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ABSTRACT

We study how an advertiser changes his/her bid prices in sponsored

search, by modeling his/her rationality. Predicting the bid changes

of advertisers with respect to their campaign performances is a key

capability of search engines, since it can be used to improve the

offline evaluation of new advertising technologies and the forecast

of future revenue of the search engine. Previous work on adver-

tiser behavior modeling heavily relies on the assumption of per-

fect advertiser rationality; however, in most cases, this assumption

does not hold in practice. Advertisers may be unwilling, incapable,

and/or constrained to achieve their best response. In this paper,

we explicitly model these limitations in the rationality of advertis-

ers, and build a probabilistic advertiser behavior model from the

perspective of a search engine. We then use the expected payoff

to define the objective function for an advertiser to optimize given

his/her limited rationality. By solving the optimization problem

with Monte Carlo, we get a prediction of mixed bid strategy for

each advertiser in the next period of time. We examine the effec-

tiveness of our model both directly using real historical bids and

indirectly using revenue prediction and click number prediction.

Our experimental results based on the sponsored search logs from

a commercial search engine show that the proposed model can pro-

vide a more accurate prediction of advertiser bid behaviors than

several baseline methods.

Categories and Subject Descriptors

H.3.5 [Information Systems]: Information Storage and Retrieval

- On-line Information Services
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1. INTRODUCTION
Sponsored search has become a major means of Internet moneti-

zation, and has been the driving power of many commercial search

engines. In a sponsored search system, an advertiser creates a num-

ber of ads and bids on a set of keywords (with certain bid prices)

for each ad. When a user submits a query to the search engine, and

if the bid keyword can be matched to the query, the corresponding

ad will be selected into an auction process. Currently, the General-

ized Second Price (GSP) auction [10] is the most commonly used

auction mechanism which ranks the ads according to the product

of bid price and ad click probability1 and charges an advertisers if

his/her ad wins the auction (i.e., his/her ad is shown in the search

result page) and is clicked by users [13].

Generally, an advertiser has his/her goal when creating the ad

campaign. For instance, the goal might be to receive 500 clicks on

the ad during one week. However, the way of achieving this goal

might not be smooth. For example, it is possible that after one day,

the ad has only received 10 clicks. In this case, in order to improve

the campaign performance, the advertiser may have to increase the

bid price in order to increase the opportunity for his/her ad to win

future auctions, and thus to increase the chance for the ad to be

presented to users and to be clicked.2

Predicting how the advertisers change their bid prices is a key

capability of a search engine, since it can be used to deal with the

so-called second order effect in online advertising [13] when evalu-

ating novel advertising technologies and forecasting future revenue

of search engines. For instance, suppose the search engine wants to

test a novel algorithm for bid keyword suggestion3 [7]. Given that

the online experiments are costly (e.g., unsuccessful online experi-

ments will lead to revenue loss of the search engine), the algorithm

will usually be tested based on the historical logs first to see its ef-

1Usually a reserve score is set and the ads whose scores are greater
than the reserve score are shown.
2Note that the advertiser may also choose to revise the ad descrip-
tion, bid extra keywords, and so on. However, among these actions,
changing the bid price is the simplest and the most commonly used
method by advertisers. Please also note that since GSP is not in-
centive compatible, advertisers might not bid their true values and
changing bid prices is their common behaviors.
3The same thing will happen when we evaluate other algorithms
like traffic estimation, ad click prediction, and auction mechanism.



fectiveness (a.k.a., offline experiment). However, in many cases,

even if the algorithm works quite well in offline experiment, it may

perform badly after being deployed online. One of the reasons is

that the advertisers might change their bid prices in response to the

changes of their campaign performances caused by the deployed

new algorithm. Therefore, the experiments based on the historical

bid prices will be different from those on online traffic. To tackle

this problem, one needs a powerful advertiser behavior model to

predict the bid price changes.

In the literature, there have been a number of researches [4] [5]

[22] [19] [2] [17] [3] that model how advertisers determine their

bid prices, and how their bid strategies influence the equilibrium

of the sponsored search system. For example, Varian [19] assumes

that the advertisers bid the amount at which their value per click

equals the incremental cost per click to maximize their utilities.

The authors of [2] and [17] study how to estimate value per click,

by assuming advertisers are on the locally envy-free equilibrium,

and assuming the distributions of all the advertisers’ bids are inde-

pendent and identically distributed.

Most of the above researches rely highly on the assumptions of

perfect advertiser rationality and full information access4, i.e., ad-

vertisers have good knowledge about their utilities and are capable

of effectively optimizing the utilities (i.e., take the best response).

However, as we argue in this paper, this is usually not true in prac-

tice. In our opinion, real-world advertisers have limitations in ac-

cessing the information about their competitors, and have different

levels of rationality. In particular, an advertiser may be unwilling,

incapable, or constrained to achieve his/her “best response.” As a

result, some advertisers frequently adjust the bid prices according

to their recent campaign performances, while some other adver-

tisers always keep the bid unchanged regardless of the campaign

performances; some advertisers have good sense of choosing the

appropriate bid prices (possibly with the help of campaign analysis

tools [14] or third-party ad agencies), while some other advertisers

choose bid prices at random.

To better describe the above intuition, we explicitly model the

rationality of advertisers from the following three aspects:

• Willingness represents the propensity an advertiser has to

optimize his/her utility. Advertisers who care little about

their ad campaigns and advertisers who are very serious about

the campaign performance will have different levels of will-

ingness.

• Capability describes the ability of an advertiser to estimate

the bid strategies of his/her competitors and take the best-

response action on that basis. An experienced advertiser is

usually more capable than an inexperienced advertiser; an

advertiser who hires professional ad agency is usually more

capable than an advertiser who adjusts bid prices by his-

self/herself.

• Constraint refers to the constraints that prevent an adver-

tiser from adopting a bid price even if he/she knows that this

bid price is the best response for him/her. The constraint usu-

ally (although not only) comes from the lack of remaining

budget.

With the above notions, we propose the following model to de-

scribe how advertisers change their bid prices, from the perspective

4Please note that some of these works take a Bayesian approach;
however, they still assume that the priors of the value distributions
are publicly known.

of the search engine.5 First, an advertiser has a certain probability

to optimize his/her utility or not, which is modeled by the willing-

ness function. Second, if the advertiser is willing to make changes,

he/she will estimate the bid strategies of his/her competitors. Based

on the estimation, he/she can compute the expected payoff (or util-

ity) and use it as an objective function to determine his/her next

bid price. This process is modeled by the capability function. By

simultaneously considering the optimization processes of all the

advertisers, we can effectively compute the best bid prices for ev-

ery advertiser. Third, given the optimal bid price, an advertiser will

check whether he/she is able to adopt it according to some con-

straints. This is modeled by the constraint function.

Please note that the willingness, capability, and constraint func-

tions are all parametric. By fitting the output of our proposed model

to the real bid change logs (obtained from commercial search en-

gines), we will be able to learn these parameters, and then use the

learned model to predict the bid behavior change in the future. We

have tested the effectiveness of the proposed model using real data.

The experimental results show that the proposed model can pre-

dict the bid changes of advertisers in a more accurate manner than

several baseline methods.

To sum up, the contributions of our work are listed as below.

First, to the best of our knowledge, this is the first advertiser behav-

ior model in the literature that considers different levels of rational-

ity of advertisers. Second, we model advertiser behaviors using a

parametric model, and apply machine learning techniques to learn

the parameters in the model. This is a good example of leveraging

machine learning in game theory to avoid its unreasonable assump-

tions. Third, our proposed model leads to very accurate bid pre-

diction. In contrast, as far as we know, most of previous research

focuses on estimating value per click, but not predicting bid prices.

Therefore, our work has more direct value to search engine, given

that bid prediction is a desired ability of search engine as aforemen-

tioned.

The rest of the paper is organized as the following. In Section

2, we introduce the notations and describe the willingness, capabil-

ity, and constraint functions. We present the framework of the bid

strategy prediction model in Section 3. In Section 4, we introduce

the efficient numerical algorithm of the model. In Section 5, we

present the experimental results on real data. We summarize the re-

lated work in Section 6, and in the end we conclude the paper and

present some insights about future work in Section 7.

2. ADVERTISER RATIONALITY
As mentioned in the introduction, how an advertiser adjusts his/her

bid is related to his/her rationality. In our opinion, there are three

aspects to be considered when modeling the rationality of an ad-

vertiser: willingness, capability, and constraint. In this section, we

introduce some notations for sponsored search auctions, and then

describe the models for these rationality aspects.

2.1 Notations
We consider the keyword auction in sponsored search. For sim-

plicity, we will not consider connections between different ad cam-

paigns and we assume each advertiser only has one ad and bids on

just one keyword for it. That is, the auction participants are the

keyword-ad pairs. Advertisers are assumed to be risk-neutral.6

5That is, the model is to be used by the search engine to predict ad-
vertisers’ behavior, but not by the advertisers to guide their bidding
strategies.
6This assumption will result in a uniform definition of utility func-
tions for all the advertisers. However, our result can be naturally



We use i (i = 1, · · · , I) to index the advertisers, and consider

advertiser l as the default advertiser of our interest. Suppose in

one auction the advertisers compete for J ad slots. In practice,

the search engine usually introduces a reserve score to optimize its

revenue. Only those ads whose rank scores are above this reserve

score will be shown to users. To ease our discussion, we regard the

reserve score r as a virtual advertiser in the auction. We use ai,j

to denote the click-through rate (CTR) of advertiser i’s ad when it

is placed at position j. Similar to the setting in [2][17], we assume

ai,j to be separable. That is , ai,j = γiαj , where γi is the ad effect

and αj is the position effect. We let αj = 0 when j > J . The

sponsored search system will predict the click probability [11] of

an ad and use it as a factor to rank the ads in the auction. We

use si to denote the predicted click probability of advertiser i’s
ad if it is placed in the first ad slot. Note that both ai,j and si
are random variables [2], since they may be influenced by many

dynamic factors such as the attributes of the query and the user

who issues the query.

We assume all the advertisers share the same bid strategy space Ω
which consists of B different discrete bid prices denoted by bi, i =
1, · · · , B. Furthermore, we denote the strategy of advertiser l as

πl = (πl,1, · · · , πl,B), which is a mixed strategy. It means that l
will use bid strategy bi with a probability of πl,i, i = 1, · · · , B. We

assume advertiser l will estimate both the configuration of his/her

competitors and their strategies in order to find his/her own best

response. We use S (including l) to indicate the set of advertisers

who are regarded by advertiser l as the participates of the auction

and use S−l (excluding l) to indicate the set of competitors of l. We

denote π
(l)
i as l’s estimated bid strategy for a competitor i (i 6= l),

and denote l’s own best-response strategy as π
(l)
l .

Note that both S and π
(l)
i (i 6= l) are random: (i) S is a random

set due to the uncertainty in the auction process: a) the participants

of the auction is dynamic [17]; b) in practice l never knows ex-

actly who are competing with him/her since such information is

not publicly available. (ii) π
(l)
i (i 6= l) is a random vector due to

l’s incomplete information and our uncertainty on l’s estimation.

More intuitions about π
(l)
i will be explained in the modeling of the

capability function (see Section 2.3).

To ease our discussion, we now transform the uncertainty of S to

the uncertainty in bid prices, as shown below. That is, we regard

all the other advertisers as the competitors of l and add the zero

bid price (denoted by b0) to extend the bid strategy space. The

extended bid strategy space is represented by Ω∗ = Ω
⋃

{b0}. If

an advertiser is not a real competitor of l, we regard his/her bid

price to be zero. According to the above discussion, S will be the

whole advertiser set with the set size I . Thus, we will only consider

the uncertainty of bid prices in the rest of the paper.

2.2 Willingness
Willingness represents the propensity an advertiser is willing to

optimize his/her utility, which is modeled as a possibility. We

model willingness as a logistic regression function Wl(x
(l)
t ). Here

the input x
(l)
t = (x

(l)
t,1, · · · , x

(l)
t,H) is a feature vector (H is the num-

ber of features) extracted for advertiser l at period t, and the output

is a real number in [0, 1] representing the probability that l will op-

timize his/her utility.7 That is, advertiser l with feature vector x
(l)
t

extended to the case where advertisers’ different risk preferences
are considered.
7Note that “willing to optimize” does not always mean a change of
bid. Probably, an advertiser attempts to optimize his/her utility, but
finally finds that his/her previous bid is already the best choice. In

will have a probability of Wl(x
(l)
t ) to optimize his/her utility, and

a probability of 1−Wl(x
(l)
t ) to take no action.

In order to extract the feature vector x
(l)
t , we split the historical

auction logs into T periods (e.g., T days). For each period t ∈

T , y
(l)
t indicates whether the bid was changed in period t + 1. If

the bid was changed, y
(l)
t = 1; otherwise, y

(l)
t = 0. With this

data, the following features are extracted: (i) The number of bid

changes before t. The intuition is that an advertiser who changes

bid more frequently in the past will also have a higher possibility

to make changes in the next period. (ii) The number of periods

that an advertiser has kept the bid unchanged until t. Intuitively,

an advertiser who has kept the bid unchanged for a long time may

have a higher possibility to continue keeping the bid unchanged.

(iii) The number of different bid values used before t. The intuition

is that an advertiser who has tried more bid values in the past may

be regarded as a more active bidder, and we may expect him/her

to try more new bid values in the future. (iv) A Boolean value

indicating whether there are clicks in t. The intuition is that if there

is no click, the advertiser will feel unsatisfied and thus have a higher

probability to make changes.

With the above features, we write the willingness function as,

Wl(x
(l)
t ) =

1

1 + e{β
(l)
0 +

∑
H
n=1 β

(l)
n x

(l)
t,n}

, (t = 1, · · · , T ).

Here β(l) = (β
(l)
0 , · · · , β

(l)
H ) is the parameter vector for l.

To learn the parameter vector β(l), we minimize the sum of

the first-order error
∑T

t=1 |y
(l)
t − Wl(x

(l)
t )| on the historical data

using the classical Broyden-Fletcher-Goldfarb-Shanno algorithm

(BFGS) [15]. Then we apply the learned parameter β(l) to predict

l’s willingness of change in the future.

2.3 Capability
Capability describes the ability of an advertiser to estimate the

bid strategies of his/her competitors and take the best-response ac-

tion on that basis. A more experienced advertiser may have better

capability in at least three aspects: information collection, utility

function definition, and utility optimization. Usually, in GSP auc-

tions, a standard utility function is used and the optimal solution is

not hard to obtain. Hence, we mainly consider the capability in in-

formation collection, i.e., the ability in estimating competitors’ bid

strategies.

Recalling that l does not have any exact information on his/her

competitors’ bids, it is a little difficult to model how advertiser l
estimates his/her competitors’ strategies, because different l has

different estimation techniques. Before introducing the detailed

model for the capability function, we would like to briefly describe

our intuition. It’s reasonable to assume that l’s estimation on i is

based on i’s market performance, denoted by Perfi. Then we can

write l’s estimation as Estl(Perfi), which means l applies some

specific estimation technique Estl on Perfi. The market perfor-

mance Perfi is decided by all the advertisers’ bid profiles due to

the auction property. That is, Perfi = Perfπ∗
−i

(π∗
i ), here π∗

i is

i’s historical bid histogram. Note that we use π∗
i and π∗

−i because

we believe the observed market performance Perfi is based on the

auctions during a previous period, while not just one previous auc-

tion. However, we are mostly interested in profitable keywords, the

auctions of which usually have so many advertisers involved that

π∗
−i can be regarded as a constant environment factor for any i.

Therefore, Perfi only depends on π∗
i , i.e., Perfi = Perf(π∗

i ).

this case, he will keep the bid unchanged but we still regard it as
“willing to optimize.”



Thus, we have Estl(Perfi) = Estl(Perf(π∗
i )). Till now, the

problem becomes much easier: l is blind to π∗
i , but the search en-

gine has all the information of π∗
i . To know Estl(Perfi), the

search engine only needs to model the function Estl(Perf(·))
given that π∗

i is known.

Specifically, we denote the above Estl(Perf(π∗
i )) as our ca-

pability function Al(π
∗
i ). As described in Section 2.1, Al(π

∗
i ) is

denoted by π
(l)
i . The reason that Al is named as capability func-

tion is clear: Estl, the techniques l uses for estimation, reflects

his/her capability. The reason that π
(l)
i = Al(π

∗
i ) is modeled to be

random is also clear: the search engine does not know what Estl,
and thus aspired by the concept of “type” in Bayesian Game [12]

which is a description of incomplete game setting, we regard Estl
as a “type” of l and model its distribution. For the same π∗

i , dif-

ferent advertisers may have different estimations according to their

various capabilities.

To simplify our model, we give the following assumption on

π
(l)
i . We assume that l’s estimations on other advertisers’ bid strate-

gies are all pure strategies. That is, π
(l)
i is a random Boolean vector

with just one element equal to 1.8

Given a bid bn with possibility π∗
i,n from the historical bid his-

togram π∗
i , we assume l’s estimation has a fluctuation around bn.

The fluctuation can be modeled by a certain probability distribu-

tion such as Binomial distribution or Poisson distribution. The pa-

rameters of the distribution can be used to indicate l’s capability.

Here we use Binomial distribution to model the fluctuation due to

the following reasons: (i) Theoretically, Binomial distribution can

conveniently describe the discrete bids due to its own discrete na-

ture. Furthermore, the two parameters in Binomial distribution can

well reflect the capability levels: the trail times N can control the

fluctuation range (N = 0 means a perfect estimation) and the suc-

cess possibility δ ∈ (0, 1) can control the bias of the estimations.

Specifically, if δ > 0.5, it means the estimation is on average larger

than the true distribution and vice versa. (ii) Experimentally, we

have compared Binomial distribution with some other well-known

distributions such as Gaussian, Poisson, Beta, and Gamma distri-

butions, and the experiment results show that Binomial distribution

performs the best in our model.

For sake of simplicity, we let the fluctuation range be an inte-

ger 2Nl ∈ Ω, and the success possibility be δl ∈ (0, 1). Then

(Nl, δl) are l’s capability parameters. The fluctuation on bn in π∗
i

is modeled by

Pr(Al(bn)=bn+m) = π∗
i,n

(

2Nl

Nl +m

)

δ
(Nl+m)
l (1− δl)

(Nl−m),

(m = −Nl, ..., Nl).

In the above formula, i 6= l; the symbol “=” means the equivalence

of strategy;
(

2Nl
Nl+m

)

is the number of (Nl +m)-combinations in a

set with 2Nl integers. Therefore, by considering all the bid values

in π∗
i , we have,

Pr(π
(l)
i =bn) = Pr(Al(π

∗
i )=bn)

=

Nl
∑

m=−Nl

π∗
i,n−m

(

2Nl

Nl +m

)

δ
(Nl+m)
l (1− δl)

(Nl−m).

2.4 Constraint
Constraint refers to the factor that prevents an advertiser from

adopting a bid price even if he/she knows that this bid price is the

8Our model can be naturally extended to the mixed strategy cases,
with a bit more complicated notations and computing algorithms.

best response for him/her. In practice, many factors (such as lack of

remaining budget and the aggressive/conservative character of the

advertiser) may impact advertiser’s eventual choices. For example,

an advertiser who lacks budget or has conservative character may

prefer to bid a lower price than the best response.

We model constraint using a function Cl, which translates the

best response (which may be a mixed strategy) to the final strategy

with step (a.k.a., difference) c
(l)
t . That is, if the best bid strategy

is π
(l)
l at period t, then Cl(π

(l)
l ) will be bn + c

(l)
t with probability

π
(l)
l,n. Similar to the proposal in the willingness function, we model

the step c
(l)
t using a regression model. The difference is that this

time we use linear regression since c
(l)
t is in nature a translation

distance but not a probability. Here we use the remaining budget as

the feature x
(l)
t and build the following function form:

c
(l)
t = β1,l + β2,l

x
(l)
t − x(l)

x(l)
, where x(l) =

∑

t∈T x
(l)
t

|T |
.

In the above formula, T is the set of periods for training and

x
(l)
t is l’s remaining budget in period t. In the training data, we

use (
∑B

n=1 bnπ
(l)
l,n) − b

(l)
t as the label for c

(l)
t . Here b

(l)
t is l’s

real bid at period t; β1,l and β2,l are the parameters for the lin-

ear regression. Note that β1,l is only related to l himself/herself.

This parameter reveals l’s internal character on whether he/she is

aggressive or not. One can intuitively imagine that for aggressive

advertisers, β1,l will be positive because such advertisers are rad-

ical and they would like to overbid. Moreover, we normalize the

budget in the formula because the amounts of budget vary largely

across different advertisers. The normalization will help to build a

uniform model for all advertisers.

3. ADVERTISER BEHAVIOR MODEL
After explaining the advertiser rationality in terms of willing-

ness, capability, and constraint, we introduce a new advertiser be-

havior model.

Suppose advertiser l has a utility function Ul. The inputs of Ul

are l’s estimations on his/her competitors’ bid strategies, which are

given by the capability function Al. The goal of advertiser l is to

find a mixed strategy π
(l)
l to maximize this utility, i.e.,

argmax
π

(l)
l

Ul(Al(π
∗
i ), i = 1, · · · , I)

= argmax
π

(l)
l

Ul(π
(l)
i , i = 1, · · · , I, i 6= l).

If we further consider the changing possibility Wl, the constraint

function Cl, and the randomness of Al, we can get the general

advertiser behavior model that explains how advertiser l may de-

termine his/her bid strategy for the next period of time:

πl = WlEAl
(Cl(argmax

π
(l)
l

Ul(π
(l)
i , i = 1, · · · , I, i 6= l))) +

(1−Wl)(0, ..0, 1, 0...0)
T ,∀ l. (1)

Here (0, ..0, 1, 0...0) is the unchanged B-dimension bid strategy

where the index of the one (and the only one) equals n if the bid

in the previous period is bn. “argmax” outputs a B-dimension

mixed strategy of l; EAl
means the expectation on the randomness

of Al(π
∗
j ); Wl is the possibility that l decides to optimize his/her

utility.

We want to emphasis that equation (1) is a general expression

under our rationality assumptions. Though we have provided the

details of the model in Section 2 about Wl, Al, Cl and we will



introduce the details about Ul in the next subsection, one can cer-

tainly propose any other forms of the model for all these functions.

3.1 Utility Function
To make the above model concrete, we need to define and calcu-

late the utility function Ul for every advertiser.

Recall our assumption that π
(l)
i = Al(π

∗
i ) is a pure strategy;

that is, only one element in π
(l)
i is one and all the other elements

are zeros. Suppose the bid value that corresponds to the “one” in

π
(l)
i is oi (oi ∈ Ω∗ and i 6= l). In this case, the bid configuration

is o = (o1, · · · , oI), in which all the advertisers’ bids are fixed.

Please note that the representations in terms of oi and the original

representations in term of π
(l)
i are actually equivalent to each other,

since they encode exactly the same information and its randomness

in the bid strategies of advertiers.

Then we introduce the form of Ul. Based on the bid prices in

o and ad quality scores si (i = 1, · · · , I), we can determine the

ranked list in the auction according to the commonly used ranking

rules (i.e., the product of bid price and ad quality score [13]) in

sponsored search. Suppose l is ranked in position j and l̂ is ranked

in position j + 1. According to the pricing rule in the general-

ized second price auction (GSP) [10], l should pay ol̂sl̂/sl for each

click. As defined in Section 2.1, the possibility for a user to click l’s
ad in position j is alj = γlαj . Suppose the true value of advertiser

l for a click is vl (which can be estimated using many techniques,

e.g., [9]), then we have,

Ul = Eγl,αj ,sl̂,sl
{(γlαj(vl −

ol̂sl̂
sl

))} = γlαj(vl −
ol̂sl̂
sl

).

As explained in Section 2, γl, αj , sl̂, sl are all random vari-

ables. Here γl, αj , sl̂, and sl are their means. Since Ul is linear

and the above four random variables are independent of each other,

the outside expectation can be moved inside and substituted by the

corresponding means.

3.2 Final Model
With all the above discussions, we are now ready to give the final

form of the advertiser model. By denoting o−l = (o1, · · · , ol−1,
ol+1, · · · , oI) as the bid configuration without l’s bid, we get the

following expression for l = 1, · · · , I :

πl = WlEo−l
{Cl[argmax

π
(l)
l

(γlαj(vl − ol̂sl̂/sl))]}

+(1−Wl)(0, ..0, 1, 0...0)
T .

Here the randomness of Al is specifically expressed by the ran-

domness of o−l.

Note that γl is a constant for l and it will not affect the result of

“argmax”. Therefore we can remove it from the above expression

to further simplify the final model:

πl = WlEo−l
{Cl[argmax

π
(l)
l

(αj(vl − ol̂sl̂/sl))]}

+(1−Wl)(0, ..0, 1, 0...0)
T ,∀l. (2)

4. ALGORITHM
In this section we introduce an efficient algorithm to solve the

advertiser model proposed in the previous sections. To ease our dis-

cussion, we assume that the statistics αj , sl̂, and sl are all known

(with sufficient data and knowledge about the market). Further-

more, we assume that the search engine can effectively estimate

the true value vl in (2). Considering the setting of our problem, we

choose to use the model in [9] for this purpose.

Table 1: O-simulator
initialize o = (o1, · · · , oI) = (0, 0, · · · , 0)
for i = 1, ..., I ,

f=random();

// random() uniformly outputs a random float number in [0,1].

sum = 0;

n = 0;

while(sum < f )

sum = sum+ P (Oi = bn);
n = n+ 1;

end;

oi = bn;

end;

output o;

Our discussions in this section will be focused on the computa-

tional challenge to obtain the best response for all the cases of bid

configurations o (corresponding to o−l in (2)). This is a typical

combinatorial explosion problem with a complexity of BI , which

will increase exponentially with the number of advertisers. There-

fore, it is hard to solve the problem directly. Our proposal is to

adopt a numerical approximation instead of giving an accurate so-

lution to the problem. We can prove that the approximation algo-

rithm can converge to the accurate solution with a small accuracy

loss and much less running time.

Our approximation algorithm requires the use of a O-simulator,

which is defined as follows.

DEFINITION 1. (O-simulator) Suppose there is a random vec-

tor O = (O1, · · · , OI) ∼ P (o), i.e., P (o) is the distribution

of O. Given ∀o ∈ Ω∗ and P (o), an algorithm is called an O-

simulator if the algorithm randomly outputs a vector o with the

probability P (o).

As described above, O-simulator actually simulates the random

vector O and randomly output its samples. In general, it is diffi-

cult to simulate a random vector; however, in our case, all the Oi

are independent of each other and they have discrete distributions.

Therefore, the simulation becomes feasible. In Table 1 we give a

description of O-simulator. Here we assume O = (O1, · · · , OI)
and Oi ∼ Pi(oi), oi ∈ Ω∗. Furthermore, Ω∗ = {b0, b1, · · · , bB}
is a discrete space shared by all i (like the bid space in our model)

and all Oi are independent of each other.

Note that f is a uniformly random number from [0, 1], therefore

the possibility that oi equals bn is exactly P (Oi = bn). Thus, the

possibility to output o = (o1, · · · , oI) is ΠI
i=1P (Oi = oi), which

is exactly what we want.

We then give the Monte Carlo Algorithm as shown in Table 2 to

calculate Eo−l
{argmax

π
(l)
l

(αj(vl−ol̂sl̂/sl))} for a certain l. For

simplicity, we denote Pr(π
(l)
i = bn) as q

(l)
i,n, and thus q

(l)
i,0 is the

possibility that i is not in the auction. In this algorithm, the histori-

cal bid histogram π∗
i and q

(l)
i,0 are calculated from the auction logs

by Maximum Likelihood Estimation. Given rationality parameter

δl, Nl, and q
(l)
i,0, we initialize q

(l)
i,n by the capability function. Then

with o−l generated by O-simulator, we can calculate which ranked

list is optimal for l by solving argmax
π

(l)
l

(αj(vl−ol̂sl̂/sl)). Note

that it is possible that different bids may lead to the same optimal

ranked list (with the same utility). In this case, the inverse function

“argmax
π

(l)
l

” will output a bid set Bo−l
including all the equally

optimal bids. By assuming that advertiser l will take any bid in

Bo−l
with uniform probability, we allocate each bid in Bo−l

with



Table 2: Monte Carlo Algorithm

for i = 0, ..., I ,

initialize π∗
i , q

(l)
i,0, si;

end;

for j = 0, ..., J ,

initialize αj ;

end;

initialize , δl, Nl, 1/sl;

π
(l)
l,n = 0;

for i = 1, · · · , I(l 6= i) and n = 1, · · · , B

q
(l)
i,n = (1− q

(l)
i,0)×

∑Nl
m=−Nl

π∗
i,n−m

(

2Nl
Nl+m

)

δ
(Nl+m)
l (1− δl)

(Nl−m);

end;

Build an O-simulator with P (O = o−l) = ΠI
i=1,i6=lq

(l)
i,oi

,∀o−l;

for t = 1, · · · , N ,

O-simulator outputs a sample o−l;

Solve argmax
π

(l)
l

(αj(vl − ol̂sl̂/sl)) to get Bo−l
;

for all bi ∈ Bo−l
,

π
(l)
l,i = π

(l)
l,i + 1/|Bo−l

|;
end;

end;

for n = 1, · · · , B,

π
(l)
l,n=π

(l)
l,n/N .

end;

output π
(l)
l,n;

a weight 1
|Bo−l

|
averagely. Finally, we use the simulation times N

to normalize the distribution and output it.

For the Monte Carlo Algorithm, we can prove its convergence to

the accurate solution, which is shown in the following theorem.

THEOREM 1. Given π∗
i and q

(l)
i,0, the output of the Monte Carlo

Algorithm converges to Eo−l
{argmax

π
(l)
l

(αj(vl − ol̂sl̂/sl))} as

the times of simulation N grows.

PROOF. We assume that the accurate solution is π0
l and thus we

need to prove ∀n (n = 1, · · · , B), π
(l)
l,n → π0

l,n as N → ∞.

For a certain player l, we construct the following map:

M : o−l → Bo−l
=
{

all of l′s best bids in case o−l

}

,∀o−l.

According to the definition, we know that π0
l,n equals to the nth

element of Eo−l
{arg max

π
(l)
l

(αj(vl − ol̂sl̂/sl))}, and then

π0
l,n =

∑

all Bo−l
containing bn

P (o−l)

|Bo−l
|
.

Here P (o−l) is the probability of o−l. In the Monte Carlo al-

gorithm, we initialize π
(l)
l,n = 0, and suppose that π

(l)
l,n increases by

∆t in each step of the loop “for t = 1, · · · , N”. Therefore, the

value of π
(l)
l,n will finally be (

∑N

t=1 ∆t)/N . However, in each step

t, for a sample o−l, the expectation of ∆t is,

E(∆t) =
∑

all Bo−l
containing bn

P (o−l)

|Bo−l
|
.

Hence, referring to the Law of Large Number, (
∑N

t=1∆t)/N
will converge to the expectation of ∆t, which exactly equals π0

l,n

as N grows. This finishes our proof of Theorem 1.

Besides the above theorem, we can also prove some properties

of the proposed model. We describe the properties in the appendix

for the readers who are interested in them.

5. EXPERIMENTAL RESULTS
In this section, we report the experimental results about the pre-

diction accuracy of our proposed model. In particular, we first

describe the data sets and the experimental setting. Then we in-

vestigate the training accuracy for the willingness, capability, and

constraint functions, to show the step-wise results of the proposed

method. After that, we test the performance of our model in bid pre-

diction, which is the direct output of the advertiser behavior model.

At last, we test the performance of our model in click number pre-

diction and revenue prediction, which are important applications of

the advertiser behavior model.

5.1 Data and Setting
In our experiments, we used the advertiser bid history data sam-

pled from the sponsored search log of a commercial search engine.

We randomly chose 160 queries from the most profitable 10,000

queries and extracted the related advertisers from the data. We

sampled one auction per 30 minutes from the auction log within

90 days (from March 2012 to May 2012)9, so there are in total

4,320 (90 × 24 × 2) auctions. For each auction, there are up to 14

(4 on mainline and 10 on sidebar) ads displayed. We filtered out

the advertisers whose ads have never been displayed during these

4,320 auctions, and eventually kept 5,543 effective advertisers in

the experiments.

For the experimental setting, we used the first 3,360 auctions (70

days) for model training, and the last 960 auctions (20 days) as test

data for evaluation. In the training period, we used the first 2,400

auctions (50 days) to obtain the historical bid histogram π∗
i (i =

1, · · · , I) and the true value vl; we then used the rest 960 auctions

(20 days) to learn the parameters for the advertiser rationality. For

clarity, we list the usage of the data in Table 3. Note that the three

periods in the table are abbreviated as P1, P2, and P3.

5.2 Different Aspects of Advertiser Rational-
ity

5.2.1 Willingness

First, we study the logistic regression model for willingness. We

train the willingness function using the auctions in P2 according to

the description in Section 2.2, and test its performance on actions

in P3. In particular, for any auction t in P3, we get the value of

y
(l)
t according to whether the bid was changed in the time interval

[t − 1, t], and use it as the ground truth. For the same time pe-

riod, we apply the regression model to calculate the predicted value

ŷ
(l)
t ∈ [0, 1] of y

(l)
t . We find a threshold in [0, 1] such that ŷ

(l)
t is

correspondingly converted to 0 or 1. Then we can calculate the pre-

diction accuracy compared with the ground truth. Figure 1 shows

the distribution of different prediction accuracies among advertis-

ers when the threshold is set to 0.15. According to the figure, we

can see that the willingness function gets a prediction accuracy of

100% for 39% (2,170 of 5,543) advertisers, and a prediction accu-

racy over 80% for 68% (3,773 of 5,543) advertisers. In this regard

we say the proposed willingness model performs well on predicting

whether the advertisers are willing to change their bids.

9In the search engine, only the latest-90-day data is stored. To deal
with the seasonal or holiday effects, we can choose seasonal or
holiday data from different years instead of the data in continuous
time. We only consider the general cases in our experiments.



Table 3: Data usage in the experiments

Purpose Training Test

Period P1: Day 1 to Day 50 P2: Day 51 to Day 70 P3: Day 71 to Day 90

#auctions 2,400 960 960

Usage
(i) Get historical bid histogram

Learn rationality parameters Test model
(ii) Learn true value

Information required

bid price bid price bid price

ad quality score ad quality score ad quality score

ad position click number click number

budget budget

pay per click
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Figure 1: Distribution of the prediction accuracy.

5.2.2 Capability

Second, we investigate the capability function. For this pur-

pose, we set Cl as an identify function, and only consider Wl and

Al. In the capability function Al, we discretely pick the parameter

pair (δl, Nl) from the set {0, 0.1, · · · , 0.9, 1.0}×{0, 1, · · · , 9, 10}
and judge which parameter pair is the best using the data in P2

as described in Section 2.3. We call the advertiser model with

the learned willingness and capability functions (without consider-

ing the constraint function) Rationality-based Advertiser Behavior

model with Willingness and Capability (or RAB-WC for short). Its

performance will be reported and discussed in Section 5.3.

5.2.3 Constraint

Third, the constraint function is implemented with a linear re-

gression model trained on P2, using the remaining budget as the

feature, according to the discussions in Section 2.4. By applying

the constraint function, we get the complete version of the pro-

posed model. We call it Rationality-based Advertiser Behavior

model with Willingness, Capability, and Constraint (or RAB-WCC

for short). Its performance will be given in Section 5.3.

5.3 Bid Prediction
In this subsection, we compare our proposed advertiser model

with six baselines in the task of bid prediction. The predicted bid

prices are the direct outputs of the advertiser behavior models. The

baselines are listed as follows:

• Random Bid Model (RBM) refers to the random method of

bid prediction. That is, we will randomly select a bid in the

bid strategy space as the prediction.

• Most Frequent Model (MFM) refers to an intuitive method

for bid prediction, which works as follows. First, we get the

historical bid histogram from the bid values in the training

period, and then always output the historically most frequently-

used bid value for the test period. If there are several bid

prices that are equally frequently used, we will randomly se-

lect one from them.

• Best Response Model (BRM) [5] refers to the model that

predicts the bid strategy to be the best response by assuming

the advertisers know all the competitors’ bids in the previous

auction.

• Regression Model (RM) [8] refers to the model that predicts

the bid strategy using a linear regression function. In our

experiments, we used the following 5 features as the input

of this function: the average bid change in history, the bid

change in the previous time period, click number, remaining

budget, and revenue in the previous period.

• RAB-WC refers to the model as described in the previous

subsection.

• RAB-WCC-D refers to the degenerated version of RAB-

WCC. That is, we select the bid with the maximum proba-

bility in the mixed bid strategy output by RAB-WCC.

We adopt two metrics to evaluate the performances of these ad-

vertiser models.

First, we use the likelihood of the test data as the evaluation met-

ric [9]. Specifically, we denote a probabilistic prediction model as

M,10 which outputs a mixed strategy of advertiser l in period t as

π
[t]
l = (π

[t]
l,0, · · · , π

[t]
l,B) in the bid strategy space Ω0. Suppose the

index of the real bid strategy of l in period t is ω
[t]
l . Considering a

period set T and an advertiser set I, we define the following like-

lihood:

PT ,I(M) = Πt∈T ,l∈I(π
[t]

l,ω
[t]
l

).

PT ,I(M) reflects the probability that model M produces the real

data ω
[t]
l for all t ∈ T and all l ∈ I. To make the metric normal-

ized and positive, we adopt the geometric average and a negative

logarithmic function. As a result, we get

DT ,I(M) = − ln( |T ||I|
√

PT ,I(M)) =
− lnPT ,I(M)

|T ||I|
.

We call it negative logarithmic likelihood (NLL). It can be seen that

with the same T and I, the smaller NLL is, the better prediction

M gives.

10Please note some of the models under investigation are determin-
istic models. We can still compute the likelihood for them because
deterministic models are special cases of probabilistic models.



Second, we use the expected error between the predicted bid

strategy and the real bid as the evaluation metric. Specifically, we

define the metric as the aggregated expected error (AEE) on a pe-

riod set T and an advertiser set I, i.e.,

∑

t∈T

∑

l∈I

B
∑

i=0

|π
[t]
l,i(bi − b

ω
[t]
l

)|. (3)

The average NLL and AEE on all the 160 queries of the above al-

gorithms are shown in Table 4. We have the following observations

from the table.

• Our proposed RAB-WCC achieves the best performance com-

pared with all the baseline methods.

• RAB-WCC-D performs the second best among these meth-

ods, indicating that the bid with the maximum probability in

RAB-WCC has been a very good prediction compared with

most of the baselines.

• RAB-WC performs the third best among these methods, show-

ing that: a) the proposed rationality-based advertiser model

can outperform the commonly used algorithms in bid pre-

diction; b) the introduction of the constraint function to the

rationality-based advertiser model can further improve its pre-

diction accuracy.

• RBM performs almost the worst, which is not surprising due

to its uniform randomness.

• BRM also performs very bad. Our explanation is as the fol-

lowing. In BRM, we assume the advertisers know all the

competitors’ bids before selecting the bids for the next auc-

tion. However, the real situation is far from this assumption.

So the “best response” will not be the real response for most

cases.

• MFM model performs better than BRM. This is not difficult

to interpret. MFM is a data driven model, without too much

unrealistic assumptions. Therefore, it will fit the data better

than BRM.

• RM performs better than MFM but worse than RAB-WC,

RAB-WCC-D, and RAB-WCC. RM is a machine learning

model which leverages several features related to the adver-

tiser behaviors, therefore it can outperform MFM which is

simply based on counting. However, RM does not consider

the rationality levels in its formulation, and therefore it can-

not fit the data as well as our proposed model. This indicates

the importance of modeling advertiser rationality when pre-

dicting their bid strategy changes.

In addition to the average results, we give some example queries

and their corresponding NLL and AEE on the 960th auction in P3

in Table 5 and Table 6. The best scores are blackened in the table.

At first glance, we see that RAB-WCC achieves the first positions

in most of the example queries, while RAB-WCC-D and RAB-WC

achieve the first positions for the rest example queries. In most

cases, RBM performs the worst, and RM performs moderately.

To sum up, we can conclude that the proposed RAB-WCC method

can predict the advertisers’ bid strategies with the best accuracy

among all the models under investigation.

5.4 Click and Revenue Prediction
To further test the performance of our model, we apply it to the

tasks of click number prediction and revenue prediction.11 We com-

pare our model with two state-of-the-art models on these tasks. The

first baseline model is the Structural Model in Sponsored Search

[2], abbreviated as SMSS-1. The second baseline model is the

Stochastic Model in Sponsored Search [17], abbreviated as SMSS-

2. SMSS-1 calculates the expected number of clicks and the ex-

pected expenditure for each advertiser by considering some uncer-

tainty assumptions on sponsored search marketplace. SMSS-2 as-

sumes that all the advertisers’ bids are independent and identically

distributed and they learn the distribution by mixing all the adver-

tisers’ historical bids.

We use the relative error and absolute error as compared to the

real click numbers and revenue in the test period as the evaluation

metrics. Specifically, suppose the value output by the model and

the ground truth value are φ and ϕ respectively, then the absolute

error and the relative error are calculated as |φ−ϕ| and |φ−ϕ|/ϕ
respectively. The performance of all the models under investigation

are listed in Table 7.

According to the table, we can clearly see that RAB-WCC per-

forms better than both SMSS-1 and SMSS-2. The absolute errors

on click number and revenue made by SMSS-1 are very large as

compared to the other methods. The relative errors made by SMSS-

1 are larger than 50% for both click number and revenue prediction,

which are not good enough for practical use. The relative error

made by SMSS-2 for revenue prediction is even larger than 80%.

In contrast, our proposed RAB-WCC method generates relative er-

rors of no more than 20% for both click and revenue prediction (and

the absolute errors are also small). Although the results might need

further improvements, a 20% prediction error has already provided

quite good references for the search engine to make decision.

6. RELATED WORK
Besides the randomized bid strategy and the strategy of selecting

the most frequently used bid, there are a number of works on ad-

vertiser modeling in the literature. Early work studies some simple

cases in sponsored search such as auctions with only two adver-

tisers and auctions in which the advertisers adjust their bids in an

alternating manner [1] [21] [18]. Later on, greedy methods were

used to model advertiser behaviors. For example, in the random

greedy bid strategy [4], an advertiser chooses a bid for the next

round of auction that maximizes his/her utility, by assuming that

the bids of all the other advertisers in the next round will remain

the same as in the previous round. In the locally-envy free bid

strategy [10] [16], each advertiser selects the optimal bid price that

leads to a certain equilibrium called locally-envy free equilibrium.

In [6], the advertiser bid strategies are modeled using the knapsack

problem. Competitor-busting greedy bid strategy [22] assumes that

an advertiser will bid as high as possible while retaining his/her

desired ad slot in order to make the competitors pay as much as

possible and thus exhaust their advertising resources. Other simi-

lar work includes low-dimensional bid strategy [20], restricted bal-

anced greedy bid strategy [4], and altruistic greedy bid strategy [4].

In [5], a model that predicts the bid strategy to be the best response

is proposed by assuming the advertisers know all the competitors’

bids in the previous auction. In [8], a linear regression model is

used base on a group of advertiser behavior features. In addition, a

bid strategy based on incremental cost per click is discussed in [19]

11After outputting the bid prediction, we simulated the auction pro-
cess based on those bids and made estimation on the revenue and
clicks according to the simulation results.



Table 4: Prediction performance

Model RBM MFM BRM RM RAB-WC RAB-WCC-D RAB-WCC

NLL 3.939 1.420 2.154 1.289 1.135 1.056 1.018

AEE 35.392 34.748 77.526 40.397 14.616 10.553 8.876

Table 5: Prediction performance on some example queries (NLL)

Model RBM MFM BRM RM RAB-WC RAB-WCC-D RAB-WCC

car insurance 3.067 1.198 1.777 2.468 0.995 0.975 0.975

disney 2.169 0.541 2.592 0.300 0.130 0.140 0.130

ipad 4.457 1.288 2.075 0.747 0.315 0.325 0.310

jcpenney 2.089 0.511 3.213 0.487 0.263 0.351 0.262

medicare 3.649 1.466 1.750 2.866 1.125 1.127 1.121

stock market 5.068 1.711 2.100 1.839 1.373 1.349 1.362

[2], which proves that an advertiser’s utility is maximized when

he/she bids the amount at which his/her value per click equals the

incremental cost per click.12

However, please note that most of the above works assume that

the advertisers have the same rationality and intelligence in choos-

ing the best response to optimize their utilities. Therefore they have

significant difference from our work. Actually, to the best of our

knowledge, there is no work on advertiser behavior modeling that

considers different aspects of advertiser rationality.

7. CONCLUSIONS AND FUTURE WORK
In this work, we have proposed a novel advertiser model which

explicitly considers different levels of rationality of an advertiser.

We have applied the model to the real data from a commercial

search engine and obtained better accuracy than the baseline meth-

ods, in bid prediction, click number prediction, and revenue predic-

tion.

As for future work, we plan to work on the following aspects.

• First, in Section 2.1, we have assumed that the auctions for

different keywords are independent of each other. However,

in practice, an advertiser will bid multiple keywords simul-

taneously and his/her strategies for these keywords may be

dependent. We will study this complex setting in the future.

• Second, we will study the equilibrium in the auction given

the new advertiser model. Most previous work on equilib-

rium analysis is based on the assumption of advertiser ra-

tionality. When we change this foundation, the equilibrium

needs to be re-investigated.

• Third, we will apply the advertiser model in the function

modules in sponsored search, such as bid keyword sugges-

tion, ad selection, and click prediction, to make these mod-

ules more robust against the second-order effect caused by

the advertiser behavior changes.

• Fourth, we will consider the application of the advertiser

model in the auction mechanism design. That is, given the

advertiser model, we may learn an optimal auction mecha-

nism using a machine learning approach.
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APPENDIX

In the appendix, we discuss some properties of the proposed model.

Firstly, we give a theorem on the relationship of true value and bid.

Secondly, we give a theorem related to the estimation accuracy of

the true value.

A. RELATIONSHIP
We discuss about the relationship between true value vl and our

predicted bid strategy. Note that we will mainly focus on the results

from the capability function because both willingness and compro-

mise functions are not effected by the true value vl according to

their definitions. For this purpose, by setting Wl = 1 and Cl as the

identity function in πl, we define:

F (vl) = Eσo−l
{argmax

π
(l)
l

(αj(vl − ol̂sl̂/sl))}

E(vl) = (b1, b2, ..., bB)(F (vl))
T

Here F (vl) is a B-dimension strategy vector and E(vl) is the av-

erage bid of the strategy F (vl). Under a very common assumption

that ad position effect αj decreases with the slot index j, Theorem

2 shows that an advertiser with a higher true value will generally

set a higher bid to optimize the utility, which is consistent to the

intuition. This conclusion shows the consistency of our model in

the capability part.

THEOREM 2. Assume αj decreases in j, then E(vl) is mono-

tone nondecreasing in vl.

PROOF. To prove E(vl) is monotone nondecreasing, we only

need to prove that ∀o−l and ∀∆ > 0,

(b1, b2, ..., bB)(argmax
π

(l)
l

(αj(vl(1 + ∆)− ol̂sl̂/sl)))

≥ (b1, b2, ..., bB)(argmax
π

(l)
l

(αj(vl − ol̂sl̂/sl))), (4)

and then the “≥” will keep unchanged in the expectation of o−l.

We denote j∆ and j0 as the best rank of l for the cases that

true values are vl(1 + ∆) and vl respectively. Here o−l is fixed

and “best rank” means the rank that leads to the optimal utility.



Table 6: Prediction performance on some example queries (AEE)

Model RBM MFM BRM RM RAB-WC RAB-WCC-D RAB-WCC

car insurance 89.459 89.883 305.703 107.335 33.207 22.188 12.760

disney 5.019 4.895 9.703 0.217 0.297 0.171 0.140

ipad 16.355 15.428 30.856 0.662 0.975 0.458 0.385

jcpenney 5.036 5.145 16.337 1.476 1.411 1.165 0.209

medicare 98.206 99.014 225.774 111.248 20.221 16.695 3.744

stock market 37.576 38.360 72.640 97.035 5.824 4.137 1.486

We denote l̂∆ and l̂0 as the advertisers who rank at (j∆ + 1) and

(j0 + 1) respectively. Note that for a fixed o−l, j
∆ and j0 can

be different due to different true value of l. If we are able to prove

j∆ ≥ j0, then the inequality (4) will be valid since a nondecreasing

best ranking yields a nondecreasing best bid strategy.

As j0 is the best rank for the true value vl, we have,

αj0(vl − ol̂0sl̂0/sl) ≥ αj∆ (vl − ol̂∆sl̂∆/sl). (5)

Assuming j∆ < j0, we have,

αj0vl∆ > αj∆vl∆. (6)

By adding (3) and (4), we got,

αj0(vl(1 + ∆)− ol̂0sl̂0/sl) > αj∆ (vl(1 + ∆)− ol̂∆sl̂∆/sl).

This equation reveals that j0 is a better rank than j∆ and j∆

should not be the best rank for the true value vl(1 + ∆), which

is contradictive to the definition of j∆. Therefore, the assumption

j∆ < j0 is not valid, which also finishes our proof of this theo-

rem.

B. ESTIMATION ACCURACY
As discussed in Section 4, we choose the model in [9] for the

true value prediction. Usually, the estimation is not perfect and

there might be some errors. Fortunately, we can prove a theorem

which guarantees that the solution of this model will keep accurate

if the estimation errors are not very large. This holds true because

the payment rule of GSP is discrete and it allows the small-scale

vibration of true value.

Before introducing the theorem, we give some notations first.

For a fixed o−l and true value vl, l’s best rank is denoted as BRo−l

(Best Rank), the optimal utility is denoted as BUo−l
, and the rank-

ing score of l̂ (the one ranked next to l) in the optimal case is de-

noted BSo−l
. To describe the theorem, we also denote the second

optimal utility as SUo−l
(Second Utility), which is the largest util-

ity less than BUo−l
in the fixed o−l.

THEOREM 3. We assume that αj decreases in j and set θ =

maxo−l
(
SUo−l

BUo−l

), ρ = maxo−l
(BRo−l

), and ω = maxo−l
(BSo−l

),

(vl −ω/sl > 0). Let vl increase by ∆vl (∆ ∈ R), then F (vl) will

keep unchanged if |∆| ≤
αρ

α1
(1 − θ)(1 − ω

slvl
), where α1 is the

CTR at the first position.

In order to prove the bound of ∆ keeps F (vl) unchanging, we

prove the following lemma instead.

LEMMA 1. If ∆ satisfies |∆| ≤
αρ

α1
(1−θ)(1− ω

slvl
), then ∀o−l

we have, argmax
π
(l)
l

αj(vl(1+∆)−ol̂sl̂/sl) = argmax
π
(l)
l

αj(vl−

ol̂sl̂/sl).

The proof of Theorem 3 will be finished at once after we sum up

all the cases of o−l in Lemma 1.

Table 7: Prediction performance in applications

Model SMSS-1 SMSS-2 RAB-WCC

Relative Error (Click) 0.52 0.11 0.19

Absolute Error (Click) 2.02 0.71 0.23

Relative Error (Revenue) 0.54 0.83 0.18

Absolute Error (Revenue) 659.06 124.80 25.75

PROOF. Since a change of “argmax
π
(l)
l

” is equivalent to a change

of “BRo−l
”, we consider the critical point that the increase of ∆

makes the best rank transfer exactly from j0 to j∆ (j0 6= j∆).

Thus we have: ∃j∆(j∆ 6= j0), s.t. j∆, j0 maximizes αj(vl(1+
∆)− ol̂sl̂/sl) simultaneously, and then we can get,

αj∆(vl(1+∆)−ol̂∆sl̂∆/sl) = αj0(vl(1+∆)−ol̂0sl̂0/sl). (7)

From equation (7) we have,

∆ =
αj0(vl − ol̂0sl̂0/sl)− αj∆(vl − ol̂∆sl̂∆/sl)

vl(αj∆ − αj0)
. (8)

Assume there is a θ0 such that

αj∆(vl − ol̂∆sl̂∆/sl) = θ0αj0(vl − ol̂0sl̂0/sl). (9)

Then equation (8) is transformed as,

∆ =
(1− θ0)αj0(vl − ol̂0sl̂0/sl)

vl(αj∆ − αj0)

= (1− θ0)
αj0

αj∆ − αj0
(1−

ol̂0sl̂0/sl

vl
). (10)

Considering j0 is the best rank, from equation (9) we have,

θ0 =
αj∆ (vl − ol̂∆sl̂∆/sl)

αj0(vl − ol̂0sl̂0/sl)
≤

SUo
−l

BUo
−l

≤ θ < 1. (11)

In addition, there holds

j0 ≤ maxo−l
(BRo−l

) = ρ,

αj0 ≥ αρ, |
αj0

αj∆ − αj0
| >

αρ

α1
, (12)

ol̂0sl̂0 = BSo−l
≤ maxo−l

(BSo−l
) = ω. (13)

According to (10) and (11),(12),(13), we finally have,

|∆| = |1−θ0|
αj0

|αj∆ − αj0 |
(1−

ol̂0sl̂0
slvl

) >
αρ

α1
(1−θ)(1−

ω

slvl
).

As ∆ is the critical point, for any fixed o−l, if |∆| ≤
αρ

α1
(1 −

θ)(1 − ω
slvl

), BRo−l
and “argmax

π
(l)
l

"”will keep unchanged.

This ends our proof of Lemma 1.
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