+58 20 () [G (0]
= 224 SE[E[X, X pe() [G (D1 Ipe]]

Pick e = |22 yields a l“—"+ L INCICAGIEEA]
regret bound of O(v/nT Inn) _ ln_" 4 € [E[th ¢, (D)]2]

Inn
<—+ nT &

Summary of the Proof

> A tighter regret bound for full information setting
> Treat the (realized) estimated c; as the cost for full information

> EXxpected pseudo-regret w.r.t. to ¢, equals expected pseudo-
regret w.r.t. to ¢;

»>Upper bound pseudo-regret by taking expectation over ¢;’s

51

The True Regret and Beyond

»>EXxp3 does not guarantee good true regret, still because
c:(1)/p: (1) may be too large

- Pseudo-regret “smooths out” p,(i) by taking expectations first

> To obtain good true regret, need to modify Exp3 by adding some
uniform exploration so that p, (i) is never too small

- More intricate analysis, but will get the same regret bound 0 (vnT Inn)

> In additional to adversarial feedback, a “nicer” setting is when the
cost of each arm is drawn from a fixed but unknown distribution
- Called stochastic multi-armed bandits
- Naturally, Exp3 and regret bound O(v/nT Inn) still applies

- But a better algorithm called Upper-Confidence Bounds (UCB) yields
much better regret bound O0(vn InT)

- Different analysis techniques

52

Thank You

Haifeng Xu

University of Virginia

hx4ad@yvirginia.edu

mailto:hx4ad@virginia.edu

