Announcements

>»HW 1 is due now



CS6501: Topics in Learning and Game Theory
(Fall 2019)

Adversarial Multi-Armed Bandits

Instructor: Haifeng Xu



Outline

» The Adversarial Multi-armed Bandit Problem

> A Basic Algorithm: Exp3

> Regret Analysis of Exp3



Recap: Online Learning So Far

Setup: T rounds; the following occurs at round t:
1. Learner picks a distribution p; over actions [n]

2. Adversary picks cost vector ¢, € [0,1]"
3. Action i; ~ p; is chosen and learner incurs cost c¢;(i;)
4. Learner observes c; (for use in future time steps)

Performance is typically measured by regret:
Ry = Xiepn) Zeerr) Ce (D) pe(§) — Jrg[gl] 2terr) €t ()

The multiplicative weight update algorithm has regret O (VT Inn).



Recap: Online Learning So Far

Convergence to equilibrium

> In repeated zero-sum games, if both players use a no-regret
learning algorithm, their average strategy converges to an NE

>In general games, the average strategy converges to a CCE

Swap regret — a “stronger” regret concept and better convergence

> Def: each action i has a chance to deviate to another action s(i)

>In repeated general games, if both players use a no-swap-regret
learning algorithm, their average strategy converges to a CE

There is a general reduction, converting any learning algorithm
with regret R to one with swap regret nR.



This Lecture: Address Partial Feedback

> In online learning, the whole cost vector ¢, can be observed by
the learner, despite she only takes a single action i,

- Realistic in some applications, e.g., stock investment

»In many cases, we only see the reward of the action we take
- For example: slot machines, a.k.a., multi-armed bandits




Other Applications with Partial Feedback

»>Online advertisement placement or web ranking
- Action: ad placement or ranking of webs

- Cannot see the feedback for untaken actions
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Other Applications with Partial Feedback

»>Online advertisement placement or web ranking
- Action: ad placement or ranking of webs

- Cannot see the feedback for untaken actions

»Recommendation system:
- Action = recommended option (e.g., a restaurant)
- Do not know other options’ feedback
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Other Applications with Partial Feedback

»Online advertisement placement or web ranking
- Action: ad placement or ranking of webs

- Cannot see the feedback for untaken actions

»Recommendation system:
- Action = recommended option (e.g., a restaurant)

- Do not know other options’ feedback

> Clinical trials
- Action = a treatment
- Don’t know what would happen for treatments not chosen

> Playing strategic games
- Cannot observe opponents’ strategies but only know the payoff of the
taken action

- E.g., Poker games, competition in markets



Adversarial Multi-Armed Bandits (MAB)

»>Very much like online learning, except partial feedback
- The name “bandit” is inspired by slot machines

»Model: at each time step t = 1, -+, T; the following occurs in order
1. Learner picks a distribution p, over arms [n]
2. Adversary picks cost vector c; € [0,1]"
3. Armi; ~ p; is chosen and learner incurs cost ¢, (i;)
4. Learner only observes c;(i;) (for use in future time steps)

»Though we cannot observe c;, adversary still picks c; before i; is
sampled

Q: since learner does not observe c;(i) for i # i;, can adversary
arbitrarily modify these c(i)’s after i; has been selected?

No, because this makes c¢; depends on sampled i; which is not allowed

10



Outline

> The Adversarial Multi-armed Bandit Problem

» A Basic Algorithm: Exp3

> Regret Analysis of Exp3
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Recall the algorithm for full information setting:

/Parameter: €

Initialize weight w, (i) = 1,Vi=1,-'n

Fort=1,---,T

1. Let W, = Yiem e (1), pick arm i with probability w, (i)/W;
2. Observe cost vector c; € [0,1]"

3. Foralli € [n], update w; 4 (i) = w (i) - (1 — ecs(i))

o

~

/
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Recall the algorithm for full information setting:

/Parameter: €

Fort=1,---,T

2. Observe cost vector c; € [0,1]"

o

Initialize weight w, (i) = 1,Vi=1,-'n
1. Let W, = X;cpy we(0), pick arm i with probability w, (i) /W,

3. Foralli € [n], update w4 (i) = we(i) - e €t @

~

/

Recall 1 — 6 ~ e~? for small 6

13



Recall the algorithm for full information setting:

/Parameter: €
Initialize weight w, (i) = 1,Vi =1, -
Fort=1,--,T

2. Observe cost vector c; € [0,1]"

o

'n
1. Let W, = X;cpy we(0), pick arm i with probability w, (i) /W,

3. Foralli € [n], update w4 (i) = we(i) - e €t @

~

/

> In this lecture we will use this exponential-weight variant, and

prove its regret bound en route

> Also called Exponential Weight Update (EWU)

Recall 1 — 6 ~ e~? for small 6
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Recall the algorithm for full information setting:

/Parameter: € \

Initialize weight w, (i) = 1,Vi=1,-'n

Fort=1,---,T

1. Let W, = Yiem e (1), pick arm i with probability w, (i)/W;
2. Observe cost vector c; € [0,1]"

3. Foralli € [n], update w,,, (i) = w,(i) - =€t ®)

o v

Basic idea of Exp3

»Want to use EWU, but do not know vector ¢; - try to estimate c,!

>Well, we really only have c,(i;), what can we do?

Estimate ¢; = (0,---,0,¢.(i),0,-- 0)T? >< Too optimistic

; T
Estimate ¢, = (O,---,O, %,0,---0) /
t\tt

15



Exp3:a Basic Algorithm for Adversarial MAB

/Parameter: €
Initialize weight w, (i) = 1,Vi=1,-'n
Fort=1,--,T
1. Let W, = Yiem e (1), pick arm i with probability w, (i)/W;
2. Observe cost vector c; € [0,1]"

K 0,-+,0, ¢ (i) /p: (i), 0, -+ )

3. Foralli € [n], update w;,; (i) = we(i) - e €t () where ¢, =

~

/

> That is, weight is updated only for the pulled arm
- Because we really don’t know how good are other arms at t

- But i; is more heavily penalized now
- Attention: c;(i;)/p;(i;) may be extremely large if p,(i;) is small

> Called Exp3: Exponential-weight algorithm for Exploration and
Exploitation

16



A Closer Look at the Estimator ¢;

»C; IS random — it depends on the randomly sampled i; ~ p;

> C; IS an unbiased estimator of ¢, i.e., [E;
- Because given p;, for any i we have

_ 0,
Ei~p, (i) = P, =10)- 1. ()

Lt~pt Ct — Ct

+ P(i; # i)-0

= pe(@) -
= ¢¢(1)

> This is exactly the reason for our choice of ¢,

17



Regret
Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[%l] ZtE[T] ct(J)

Some key differences from online learning

>R, is random (even it already takes expectation over i; ~ p;)
- Because distribution p; itself is random, depends on sampled i, - i;_;

- That is, if we run the same algorithm for multiple times, we will get
different R value even when facing the same adversary!

18



Regret
Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[lfll] ZtE[T] ct(J)

Some key differences from online learning

>R, is random (even it already takes expectation over i; ~ p;)
- Because distribution p; itself is random, depends on sampled i, - i;_;

- That is, if we run the same algorithm for multiple times, we will get
different R value even when facing the same adversary!

wy (i) =1, Vi w (i) =1,Vi+1
1 pull wy (1) < 1
arm 1
round 1 round 2

19



Regret
Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[lfll] ZtE[T] ct(J)

Some key differences from online learning

>R, is random (even it already takes expectation over i; ~ p;)
- Because distribution p; itself is random, depends on sampled i, - i;_;

- That is, if we run the same algorithm for multiple times, we will get
different R value even when facing the same adversary!

wy (i) =1, Vi wy(i) = 1,Vi # 2
1 pull w,(2) < 1
arm 2
round 1 round 2

20



Regret

Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[%l] ZtE[T] ct(J)

Some key differences from online learning

>R, is random (even it already takes expectation over i; ~ p;)
- Because distribution p; itself is random, depends on sampled i, - i;_;

- That is, if we run the same algorithm for multiple times, we will get
different R value even when facing the same adversary

»Cost vector c; is also random as it generally depends on p;
- Adversary maps distribution p; to a cost vector c;

> This is not the case in online learning

- If we run the same algorithm for multiple times, we shall obtain the
same R, value if facing the same adversary

21



Regret

Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[%l] ZtE[T] ct(J)

> Therefore, in principle, we have to upper bound E(R;) where
expectation is over the randomness of arm sampling

E(Rr) = E [Zie[n] 2irerr] e (D) pe (@) — }2[1151] 2te[r] Ct(j)]

= Zie[n] Zte['r] Elc:(Dp:(D)] — E [}2[11?] ZtE[T] Ct(j)]

by linearity of expectation

22



Regret

Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[%l] ZtE[T] ct(J)

> Therefore, in principle, we have to upper bound E(R;) where
expectation is over the randomness of arm sampling

E(Rr) = E [Zie[n] Zte[T] (1) pe (i) — }2[1151] ZtE[T] Ct(j)]
= Zie[n] Zte['r] Elc:(Dp:(D)] — E [}2[11?] ZtE[T] Ct(j)]
= Zie[n] Zte[ Elc:(Dp: (D] — mln Zte E[c: ()]

because mmztE 1 E[cc ()] >E[m1n2te Ct(j)]

j€E[n]

(proof: homework exercise)

2]



Regret

Rr = Zie[n] ZtE[T] ¢t (D) pe() — Jnel[%l] ZtE[T] ct(J)

> Therefore, in principle, we have to upper bound E(R;) where
expectation is over the randomness of arm sampling

E(Rr) = E [Zie[n] Zte[T] (1) pe (i) — }2[1151] ZtE[T] Ct(j)]
= Zie[n] Zte[T] Elc:(Dp:(D)] — E [}2[17?] ZtE[T] Ct(j)]
= Zie[n] Zte[ Elc:(Dp: (D] — mln Zte E[c: ()]
\ J

Y
Pseudo-Regret R,

»(Good regret guarantees good pseudo-regret, but not the reverse

24



Bounding regret turns out to be challenging

>EXxp3 is not sufficient to guarantee small regret

>Next, we instead prove that Exp3 has small pseudo-regret
- As is typical in many works

> A slight modification of Exp3 can be proved to have small regret

25



Outline

> The Adversarial Multi-armed Bandit Problem

> A Basic Algorithm: Exp3

» Regret Analysis of Exp3

26



Theorem. The pseudo regret of Exp3 is O(vnT Inn).

High-level idea of the proof

> Pretend to be in the full information setting with cost equal the
estimated c;

> Relate c¢; to ¢; since we know it is an unbiased estimator of c;

T



Imitate a Full-Info Setting with Cost ¢;

> Recall regret bound for full information setting

Inn
RIM < — +eT
€

> This holds for any cost vector, thus also ¢;
»But...one issue is that ¢;(i;) may be greater than 1

»>Not a big issue — the same analysis yields the following bound

n _1 — (-
R;u < % + € miaX Zte[T] [Ct(l)]z

{Real Issue: ¢;(i) may be too large that we cannot bound Ri“” }

28



Imitate a Full-Info Setting with Cost ¢;

A regret bound as follows turns out to work for our proof
1 N T
RPM <=2 4 €3, %, p. () [ (]2

> That is, instead of max;, the bound here averages over i

>Why more useful?
- The p;(i) term will help to cancel out a p;(i) demominator in ¢;(i) =

¢t (1)/pe(i)

- This turns out to be enough to bound the regret

29



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

iztzipt(i) [¢;()]# for any cost vector ¢; > 0.

/Parameter: € \

Initialize weight w; (i) = 1,Vi=1,--'n

Fort=1,--,T

1. Let W, = Xiemwe (), pick arm i with probability w, (i) /W,

2. Observe cost vectorc; > 0

Q. For all i € [n], update w,, (i) = w,(i) - e~ € W /

Note: this yields a bound " +§T when ¢, € [0,1]"

€

30



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

%thipt(i) [¢;()]# for any cost vector ¢; > 0.

Proof: similar technique — carefully bound certain quantity

>Consider quantity ¥.;¢(, pe (e ~¢t®

31



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most Inn +

€
%thipt(i) [¢;()]# for any cost vector ¢; > 0.

Proof: similar technique — carefully bound certain quantity

>Consider quantity ¥.;¢(, pe (e ~¢t®

/Why this term??
» It tracks weight decrease (will be clear in next slide)

> The algebraic reasons, e =~ 1 — § + §2/2, which will give
rise to both the term p,(i)c; (i) and p,(i)[c; ()]

/

a2



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

gztzipt(i) [¢;()]? for any cost vector & = 0.
>Consider quantity ¥, pe(i)e¢ct®
Fact 1. Y., pc(De W) = Wy, /W,, where W, = ¥, w,(0).

* The term X, pe (e €W is the decreasing rate of W,
Formal proof: HW exercise

33



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

gztzipt(i) [¢;()]? for any cost vector & = 0.
>Consider quantity ¥, pe(i)e¢ct®
Fact 1. Y., pc(De W) = Wy, /W,, where W, = ¥, w,(0).

* The term X, pe (e €W is the decreasing rate of W,
* Formal proof: HW exercise

Corollary. Y. log|Ycin pe(De t®] =logWr,,; —logn

 Telescope sumand W; =n

34



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

E.Zt ¥ p: () [z (0)]? for any cost vector ¢; = 0.

>Consider quantity ¥, pe(i)e¢ct®

Fact 2. Ztlog[Zie[n] pt(i)e_ect(i)] < —€ X i e (D () +€_22 Dt pe(D[c, (D]* .

Follows from algebraic calculation

35



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

%thipt(i) [¢;()]# for any cost vector ¢; > 0.

>Consider quantity ¥, pe(i)e¢ct®

Fact 2. Ztlog[ZiE[n] pt(i)e_ect(i)] < —€ Zt,ipt(i)ct(i) +€_2 Dt pe (D[ (D]? .
Follows from algebraic calculation
Ne 10g] R Pe (e D] < R log [Tieq pe (D1 — €, (1) +5 [ (D1]]

Bye d<1-6+62%/2

36



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most Inn +

€

E.Zt ¥ p: () [z (0)]? for any cost vector ¢; = 0.

>Consider quantity ¥, pe(i)e¢ct®

Fact 2. Ztlog[Zie[n] pt(i)e_ect(i)] < —€ X i e (D () +€_22 Dt pe(D[c, (D]* .

Follows from algebraic calculation
Ztlog[ZiE[n] pe(De W] < ¥, log

= X log

Siepm P (DL — ec, (D) +5 [e (DI2]]

1= B Pe@Dec () + e pe ) S [ee (T2

Since Y pe(i) =1

S



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most Inn +

€

E.Zt ¥ p: () [z (0)]? for any cost vector ¢; = 0.

>Consider quantity ¥, pe(i)e¢ct®

Fact 2. Ztlog[Zie[n] pt(i)e_ect(i)] < —€ X i e (D () +€_22 Dt pe(D[c, (D]* .

Follows from algebraic calculation
Ztlog[ZiE[n] pe(De W] < ¥, log

= X log

Siepm P (DL — €c, (D) +5 [e (D]

1 B Pe@Decc ) + e pe ) S [ee (DT

< —€ 30 peDee() + 5 i e (DI (DI

Since log(1 + §) < 6 forany 6

38



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most an +

%thipt(i) [¢;()]# for any cost vector ¢; > 0.

>Consider quantity ¥, pe(i)e¢ct®

»Combining the two facts yields the lemma
- HW exercise

39



Step 2: Relate ¢; to Pseudo-Regret

Recall pseudo-regret definition

Ry = Zte T] Elc; - pe] — min ZtE[T] Elc: ()]

JE[n]
= max | Xeerr Elee - pel = Zeepr) Elec (D] |
= mMax Zte IE[Ct "Pr — Ct(j)]
JE[n] | J

Y
Pseudo-regret from action j

40



Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. ZtE[T] Elc, -pr —c: ()] = Zte[T] Elc; - pe — ()]

> That is, expected pseudo regret from j w.r.t. true cost ¢, equals
that w.r.t. the estimated cost c;

Recall pseudo-regret definition

Ry = ZtE[T] Elc; - pe] — min Zte[T] Elc: ()]

JE[n]
= max | Xeerr Elee - pel = Zeepr) Elec (D] |
= mMax Zte IE[Ct "Pr — Ct(j)]
JE[n] | J

Y
Pseudo-regret from action j

41



Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. ZtE[T] Elc, -pr —c: ()] = Zte[T] Elc; - pe — ()]

> Proof:

Elc; - p: — (D] = E|E[¢; - pe — & ()| pel]

Because the randomness of ¢; comes:

1. Randomness of i; ~ p;

2. Randomness of p, itself which depends
on iy, ,it_q

42



Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. ZtE[T] Elc, -pr —c: ()] = Zte[T] Elc; - pe — ()]

> Proof:

Elc; - p: — (D] = E|E[¢; - pe — & ()| pel]

= IE[IE[Ct Pe — ¢t (J)] pt]]

Because conditioning on p;, ¢; is an
unbiased estimator of c;

43



Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. X7 Elc, - pe — ct(D] = Xeepr Elt - pe — & ()]
> Proof:
E[¢; - p. — & ()] = E[E[& - pe — (D] pe]]

= IE[IE[Ct ‘Pe — ¢ ()] pt]]
= Elc; - pr — ¢ (§)]

44



Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +

~ Y 2 pe (@) [E:(D)]? for any cost vector & = 0.
Lemma 2. Zte[T] IE[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»For any j, we have
ZtE[T] Elce - pe —ce(D] = IIE:[Zte[T][C_t "Pt — C_t(])]]

3 R I XOIEAGIY

By Lemma 1

45



Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +

~ Y 2 pe (@) [E:(D)]? for any cost vector & = 0.
Lemma 2. Zte[T] E[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»For any j, we have
Yeeir Elee - e — ce(D] = E[Zeemle - pe — (D]
<E[="+58 20 () [G (0]
=22+ SE[E[X: 5 pe (D) [G (D] [pe] ]

By conditional expectation

46



Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +

E.Zt ¥, p: (i) [¢;(0)]? for any cost vector ¢; = 0.

Lemma 2. Zte[T] E[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»Forany j, we have
Zte[T] Elc: - pr — ()] = IE[ZtE[T][C_t P C_t(j)]]
<E["" 4+ €5, 500 [GOF]
=22+ SE[E[X: 5 pe (D) [G (D1 [pe] ]
ln_n_l_ E[th p: () E[[c: (D% |pe]]

By linearity of expectation
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Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +

%Zt ¥, p: (i) [¢;(0)]? for any cost vector ¢; = 0.

Lemma 2. Zte[T] IE[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»Forany j, we have
Seerm Elee - pe — ce(D] = E[Zeermle - pe — & (D]
<B4 £5, 00 (G OF]
=22+ SE[E[X: 5 pe (D) [G (D1 [pe] ]
ln_n_l_ E[th p: () E[[c:(D1%|pe]]

Observer E|[¢;(D]%|p:] =0 - [1 — p. (D] + [;t?; - pe(l) = [szfg

48



Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +

E.Zt ¥, p: (i) [¢;(0)]? for any cost vector ¢; = 0.

Lemma 2. Zte[T] E[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»Forany j, we have
Seerm Elee - pe — ce(D] = E[Zeermle - pe — & (D]
<B4 £5, 00 (G OF]
=22+ SE[E[X: 5 pe (D) [G (D1 [pe] ]
m_n+ “E[S, 24 () E[[6 (D121p:]]

Observer E[[()]2]p,] = 0 - [1 — p.(D)] +L§t?§ pe(i) = (0

49



Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most ln_en +
thZipt(i) [c.(i)]# for any cost vector ¢; = 0.

Lemma 2. Zte[T] IE[Ct "Dt — Ct(f)] = Zte[T] IE[C_t "Pr — CTt(/)]

»For any j, we have
Yeeir Elee - e — ce(D] = E[Zeemle - pe — (D]
<E[="+58 20 () [G (0]
= 224 SE[E[X, X pe() [G (D1 Ipe] ]

Pick e = |22 yields a l“—"+ L INCICAGIEEA]
regret bound of O(v/nT Inn) _ ln_" 4 € [E[th ¢, (D)]2]

Inn
<—+ nT &



Summary of the Proof

> A tighter regret bound for full information setting
> Treat the (realized) estimated c; as the cost for full information

> EXxpected pseudo-regret w.r.t. to ¢, equals expected pseudo-
regret w.r.t. to ¢;

»>Upper bound pseudo-regret by taking expectation over ¢;’s
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The True Regret and Beyond

»>EXxp3 does not guarantee good true regret, still because
c:(1)/p: (1) may be too large

- Pseudo-regret “smooths out” p,(i) by taking expectations first

> To obtain good true regret, need to modify Exp3 by adding some
uniform exploration so that p, (i) is never too small

- More intricate analysis, but will get the same regret bound 0 (vnT Inn)

> In additional to adversarial feedback, a “nicer” setting is when the
cost of each arm is drawn from a fixed but unknown distribution
- Called stochastic multi-armed bandits
- Naturally, Exp3 and regret bound O(v/nT Inn) still applies

- But a better algorithm called Upper-Confidence Bounds (UCB) yields
much better regret bound O0(vn InT)

- Different analysis techniques
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