Announcements

>HW 1 is due now

CS6501:Topics in Learning and Game Theory (Fall 2019)

Adversarial Multi-Armed Bandits

Instructor: Haifeng Xu

Outline

> The Adversarial Multi-armed Bandit Problem
$>$ A Basic Algorithm: Exp3
$>$ Regret Analysis of Exp3

Recap: Online Learning So Far

Setup: T rounds; the following occurs at round t :

1. Learner picks a distribution p_{t} over actions $[n]$
2. Adversary picks cost vector $c_{t} \in[0,1]^{n}$
3. Action $i_{t} \sim p_{t}$ is chosen and learner incurs $\operatorname{cost} c_{t}\left(i_{t}\right)$
4. Learner observes c_{t} (for use in future time steps)

Performance is typically measured by regret:

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

The multiplicative weight update algorithm has regret $O(\sqrt{T \ln n})$.

Recap: Online Learning So Far

Convergence to equilibrium
$>$ In repeated zero-sum games, if both players use a no-regret learning algorithm, their average strategy converges to an NE
>In general games, the average strategy converges to a CCE
Swap regret - a "stronger" regret concept and better convergence
>Def: each action i has a chance to deviate to another action $s(i)$
>In repeated general games, if both players use a no-swap-regret learning algorithm, their average strategy converges to a CE

There is a general reduction, converting any learning algorithm with regret R to one with swap regret $n R$.

This Lecture: Address Partial Feedback

>In online learning, the whole cost vector c_{t} can be observed by the learner, despite she only takes a single action i_{t}

- Realistic in some applications, e.g., stock investment
>In many cases, we only see the reward of the action we take
- For example: slot machines, a.k.a., multi-armed bandits

Other Applications with Partial Feedback

> Online advertisement placement or web ranking

- Action: ad placement or ranking of webs
- Cannot see the feedback for untaken actions

Other Applications with Partial Feedback

>Online advertisement placement or web ranking

- Action: ad placement or ranking of webs
- Cannot see the feedback for untaken actions
>Recommendation system:
- Action = recommended option (e.g., a restaurant)
- Do not know other options' feedback

Yelp Lexington Boston San Francisco New York San Jose Los Angeles Chicago More Cities»
Yelp is the best way to find great local businesses People use Yelp to search for everything from the city's tastiest burger to the most renowned cardiologist. What will you uncover in your neighborhood?

The Best of Lexington

	Restaurants 5,575 reviewed
Y	Nightlife 940 reviewed
-	Food 2,960 reviewed
1	Shopping 4,337 reviewed
Y	Bars 684 reviewed
	American (N 424 reviewed

Restaurants

1. Royal India Bistro

Category: Indian
T. David 0. I had my favorite chicken tikka masala and it was really

See Mor

Review of the Day

Other Applications with Partial Feedback

> Online advertisement placement or web ranking

- Action: ad placement or ranking of webs
- Cannot see the feedback for untaken actions
>Recommendation system:
- Action = recommended option (e.g., a restaurant)
- Do not know other options' feedback
>Clinical trials
- Action = a treatment
- Don't know what would happen for treatments not chosen
>Playing strategic games
- Cannot observe opponents' strategies but only know the payoff of the taken action
- E.g., Poker games, competition in markets

Adversarial Multi-Armed Bandits (MAB)

>Very much like online learning, except partial feedback

- The name "bandit" is inspired by slot machines
$>$ Model: at each time step $t=1, \cdots, T$; the following occurs in order

1. Learner picks a distribution p_{t} over arms [$\left.n\right]$
2. Adversary picks cost vector $c_{t} \in[0,1]^{n}$
3. Arm $i_{t} \sim p_{t}$ is chosen and learner incurs cost $c_{t}\left(i_{t}\right)$
4. Learner only observes $c_{t}\left(i_{t}\right)$ (for use in future time steps)
$>$ Though we cannot observe c_{t}, adversary still picks c_{t} before i_{t} is sampled

Q: since learner does not observe $c_{t}(i)$ for $i \neq i_{t}$, can adversary arbitrarily modify these $c_{t}(i)$'s after i_{t} has been selected?

No, because this makes c_{t} depends on sampled i_{t} which is not allowed

Outline

> The Adversarial Multi-armed Bandit Problem
> A Basic Algorithm: Exp3
$>$ Regret Analysis of Exp3

Recall the algorithm for full information setting:
Parameter: ϵ
Initialize weight $w_{1}(i)=1, \forall i=1, \cdots n$
For $t=1, \cdots, T$

1. Let $W_{t}=\sum_{i \in[n]} w_{t}(i)$, pick arm i with probability $w_{t}(i) / W_{t}$
2. Observe cost vector $c_{t} \in[0,1]^{n}$
3. For all $i \in[n]$, update $w_{t+1}(i)=w_{t}(i) \cdot\left(1-\epsilon c_{t}(i)\right)$

Recall the algorithm for full information setting:
Parameter: ϵ
Initialize weight $w_{1}(i)=1, \forall i=1, \cdots n$
For $t=1, \cdots, T$

1. Let $W_{t}=\sum_{i \in[n]} w_{t}(i)$, pick arm i with probability $w_{t}(i) / W_{t}$
2. Observe cost vector $c_{t} \in[0,1]^{n}$
3. For all $i \in[n]$, update $w_{t+1}(i)=w_{t}(i) \cdot e^{-\epsilon \cdot c_{t}(i)}$

Recall $1-\delta \approx e^{-\delta}$ for small δ

Recall the algorithm for full information setting:

Parameter: ϵ
Initialize weight $w_{1}(i)=1, \forall i=1, \cdots n$
For $t=1, \cdots, T$

1. Let $W_{t}=\sum_{i \in[n]} w_{t}(i)$, pick arm i with probability $w_{t}(i) / W_{t}$
2. Observe cost vector $c_{t} \in[0,1]^{n}$
3. For all $i \in[n]$, update $w_{t+1}(i)=w_{t}(i) \cdot e^{-\epsilon \cdot c_{t}(i)}$
>In this lecture we will use this exponential-weight variant, and prove its regret bound en route
>Also called Exponential Weight Update (EWU)

$$
\text { Recall } 1-\delta \approx e^{-\delta} \text { for small } \delta
$$

Recall the algorithm for full information setting:

Parameter: ϵ
Initialize weight $w_{1}(i)=1, \forall i=1, \cdots n$
For $t=1, \cdots, T$

1. Let $W_{t}=\sum_{i \in[n]} w_{t}(i)$, pick arm i with probability $w_{t}(i) / W_{t}$
2. Observe cost vector $c_{t} \in[0,1]^{n}$
3. For all $i \in[n]$, update $w_{t+1}(i)=w_{t}(i) \cdot e^{-\epsilon \cdot c_{t}(i)}$

Basic idea of Exp3
$>$ Want to use EWU, but do not know vector $c_{t} \rightarrow$ try to estimate c_{t} !
$>$ Well, we really only have $c_{t}\left(i_{t}\right)$, what can we do?
Estimate $\overline{c_{t}}=\left(0, \cdots, 0, c_{t}\left(i_{t}\right), 0, \cdots 0\right)^{T}$? X Too optimistic
Estimate $\overline{c_{t}}=\left(0, \cdots, 0, \frac{c_{t}\left(i_{t}\right)}{p_{t}\left(i_{t}\right.}, 0, \cdots 0\right)^{T}$

Exp3: a Basic Algorithm for Adversarial MAB

Parameter: ϵ
Initialize weight $w_{1}(i)=1, \forall i=1, \cdots n$
For $t=1, \cdots, T$

1. Let $W_{t}=\sum_{i \in[n]} w_{t}(i)$, pick arm i with probability $w_{t}(i) / W_{t}$
2. Observe cost vector $c_{t} \in[0,1]^{n}$
3. For all $i \in[n]$, update $w_{t+1}(i)=w_{t}(i) \cdot e^{-\epsilon \cdot \overline{c_{t}}(i)}$ where $\overline{c_{t}}=$ $\left(0, \cdots, 0, c_{t}\left(i_{t}\right) / p_{t}\left(i_{t}\right), 0, \cdots 0\right)^{T}$.
>That is, weight is updated only for the pulled arm

- Because we really don't know how good are other arms at t
- But i_{t} is more heavily penalized now
- Attention: $c_{t}\left(i_{t}\right) / p_{t}\left(i_{t}\right)$ may be extremely large if $p_{t}\left(i_{t}\right)$ is small
>Called Exp3: Exponential-weight algorithm for Exploration and Exploitation

A Closer Look at the Estimator $\overline{c_{t}}$

$>\overline{c_{t}}$ is random - it depends on the randomly sampled $i_{t} \sim p_{t}$
$>\overline{c_{t}}$ is an unbiased estimator of c_{t}, i.e., $\mathbb{E}_{i_{t} \sim p_{t}} \overline{c_{t}}=c_{t}$

- Because given p_{t}, for any i we have

$$
\begin{aligned}
\mathbb{E}_{i_{t} \sim p_{t}} \overline{c_{t}}(i) & =\mathbb{P}\left(i_{t}=i\right) \cdot \frac{c_{t}(i)}{p_{t}(i)}+\mathbb{P}\left(i_{t} \neq i\right) \cdot 0 \\
& =p_{t}(i) \cdot \frac{c_{t}(i)}{p_{t}(i)} \\
& =c_{t}(i)
\end{aligned}
$$

$>$ This is exactly the reason for our choice of $\overline{c_{t}}$

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

Some key differences from online learning
$>R_{T}$ is random (even it already takes expectation over $i_{t} \sim p_{t}$)

- Because distribution p_{t} itself is random, depends on sampled $i_{1}, \cdots i_{t-1}$
- That is, if we run the same algorithm for multiple times, we will get different R_{T} value even when facing the same adversary!

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

Some key differences from online learning
$>R_{T}$ is random (even it already takes expectation over $i_{t} \sim p_{t}$)

- Because distribution p_{t} itself is random, depends on sampled $i_{1}, \cdots i_{t-1}$
- That is, if we run the same algorithm for multiple times, we will get different R_{T} value even when facing the same adversary!

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

Some key differences from online learning
$>R_{T}$ is random (even it already takes expectation over $i_{t} \sim p_{t}$)

- Because distribution p_{t} itself is random, depends on sampled $i_{1}, \cdots i_{t-1}$
- That is, if we run the same algorithm for multiple times, we will get different R_{T} value even when facing the same adversary!

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

Some key differences from online learning
$>R_{T}$ is random (even it already takes expectation over $i_{t} \sim p_{t}$)

- Because distribution p_{t} itself is random, depends on sampled $i_{1}, \cdots i_{t-1}$
- That is, if we run the same algorithm for multiple times, we will get different R_{T} value even when facing the same adversary
$>$ Cost vector c_{t} is also random as it generally depends on p_{t}
- Adversary maps distribution p_{t} to a cost vector c_{t}
>This is not the case in online learning
- If we run the same algorithm for multiple times, we shall obtain the same R_{T} value if facing the same adversary

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

$>$ Therefore, in principle, we have to upper bound $\mathbb{E}\left(R_{T}\right)$ where expectation is over the randomness of arm sampling

$$
\begin{aligned}
\mathbb{E}\left(R_{T}\right) & =\mathbb{E}\left[\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
& =\sum_{i \in[n]} \Sigma_{t \in[T]} \mathbb{E}\left[c_{t}(i) p_{t}(i)\right]-\mathbb{E}\left[\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right]
\end{aligned}
$$

by linearity of expectation

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

> Therefore, in principle, we have to upper bound $\mathbb{E}\left(R_{T}\right)$ where expectation is over the randomness of arm sampling

$$
\begin{aligned}
& \mathbb{E}\left(R_{T}\right)=\mathbb{E}\left[\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
&=\sum_{i \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(i) p_{t}(i)\right]-\mathbb{E}\left[\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
& \geq \sum_{i \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(i) p_{t}(i)\right]-\min _{j \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right] \\
& \text { because } \min _{j \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right] \geq \mathbb{E}\left[\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
& \text { (proof: homework exercise) }
\end{aligned}
$$

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

\Rightarrow Therefore, in principle, we have to upper bound $\mathbb{E}\left(R_{T}\right)$ where expectation is over the randomness of arm sampling

$$
\begin{aligned}
\mathbb{E}\left(R_{T}\right) & =\mathbb{E}\left[\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
& =\sum_{i \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(i) p_{t}(i)\right]-\mathbb{E}\left[\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
& \geq \underbrace{\sum_{i \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(i) p_{t}(i)\right]-\min _{j \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right]}_{\text {Pseudo-Regret } \overline{R_{T}}}
\end{aligned}
$$

>Good regret guarantees good pseudo-regret, but not the reverse

Bounding regret turns out to be challenging

>Exp3 is not sufficient to guarantee small regret
>Next, we instead prove that Exp3 has small pseudo-regret

- As is typical in many works
$>$ A slight modification of Exp3 can be proved to have small regret

Outline

> The Adversarial Multi-armed Bandit Problem
$>$ A Basic Algorithm: Exp3
> Regret Analysis of Exp3

Theorem. The pseudo regret of Exp3 is $O(\sqrt{\mathrm{nT} \ln n})$.

High-level idea of the proof
$>$ Pretend to be in the full information setting with cost equal the estimated $\overline{c_{t}}$
$>$ Relate $\overline{c_{t}}$ to c_{t} since we know it is an unbiased estimator of c_{t}

Imitate a Full-Info Setting with Cost $\overline{c_{t}}$

$>$ Recall regret bound for full information setting

$$
R_{T}^{\text {full }} \leq \frac{\ln n}{\epsilon}+\epsilon T
$$

$>$ This holds for any cost vector, thus also $\overline{c_{t}}$
$>$ But...one issue is that $\overline{c_{t}}\left(i_{t}\right)$ may be greater than 1
$>$ Not a big issue - the same analysis yields the following bound

$$
R_{T}^{\text {full }} \leq \frac{\ln n}{\epsilon}+\epsilon \max _{i} \sum_{t \in[T]}\left[\overline{c_{t}}(i)\right]^{2}
$$

Real Issue: $\overline{c_{t}}(i)$ may be too large that we cannot bound $R_{T}^{\text {full }}$

Imitate a Full-Info Setting with Cost $\overline{C_{t}}$

A regret bound as follows turns out to work for our proof

$$
R_{T}^{\text {full }} \leq \frac{\ln n}{\epsilon}+\epsilon \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}
$$

$>$ That is, instead of $\max _{i}$, the bound here averages over i
$>$ Why more useful?

- The $p_{t}(i)$ term will help to cancel out a $p_{t}(i)$ demominator in $\overline{c_{t}}(i)=$ $c_{t}(i) / p_{t}(i)$
- This turns out to be enough to bound the regret

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\frac{\epsilon}{2}} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Parameter: ϵ
Initialize weight $w_{1}(i)=1, \forall i=1, \cdots n$
For $t=1, \cdots, T$

1. Let $W_{t}=\sum_{i \in[n]} w_{t}(i)$, pick arm i with probability $w_{t}(i) / W_{t}$
2. Observe cost vector $\overline{c_{t}} \geq 0$
3. For all $i \in[n]$, update $w_{t+1}(i)=w_{t}(i) \cdot e^{-\epsilon \cdot \bar{c}_{t}(i)}$

Note: this yields a bound $\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} T$ when $c_{t} \in[0,1]^{n}$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ $\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Proof: similar technique - carefully bound certain quantity
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ $\frac{{ }_{2}}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Proof: similar technique - carefully bound certain quantity
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$

Why this term?
> It tracks weight decrease (will be clear in next slide)
$>$ The algebraic reasons, $e^{-\delta} \approx 1-\delta+\delta^{2} / 2$, which will give rise to both the term $p_{t}(i) \overline{c_{t}}(i)$ and $p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ $\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$
Fact 1. $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}=W_{t+1} / W_{t}$, where $W_{t}=\sum_{i} w_{t}(i)$.

- The term $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$ is the decreasing rate of W_{t}
- Formal proof: HW exercise

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ $\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$
Fact 1. $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}=W_{t+1} / W_{t}$, where $W_{t}=\sum_{i} w_{t}(i)$.

- The term $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$ is the decreasing rate of W_{t}
- Formal proof: HW exercise

Corollary. $\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}\right]=\log W_{T+1}-\log n$

- Telescope sum and $W_{1}=n$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\epsilon} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$
Fact 2. $\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}\right] \leq-\epsilon \sum_{t, i} p_{t}(i) c_{t}(i)+\frac{\epsilon^{2}}{2} \sum_{t, i} p_{t}(i)\left[c_{t}(i)\right]^{2}$.
Follows from algebraic calculation

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\epsilon} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$
Fact 2. $\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}\right] \leq-\epsilon \sum_{t, i} p_{t}(i) c_{t}(i)+\frac{\epsilon^{2}}{2} \sum_{t, i} p_{t}(i)\left[c_{t}(i)\right]^{2}$.
Follows from algebraic calculation
$\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}\right] \leq \sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i)\left[1-\epsilon c_{t}(i)+\frac{\epsilon^{2}}{2}\left[c_{t}(i)\right]^{2}\right]\right]$

$$
\text { By } e^{-\delta} \leq 1-\delta+\delta^{2} / 2
$$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\epsilon} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$
Fact 2. $\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}\right] \leq-\epsilon \sum_{t, i} p_{t}(i) c_{t}(i)+\frac{\epsilon^{2}}{2} \sum_{t, i} p_{t}(i)\left[c_{t}(i)\right]^{2}$.
Follows from algebraic calculation

$$
\begin{aligned}
\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}\right] & \leq \sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i)\left[1-\epsilon c_{t}(i)+\frac{\epsilon^{2}}{2}\left[c_{t}(i)\right]^{2}\right]\right] \\
& =\sum_{t} \log \left[1-\sum_{i \in[n]} p_{t}(i) \epsilon c_{t}(i)+\sum_{i \in[n]} p_{t}(i) \frac{\epsilon^{2}}{2}\left[c_{t}(i)\right]^{2}\right]
\end{aligned}
$$

$$
\text { Since } \sum_{i \in[n]} p_{t}(i)=1
$$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\epsilon} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$
Fact 2. $\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}\right] \leq-\epsilon \sum_{t, i} p_{t}(i) c_{t}(i)+\frac{\epsilon^{2}}{2} \sum_{t, i} p_{t}(i)\left[c_{t}(i)\right]^{2}$.
Follows from algebraic calculation

$$
\begin{aligned}
\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}\right] & \leq \sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i)\left[1-\epsilon c_{t}(i)+\frac{\epsilon^{2}}{2}\left[c_{t}(i)\right]^{2}\right]\right] \\
& =\sum_{t} \log \left[1-\sum_{i \in[n]} p_{t}(i) \epsilon c_{t}(i)+\sum_{i \in[n]} p_{t}(i) \frac{\epsilon^{2}}{2}\left[c_{t}(i)\right]^{2}\right] \\
& \leq-\epsilon \sum_{t, i} p_{t}(i) c_{t}(i)+\frac{\epsilon^{2}}{2} \sum_{t, i} p_{t}(i)\left[c_{t}(i)\right]^{2}
\end{aligned}
$$

$$
\text { Since } \log (1+\delta) \leq \delta \text { for any } \delta
$$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\frac{\epsilon}{2}} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon c_{t}(i)}$
$>$ Combining the two facts yields the lemma

- HW exercise

Step 2: Relate $\overline{c_{t}}$ to Pseudo-Regret

Recall pseudo-regret definition

$$
\begin{aligned}
\overline{R_{T}} & =\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}\right]-\min _{j \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right] \\
& =\max _{j \in[n]}\left[\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}\right]-\sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right]\right] \\
& =\max _{j \in[n]}^{\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]}
\end{aligned}
$$

Pseudo-regret from action j

Step 2: Relate $\overline{c_{t}}$ to Pseudo-Regret

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>That is, expected pseudo regret from j w.r.t. true cost c_{t} equals that w.r.t. the estimated cost $\overline{c_{t}}$

Recall pseudo-regret definition

$$
\begin{aligned}
\overline{R_{T}} & =\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}\right]-\min _{j \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right] \\
& =\max _{j \in[n]}\left[\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}\right]-\sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right]\right] \\
& =\max _{j \in[n]}^{\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]}
\end{aligned}
$$

Pseudo-regret from action j

Step 2: Relate $\overline{c_{t}}$ to Pseudo-Regret

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>Proof:

$$
\mathbb{E}\left[\bar{c}_{t} \cdot p_{t}-\bar{c}_{t}(j)\right]=\mathbb{E}\left[\mathbb{E}\left[\bar{c}_{t} \cdot p_{t}-\bar{c}_{t}(j) \mid p_{t}\right]\right]
$$

Because the randomness of $\overline{c_{t}}$ comes:

1. Randomness of $i_{t} \sim p_{t}$
2. Randomness of p_{t} itself which depends on i_{1}, \cdots, i_{t-1}

Step 2: Relate $\overline{c_{t}}$ to Pseudo-Regret

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>Proof:

$$
\begin{aligned}
\mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right] & =\mathbb{E}\left[\mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j) \mid p_{t}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j) \mid p_{t}\right]\right]
\end{aligned}
$$

Because conditioning on $p_{t}, \overline{c_{t}}$ is an unbiased estimator of c_{t}

Step 2: Relate $\overline{c_{t}}$ to Pseudo-Regret

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>Proof:

$$
\begin{aligned}
\mathbb{E}\left[\bar{c}_{t} \cdot p_{t}-\overline{c_{t}}(j)\right] & =\mathbb{E}\left[\mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j) \mid p_{t}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j) \mid p_{t}\right]\right] \\
& =\mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]
\end{aligned}
$$

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\epsilon} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\bar{c}_{t} \cdot p_{t}-\bar{c}_{t}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}\right]
\end{aligned}
$$

By Lemma 1

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\epsilon} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\overline{c_{t}}(i)\right]^{2}\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i)\left[\overline{c_{t}}(i)\right]^{2} \mid p_{t}\right]\right]
\end{aligned}
$$

By conditional expectation

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\epsilon} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\bar{c}_{t} \cdot p_{t}-\bar{c}_{t}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i) \mathbb{E}\left[\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right]
\end{aligned}
$$

By linearity of expectation

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\frac{\epsilon}{2}} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i)\left[\overline{c_{t}}(i)\right]^{2} \mid p_{t}\right]\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i) \mathbb{E}\left[\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right]
\end{aligned}
$$

Observer $\mathbb{E}\left[\left[\overline{c_{t}}(i)\right]^{2} \mid p_{t}\right]=0 \cdot\left[1-p_{t}(i)\right]+\left[\frac{c_{t}(i)}{p_{t}(i)}\right]^{2} \cdot p_{t}(i)=\frac{\left[c_{t}(i)\right]^{2}}{p_{t}(i)}$

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\frac{\epsilon}{2}} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i)\left[\overline{c_{t}}(i)\right]^{2} \mid p_{t}\right]\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i) \mathbb{E}\left[\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right]
\end{aligned}
$$

Observer $\mathbb{E}\left[\left[\overline{c_{t}}(i)\right]^{2} \mid p_{t}\right]=0 \cdot\left[1-p_{t}(i)\right]+\left[\frac{c_{t}(i)}{p_{t}(i)}\right]^{2} \cdot p_{t}(i)=\frac{\left[c_{t}(i)\right]^{2}}{p_{t}(i)}$

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }^{\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2} \text { for any cost vector } \overline{c_{t}} \geq 0 . ~}$

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\bar{c}_{t} \cdot p_{t}-\bar{c}_{t}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right] \\
\hline \text { Pick } \epsilon=\sqrt{\frac{2 \ln n}{n T}} \text { yields a } & =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i) \mathbb{E}\left[\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right] \\
\text { regret bound of } O(\sqrt{\mathrm{nT} \ln n}) & \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\sum_{t} \sum_{i}\left[c_{t}(i)\right]^{2}\right] \\
& \leq \frac{\ln n}{\epsilon}+\frac{\epsilon}{2} n T
\end{aligned}
$$

Summary of the Proof

$>$ A tighter regret bound for full information setting
$>$ Treat the (realized) estimated $\overline{c_{t}}$ as the cost for full information
>Expected pseudo-regret w.r.t. to c_{t} equals expected pseudoregret w.r.t. to $\overline{c_{t}}$
>Upper bound pseudo-regret by taking expectation over $\overline{c_{t}}$'s

The True Regret and Beyond

>Exp3 does not guarantee good true regret, still because $c_{t}(i) / p_{t}(i)$ may be too large

- Pseudo-regret "smooths out" $p_{t}(i)$ by taking expectations first
> To obtain good true regret, need to modify Exp3 by adding some uniform exploration so that $p_{t}(i)$ is never too small
- More intricate analysis, but will get the same regret bound $O(\sqrt{\mathrm{nT} \ln n})$
> In additional to adversarial feedback, a "nicer" setting is when the cost of each arm is drawn from a fixed but unknown distribution
- Called stochastic multi-armed bandits
- Naturally, Exp3 and regret bound $O(\sqrt{\mathrm{nT} \ln n})$ still applies
- But a better algorithm called Upper-Confidence Bounds (UCB) yields much better regret bound $O(\sqrt{\mathrm{n} \ln T})$
- Different analysis techniques

Thank You

Haifeng Xu
University of Virginia
hx4ad@virginia.edu

