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ABSTRACT
While winner-take-all crowdsourcing contests are wide spread in
practice, several researchers have observed that their social welfare
can be poor due to effort exerted by contestants who are never re-
warded. In this paper we study the problem of efficiency in winner-
take-all crowdsourcing contests. Using a discrete choice model to
capture contestants’ production qualities, we introduce a mecha-
nism which filters out low-expertise contestants, before they are
asked to produce a solution. We show that under a set of natural
assumptions, such a mechanism has desirable incentive properties,
attracts high-quality contestants and can improve social welfare.
We also provide insights into the problem of prize setting for such
contests.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

Keywords
Mechanims Design, Incentive Compatible, Winner-take-all Crowd-
sourcing, Prize Setting.

1. INTRODUCTION
The past few years has seen an explosion of interest in crowd-

sourcing, as companies and individuals try to leverage communi-
ties and networks of workers in order to perform certain tasks, and
to take advantage of a global workforce. One of the more prevalent
forms of crowdsourcing seen today is crowdsourcing competitions,
where a call for solutions for some problem or task is placed and
individuals or teams of individuals submit solutions in response to
the call. Examples of such competitions range from the X Prize
(www.xprize.org) and Netflix Prize (www.netflixprize.com) where
awards to winning submissions have been worth millions of dollars,
to numerous websites supporting general crowdsourcing competi-
tion platforms, for example, TopCoder (www.topcoder.com), Crowd-
Flower (www.crowdflower.com) and 99designs (www.99designs.ca),
to name a few. However, with crowdsourcing there arrive new chal-
lenges. For example, it becomes harder to control workers’ pro-
fessional skills [2, 9] and the management focus becomes how to
leverage the skills of potential workers instead of enhancing the
skills of current workers [12].
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There has also been increasing interest in the research commu-
nity, as researchers develop and analyze models of crowdsourcing
competitions in order to better understand their properties and to
study how to improve them. One popular model arising in the liter-
ature has been to view a crowdsourcing competition as a variant of
an all-pay auction [1, 5, 6]. The insight is the observation that in a
crowdsourcing competition, all contestants must exert (potentially
costly) efforts to participate while only the competitor judged to
have submitted the best entry is actually awarded the prize. This is
similar to an all-pay auction where all bidders pay their bid amount,
though only the winning bidder is allocated the item being auc-
tioned. DiPalantino and Vojnovic were among the first to make this
observation, and used the all-pay auction model in order to ana-
lyze multiple simultaneous contests where competitors were able
to choose which contests to participate in [6]. Archak and Sun-
darajan also used the all-pay model when studying strategic be-
haviors of risk-averse contestants in single competitions [1]. They
also had quite negative results with respect to social welfare in that
they showed that the expected total utility of all contestants was
asymptotically zero due to the (wasted) efforts of non-winning con-
testants. Chawla et al derived a theory of optimal crowdsourcing
design (for optimizing the principal’s utility) which mirrored that of
optimal auction design [5]. They also commented on the problem
of wasted efforts by non-winning contestants.

Recent work by Cavallo and Jain has explicitly studied the prob-
lem of efficiency in crowdsourcing contests [3, 4]. Differing from
the works just discussed which all assumed that the quality of the
product produced by contestants was deterministic, they used a
stochastic production model to capture the uncertainty that might
arise in the quality. Cavallo and Jain were able to design efficient
(that is, social welfare maximizing) mechanisms for crowdsourcing
but relied on being able to make payments to multiple contestants
as opposed to the winner-take-all model which is commonly seen
in practice [3]. Focusing on winner-take-all models, they studied
their effectiveness when it comes to implementing efficient out-
comes [4]. They were able to show that under certain assumptions
on the quality distributions (i.e. uniform or exponential) it is possi-
ble to implement efficient outcomes most of the time.

In this work we also explicitly address the issue of efficiency
in crowdsourcing contests. We introduce a discrete choice model
to capture the inherent uncertainty in the quality of the solutions
produced by contestants [7, 13, 14]. Using an insight from the
work by Cavallo and Jain that social welfare is maximized when
the top few contestants exert full efforts while all the others exert
zero effort [4], we explicitly design a mechanism which aims to fil-
ter high-quality contestants and to allow them to compete. We show
that under certain natural assumptions the mechanism is incentive
compatible, and that the new contest form incentivizes high-quality



contestants and increases social welfare. We are also able to pro-
vide insights for guiding the contest designer or principal to set the
prize amount in order to encourage a certain level of product qual-
ity.

2. THE MODEL
In this paper we study winner-take-all crowdsourcing contests

in which the contest principal is only interested in the best solu-
tion, and the winner takes the entire prize. These types of competi-
tions are widespread in practice, including programming competi-
tion platforms such as TopCoder and Kaggle. We assume the con-
test principal launches a contest with a monetary prize M , that the
contest only occurs once, and that the winner of the contest (i.e. the
contestant who submits the best solution) receives the entire prize.

There are N rational and risk-neutral contestants who are inter-
ested in the contest. For simplicity we use [N ] to denote the set of
N players. Each contestant i ∈ [N ] is characterized by an exper-
tise type θi and an effort amount Ei that i can devote during the
contest. We normalize the domain of θi to be the interval [0, 1],
and assume Ei is chosen from the interval [0, E], in which the up-
per bound E could be given in the form of time requirement or
deadline constraint.

Previous literature on crowdsourcing contests has typically as-
sumed that contestants’ types (expertise) are drawn from some com-
mon distribution [1, 5, 6]. We, instead, use a discrete choice model
[14]. Given expertise profile {θi}∈[N ] and effort profile {Ei}∈[N ],
Eiθi is the idealized production quality provided by contestant i, at
the beginning of the contest, before any work occurs. However, due
to uncertainties during the task completion and in the contest prin-
cipal’s revision process, we assume that each contestant has some
additional random uncertainty εi, meaning that the true quality sub-
mitted is Eiθi + εi. We assume that the εi are identically and in-
dependently distributed, with probability density function f(ε) and
cummulative density function F (ε) =

∫ ε
−∞ f(t)dt. We further as-

sume that f(ε) is first-order differentiable in its support set, and the
expectation and variance exist.

Given the model outlined above, the probability that a contestant
i will win the contest is

Pr(i win) = Pr(Eiθi + εi > Enθn + εn, ∀n 6= i)

= Pr(εn < Eiθi + εi − Enθn, ∀n 6= i)

I
= Eεi((

∏
n∈[N ]\{i}

F (Eiθi + εi − Enθn)))

=

∫ ∞
−∞

[
∏

n∈[N ]\{i}

F (Eiθi + ε− Enθn)]f(ε)d ε

(1)
in which, step I follows from the i.i.d assumption of εi’s and the
following fact: by fixing εi, the continuity of f gives Pr(εn <
Eiθi + εi −Enθn) = Pr(εn ≤ Eiθi + εi −Enθn) = F (Eiθi +
εi − Enθn).

Denote the idealized production quality Eiθi as αi, i.e., αi =
Eiθi. Now we can simply denote the probability Pr(i win) as
pi(αi, α−i), whereα−i represents those idealized production qual-
ities {αn}n∈[N ]\{i}. So pi(αi, α−i) =

∫∞
−∞[

∏
n∈[N ]\{i} F (αi +

ε − αn)]f(ε)d ε. The following properties of pi(αi, α−i) follow-
ing from Equation 1 shows that both better idealized quality and
weaker competitors result in greater chance of winning and this
chance is “fair” to every contestant.

PROPOSITION 1. pi(αi, α−i) is monotonically increasing on
αi and decreasing on αn, ∀n 6= i. Furthermore, two contes-
tants have the same probability to win if they have the same pro-

duction quality and the same quality profile of competitors i.e.,
pi(αi, α−i) = pj(αj , α−j) if αi = αj and α−i = α−j .

In practice, f(ε) can be chosen according to the scenario at hand.1

For example, a normal distribution results in a model that captures
symmetric noise. To get a concrete understanding of the model, we
show a particular example.

EXAMPLE 1. (Logit Discrete Choice Model [10]) If the ran-
dom uncertainty distribution f has the form

f(ε) = λe(−e
−λε)e−λε, ε ∈ R,

then the probability for contestant i to win, i.e., αi + εi > αn +
εn ∀n 6= i, has the following closed form:

Pr(i win) = pi(αi, α−i) =
eλαi∑

n∈[N ]

eλαn
.

Here λ > 0 is a parameter to adjust the influence weight of the
“representative” value αi. As λ → ∞, “representative" values
tend to be decisive and the contestant who has the highest product
quality wins the contest with a probability that tends to 1. When
λ → 0, uncertainties dominate the probabilities, therefore each
contestant tends to have an equal chance to win.

3. A MECHANISM FOR FILTERING CON-
TESTANTS

As has been pointed out by previous researchers (see, for exam-
ple [8, 15]), winner-take-all crowdsourcing contests can suffer from
inefficiencies caused by potentially significant amounts of wasted
effort by non-winning entrants. In this section we propose a mecha-
nism that has contestants participate in a pre-qualification stage, be-
fore they exert any effort. This allows us to filter contestants based
on the idealized production qualities they can produce and then run
a contest with only the contestants deemed to provide high enough
production qualities. We call the contestants which are allowed to
participate in the final competition competitors.

DEFINITION 1 (K-COMPETITOR CONTEST). AK-Competitor
Contest is defined to be a pair (C(N,M),<K), in which C(N,M)
is a standard crowdsourcing contest with prize M and N poten-
tial contestants, while <K is a rule which selects exactly K < N
competitors from the N contestants.

Generally, a K-competitor contest allows only K competitors to
participate by applying some sifting rules. The rest of this section
studies a particular sifting-rule coupled with incentives designed to
ensure that contestants do not act so as to manipulate the process.

We use [K] to denote the set of K competitors selected by the
K-competitor contest. Furthermore, for any i ∈ [K], let αK−i de-
note the idealized production quality profile for the K − 1 other
competitors. DefineGi(x) =

∏
k∈[K]\{i} F (x−αk). Then, given

Equation 1, the probability of competitor i winning when the ide-
alized production qualities are αi and αK−i is

pi(αi, α
K
−i) =

∫ ∞
−∞

Gi(ε+ αi)f(ε)dε.

Now we consider contestants’ utilities. Note that αi = θiEi can
also be viewed as contestant i’s cost amount during the contest. To
1The discrete choice model can also be viewed as a restricted ver-
sion of stochastic production [3, 4], in which contestant i’s produc-
tion quality x obeys the distribution f(x− αi).



get a monetary cost value, typically one needs to multiply the cost
amount by a constant denoting the value per unit cost. Without loss
of generality, we assume the interval [0, E] is properly scaled, so
that Eiθi represents directly the monetary cost. Following the def-
inition introduced in previous literature [1], we define the surplus
of i, Si, to be the difference between the expected reward com-
petitor i achieves by participating and the cost of the effort from
participating. In particular

Si = Si(αi, α
K
−i) = pi(αi, α

K
−i)M − αi.

We now design the rule <K as follows: we first run an auction
in which each potential contestant i is required to submit its private
expertise type θi and the effort amount Ei it can devote during the
contest. Then any contestant with quality αi = Eiθi ranked in the
top K is chosen to be a competitor. Each competitor i has to pay
an entry fee, Bi, in order to actually participate. By participating,
competitors provide solutions to the principal, who selects the one
it judges as best, and rewards the prize M . Formally, we describe
the mechanism in Algorithm 1, which we call Top-K Rule.

Algorithm 1 Top-K Rule
Input: N potential contestants
Output: K selected competitors for the contest

1. Each potential contestant i submits a bid pair (θi, Ei) in-
dicating its expertise type (θi) and the amount of effort it
can devote during the contest (Ei). Let αi = Eiθi. De-
note the ranked idealized quality profile as {α1, α2, ...αN},
αi ≥ αi+1 ∀i = 1, ..., N − 1. Ties are broken at random.

2. Bidders with top K qualities, [K] = {1, 2, ...,K}, are se-
lected for the contest.

3. Each selected competitor i ∈ [K] pays

Bi = Si(αK+1, α
K
−i) = pi(αK+1, α

K
−i)M − αK+1

as an entry fee for participation.

4. The selected competitors participate in the contest, with a
winner being selected by the principal who awards the prize
M .

In the mechanism presented in Algorithm 1, the potential contes-
tants who rank K + 1 to N do not partake in the actual contest and
do not need to pay an entrance fee. Their utility is 0 since they in-
cur no cost from exerting effort. For any top K ranked contestant,
the expected utility is Si(αi, αK−i) − Bi. We note that the entry
fees paid by the competitors differ in that competitors’ with higher
idealized production qualities pay higher fees.

PROPOSITION 2. In Algorithm 1, the competitor with higher
quality pays more. Specifically, ∀i, j ∈ [K], i 6= j,

Bj ≥ Bi, if αj ≥ αi.

3.1 Truthfulness of the Top-K Rule
In this section we show the truthfulness (ex post) of Algorithm 1

for a broad family of distributions over the uncertainty ε. That is,
each contestant i has incentive to truthfully reveal its expertise θi
and the effort amount Ei it can devote during the contest. We re-
quire the following properties on the uncertainty distribution: 1)
f(ε) is symmetric and 2) f(ε) is single-peaked at ε = 0. That
is f(ε) = f(−ε), ∀ε ≥ 0 (symmetric) and f ′(ε) ≤ 0, ∀ε ≥ 0

(single-peaked). With these two assumptions it is easy to show that
f ′(−ε) = −f ′(ε) ≥ 0 ∀ε ≥ 0.

Before we prove the main result of this section, several lemmas
are needed. We start by proving bounds on the function Gi(x) =∏
k∈[K]\{i} F (x − αk). In the rest of the section we assume that

α1, α2, . . . , αK are the ranked top K idealized production quali-
ties, unless explicitly stated otherwise.

LEMMA 3.1. If αK ≥ 1
2
α1, then ∀α ∈ [0, α1], ∀x ≥ 0 and

∀i ∈ [K], we have

Gi(x+ α)−Gi(−x+ α) ≥ Gi(x)−Gi(−x). (2)

Furthermore, for any i, j ∈ [K], αj ≥ αi and α ∈ [0, αi], we
have

Gj(x+ α)−Gj(−x+ α) ≥ Gi(x+ α)−Gi(−x+ α). (3)

The proof can be found in the Appendix.
Inequalities 2 and 3 together show that for any i in [K] the dif-

ference Gi(x+ α)−Gi(−x+ α) is minimal when α = 0. Using

this observation we can provide a bound for
∂ pi(α,α

K
−i)

∂ α
.

LEMMA 3.2. If αK ≥ 1
2
α1, then ∀α ∈ [0, α1] and ∀i ∈ [K],

we have
∂ pi(α,α

K
−i)

∂ α
≥ ∂ pi(α,α

K
−i)

∂ α
|α=0.

Similarly, we also have the following bound:

LEMMA 3.3. If αK ≥ 1
2
α1, then ∀i, j ∈ [K] and αj ≥ αi, we

have
∂ pj(α,α

K
−j)

∂ α
≥ ∂ pi(α,α

K
−i)

∂ α
for any α ∈ [0, αi]. Specifically,

∂ pj(α,α
K
−j)

∂ α
|α=0 ≥

∂ pi(α,α
K
−i)

∂ α
|α=0.

The proof of Lemma 3.2 and Lemma 3.3 can be found in the
appendix.

Lemmas 3.2 and 3.3 show that the rate of increase in pi(αi, αK−i)
is minimal when i = K and α = 0. Using these results we are able
to further show that under certain conditions, we can guarantee that
surplus, Si(αi, αK−i) is monotonically increasing on αi in [0, α1]
(recall that α1 = max{αj |j ∈ [N ]}).

THEOREM 3.4. Let f(ε) be symmetric and single peaked at
ε = 0, if αK ≥ 1

2
α1, then M satisfies the following constraint:

M ≥ −1∫∞
−∞GK(ε)f ′(ε)dε

(4)

if and only if for any i ∈ [K], the surplus Si(α, αK−i) is monotoni-
cally increasing on α in [0, α1] and Si(α, αK−i) ≥ 0,∀α ∈ [0, α1].

PROOF. We first prove the⇒ direction. Based on Lemmas 3.2
and 3.3, we have, for any i ∈ [K] and α ∈ [0, α1],

∂ Si(α, α
K
−i)

∂ α
= M

∂ pi(α, α
K
−i)

∂ α
− 1

≥ M
∂ pK(α, αK−K)

∂ α
|α=0 − 1

= −M
∫ ∞
−∞

GK(ε)f ′(ε)dε− 1

≥ 0

whenever Constraint 4 holds. This shows that Si(α, αK−i) is mono-
tonically increasing on α ∈ [0, α1]. Since Si(0, αK−i) ≥ 0, so
Si(α, α

K
−i) ≥ 0 for any α ∈ [0, α1].

The proof of ⇐ needs to pick the special case where i = K
and α = 0: the monotonicity of SK(α, αK−i) at α = 0 gives the
Constraint 4.



Since α = θiEi, Theorem 3.4 means that competitors have no
incentive to manipulate their expertise or effort during the actual
contest. First, it is impossible for a competitor to exert more effort
or show more expertise than their true type. On the other hand, if
they exert less effort or show less expertise then their surplus de-
creases. This means competitors have incentives to behave “truth-
fully" during the actual contest.

We now prove the main result of this section, which says that
potential contestants also have incentives to report their expertise
and effort amounts truthfully in the Top-K Rule mechanism.

THEOREM 3.5. Given a K-competitor contest (C(N,M),<K)
where <K is the Top-K Rule, assume f(ε) is symmetric and single
peaked at ε = 0. If αK ≥ 1

2
α1 and M satisfies constraint 4,

then <K is truthful ex-post. That is, it is a best response for any
competitor i ∈ [K] to report the true expertise type θi and effort
amount Ei it can devote during the contest.

PROOF. Denote the ranked true idealized qualities asα1 ≥ ... ≥
αN . Recalling that αi = θiEi, the proof shows that contestant
i has no incentive to reveal anything other than its true expertise
θi and effort amount Ei under the assumption that all other com-
petitors are truthfully revealing their true expertise θK−i and effort
amounts EK−i.

First, assume that αi is such that α1 ≥ αi ≥ αK . This means
that i would have been selected for participation if it revealed its
true expertise θi and effort amount Ei, and its expected utility
would be

Ui(αi, α−i) = Si(αi, α
K
−i)−Bi = Si(αi, α

K
−i)−Si(αK+1, α

K
−i).

Note that Ui(αi, α−i) ≥ 0 due to the monotonicity of Si(αi, αK−i)
on αi in [0, α1] (Theorem 3.4). Contestant i has no incentive to
submit a pair (θ′i, E

′
i) to make α′i = θ′iE

′
i > αi, as such a bid pair

will still cause the contestant to qualify for the competition, would
not change its entrance fee (which is independent of αi) and would
not improve the final chance that it would be allocated the prize M
since Ei and θi are fixed. Contestant i has no incentive to submit
a pair (θ′i, E

′
i) causing α′i = θ′iE

′
i < αi since either this will not

change the non-negative expected utility (as long as α′i => αK+1)
or it would cause the contestant to no longer qualify, resulting in
utility of 0. Therefore, the pair (θi, Ei) is a best response.

Consider the case where αi < αK . Then, if contestant i truth-
fully reveals its expertise θi and effort amount Ei, it would not
qualify and its utility would be 0. The similar situation would arise
if it announced a pair (θ′i, E

′
i) making α′i = θ′iE

′
i < αK . However,

the contestant does not have incentive to bid a pair (θ′i, E
′
i) such

that α
′
i = θ′iE

′
i ≥ αK either, since then the contestant would qual-

ify as a competitor but with utility Ui(αi, α−i) = Si(αi, α
K
−K)−

Si(αK , α
K
−K) ≤ 0 due to the monotonicity of Si(α, αK−K) (note

that if i enters topK, then αK will becomes the (K+1)’th biggest
idealized quality).

Theorem 3.5 relies on three main assumptions. First, the sym-
metric and single peaked assumption on f captures a broad fam-
ily of uncertainty or noise distributions, e.g., the commonly used
normal distributions. Second, by having αK ≥ 1

2
α1, the top K

competitors are likely to be true competitors. That is, certain patho-
logical cases where one competitor is significantly stronger than all
others are not possible. Finally, the constraint required forM gives
a lower bound for the prize, and Theorem 3.4 actually shows that
this bound is also necessary to build up a proper contest setting.

3.2 Further Mechanism Properties

In this section, we study some further properties of the Top-K
Rule. For ease of discussion, we assume that the assumptions re-
quired for Theorems 3.4 and 3.5 hold.

First, we note that if constraint 4 holds strictly, then the surplus
Si(αi, α−i) is strictly increasing onαi, and the utilityUi(αi, α−i) =
Si(αi, α

K
−i) − Si(αK+1, α

K
−i) would be positive if αi > αK+1.

Formally, the following proposition follows from Theorem 3.4.

PROPOSITION 3. If constraint 4 holds strictly, that is, M >
−1∫∞

−∞ GK(ε)f ′(ε)dε , then the competitors’ utilities would be posi-
tive if they really produce strictly better idealized qualities, i.e.,
Ui(αi, α−i) > 0 for any i ≤ K, if αi > αK+1.

Earlier, Proposition 2 showed that higher-quality competitors pay
higher entrance fees in the Top-K mechanism. Now we show
that, in spite of this, the high-quality competitors’ expected utili-
ties, even when accounting for the entrance fees, are still higher
compared to those with lower qualities, therefore the Top-K mech-
anism will still attract high quality contestants (and thus competi-
tors).

THEOREM 3.6. The competitor with higher quality has higher
utility. Specifically, ∀i, j ∈ [K], i 6= j,

Uj ≥ Ui, if αj ≥ αi.

PROOF. Due to the monotonicity of Sj(αj , α−j) onαj ∈ [0, α1]
in Theorem 3.4, αj ≥ αi yields Sj(αj , α−j) ≥ Sj(αi, α−j). So
we have Uj = Sj(αj , α−j) − Sj(αK+1, α−j) ≥ Sj(αi, α−j) −
Sj(αK+1, α−j). To prove the theorem, we show the following
stronger inequality:

Sj(αi, α−j)−Sj(αK+1, α−j) ≥ Si(αi, α−i)−Si(αK+1, α−i).
(5)

Inequality 5 has the following equal descriptions:

Sj(αi,α−j)−Sj(αK+1,α−j)≥Si(αi,α−i)−Si(αK+1,α−i)

⇔ M(pj(αi,α−j)−pj(αK+1,α−j))−(αi−αK+1)

≥M(pi(αi,α−i)−pi(αK+1,α−i))−(αi−αK+1)

⇔ pj(αi,α−j)−pj(αK+1,α−j)≥pi(αi,α−i)−pi(αK+1,α−i)

⇔
∫αi
αK+1

(
∂ pj(α,α−j)

∂ α
−
∂ pi(α,α−i)

∂ α
)dα≥0

in which the last equivalence relation is based on the observation
that pj(αi, α−j) − pj(αK+1, α−j) can be written in an integral
form, i.e.,

pj(αi, α−j)− pj(αK+1, α−j) =

∫ αi

αK+1

∂ pj(α, α−j)

∂ α
dα

To show Inequality 5, we only need to prove ∂ pj(α,α−j)
∂ α

≥
∂ pi(α,α−i)

∂ α
for any α ∈ [αK+1, αi]. This turns out to be true due

to the conclusions in Lemma 3.3.

Theorem 3.6 shows that even though high-quality competitors
pay more for participating, they actually don’t pay “too much more"
in the sense that they are still guaranteed higher expected utility,
compared to lower quality competitors.

As a corollary of Theorem 3.6 and Proposition 2, the following
relations holds for surplus Si = Ui +Bi.

PROPOSITION 4. For any i, j ∈ [K], if αj ≥ αi, then Sj ≥
Si.



4. SOCIAL WELFARE AND PRIZE SETTING
The motivation of introducing the Top-K Rule was to improve

social welfare by reducing the amount of effort induced on contes-
tants who were unlikely to change the outcome of the contest. In
this section we explicitly study the relationship between the social
welfare which results when using the Top-K Rule and the social
welfare that could have been achieved if no filtering took place.2

We first consider the maximum product quality under the dis-
crete choice model, which we denote as Q(K) when there are K
competitors participating. Let G(x,K) and g(x,K) be the CDF
and PDF of Q(K), respectively. It’s easy to see that

G(x,K) = Pr(Q(K) ≤ x)

=
∏
k∈[K]

Pr(αk + εk ≤ x)

=
∏
k∈[K]

F (x− αk)

To describe the best product’s value to the principal, we follow the
formulation in [3] and assume the principal has value v for each
unit of product quality. So in a winner-take-all crowdsourcing con-
test, the principal’s value from the product pool is vQ(K). The
social welfare is then described by the following form [3]:

WK(α1, ..., αK) = E(Q(K))v −
∑
n∈[K]

αk

in which E(Q(K)) =
∫
x∈R g(x,K)xdx =

∫
x∈R

d G(x,K)
dx

xdx is
the expectation of maximum product quality.

Let WN (α1, ..., αN ) and WK(α1, ..., αK) be the social wel-
fare of a normal contest and its corresponding K-competitor contest
form. We are interested in the gap between these two welfares, i.e.,
WK −WN .

We first consider the gap between the expected maximum prod-
uct qualities.

LEMMA 4.1. The difference between the expected maximum prod-
uct qualities satisfies E(Q(N)) − E(Q(K)) ≥ 0. Furthermore,
E(Q(N))−E(Q(K)) is monotonically decreasing on αk, ∀k ≤ K
and increasing on αk, ∀k > K.

The proof is found in the Appendix.
Lemma 4.1 is consistent with our intuition in that more workers

result in a higher quality product being produced and the difference
between the maximum qualities, Q(N) −Q(K), is largest when all
the contestants have the same skill type αK .

We now prove the main result of this section, namely that it is
possible to provide a lower bound to the difference between the
social welfare from the Top-K mechanism and the social welfare
when all contestants participate with no filtering.

THEOREM 4.2. IfK ≥ 2 and αK ≥ 1
2
α1, then we haveWK−

WN ≥
∑N
n=K+1(αn − vε̄n), where ε̄n = 1

n
E( max

i∈[n],i.i.d
εi) =∫∞

−∞ F
n−1f(ε)εd ε is decreasing on n.

2Note that we are taking a pessimistic perspective in that we make
no claims that the social welfare we study in the general case is
achieved in equilibrium. In particular, it is not possible to sim-
ply view the general contest as a Top N Rule which automatically
inherits the results from Theorem 3.5, as some of the required con-
ditions no longer necessarily apply.

PROOF. Since

WK −WN = E(Q(K))v −
∑
k∈[K]

αk − E(Q(N))v +
∑
n∈[N ]

αn

= [E(Q(K))− E(Q(N))]v +

N∑
n=K+1

αn,

we only need to show E(Q(K))−E(Q(N)) ≥ −
∑N
n=K+1 ε̄n, i.e.,

E(Q(N))− E(Q(K)) ≤
∑N
n=K+1 ε̄n.

From Lemma 4.1 we know that
E(Q(N))− E(Q(K)) is monotonically decreasing on αk, ∀k ≤

K and increasing on αk, ∀k > K. So we have

E(Q(N)(α1, ..., αN ))− E(Q(K)(α1, ..., αK))

≤ E(Q(N)(αK , ..., αK))− E(Q(K)(αK , ..., αK)).

Now we compute the upper bound for E(Q(N)(αK , ..., αK))−
E(Q(K)(αK , ..., αK)). For simplicity, we denote the common
type αK as α. So

E(Q(N)(α, ..., α))− E(Q(K)(α, ..., α))

=

∫
x∈R

d FN (x− α)

dx
xdx−

∫
x∈R

d FK(x− α)

dx
xdx

I
=

∫
x∈R

d FN (x)

dx
(x+ α)dx−

∫
x∈R

d FK(x)

dx
(x+ α)dx

II
=

∫
x∈R

d FN (x)

dx
xdx−

∫
x∈R

d FK(x)

dx
xdx

III
=

∫ ∞
−∞

[NFN−1(x)−KFK−1(x)]f(x)xdx

IV
=

∫ ∞
0

[NFN−1(x)−KFK−1(x)−NFN−1(−x) +

KFK−1(−x)]f(x)xdx

in which: step I uses variable transform x→ x+Eα; step II uses
the fact

∫
x∈R

d FN (x)
dx

αdx −
∫
x∈R

d FK(x)
dx

αdx = α − α = 0;
step IV follows from variable transform x→ −x when x ≤ 0 and
the symmetry of f(x).

We claim that:

CLAIM 1. ifK ≥ 2, thenNFN−1(x)−KFK−1(x)−NFN−1(−x)+

KFK−1(−x) ≤
∑N
n=K+1[F (x)n−1 − F (−x)n−1] for any x ≥

0.

The proof of the claim is in the Appendix. With this claim, we
have

E(Q(N)(α, ..., α))− E(Q(K)(α, ..., α))

≤
∫ ∞
0

N∑
n=K+1

[F (x)n−1 − F (−x)n−1]f(x)xdx

=

N∑
n=K+1

∫ ∞
−∞

F (x)n−1f(x)xdx

which proves the theorem.

Note that ε̄n is the expectation of the largest order statistics of n
i.i.d noise divided by n > K. Given an appropriate K, ε̄n is small
enough to ensure

∑N
n=K+1(αn − vε̄n) > 0. In such a situation,

the Top Kmechanism has higher social welfare even in the worst
case (i.e. when all the contestants’ types are identical). If ε̄n is
negligible compared with αn, K-competitor contest saves almost
all the rank K + 1 to N contestants’ efforts.



4.1 Setting the Contest Prize
In this section we show how our model may be helpful to the

principal when it comes to setting the proper contest size. This
has been noted as being a challenging problem in practice when
adopting and running crowdsourcing contests [11].

By using GK(x), the Inequality 4 of Theorem 3.4 gives the fol-
lowing lower bound of the prize M :

M ≥ −1∫∞
−∞[

∏
k∈[K]\{K} F (ε− αk)]f ′(ε)dε

. (6)

This lower bound could be a good choice of M in practice – it
guarantees Si(α, α−i) (≥ 0) is increasing on α ∈ [0, α1], so that
the contest attracts any potential contestant, especially those skilled
ones. The necessary and sufficient conditions in Theorem 3.4 shows
that the bound is tight, i.e., Inequality 6 is the best lower bound of
M which still guarantees monotonicity of Si(α, α−i), ∀i ∈ [K]
and ∀α ∈ [0, α1].

It is also interesting to study the relationship between the lower
bound on M and the contest parameters.

THEOREM 4.3. Let

LM (α1, ..., αK−1) =
−1∫∞

−∞[
∏
k∈[K]\{K} F (ε− αk)]f ′(ε)dε

(7)
be the lower bound of M , then LM is increasing on αk for any
k ∈ [K]\{K}.

We leave the proof to the Appendix. An interpretation of this the-
orem is that a higher prize amount is required if the principal wants
to obtain higher idealized production qualities (i.e., higher αi) by
attracting more skilled contestants (i.e., higher θi) or expecting
competitors to contribute more effort (i.e., bigger Ei). This means
that the principal should be able to balance the prize amount and
the idealized production quality with targeting competitors with de-
sired skill levels and effort amounts.

5. AN EMPIRICAL EXAMPLE
In this section we provide results from a simulation study in or-

der to highlight certain properties of the mechanism. As an exam-
ple, we set the number of competitors, K, to be 2 and the set of
potential contestants to be N = 10. We assume Ei is in the in-
terval [0, 100] and θi ∈ [0, 1], resulting in αi ∈ [0, 100] for any
i. We drew αi randomly from the truncated normal distribution

c

20
√
2π
e−

(x−50)2

400 , x ∈ [0, 100], where c is a rescaling constant.

We set f(x) = 1

20
√
2π
e−

x2

400 and the value of each unit of product
quality to be v = 5. Finally, we set M = 814, just slightly higher
than the actual lower bound of the prize LM = 804, which was
computed using Equation 7.

Our first observation is that, as in line with Lemma 4.1, we saw
a decrease in quality as we compared the expected value of unit
of product quality obtained if all 10 contestants took part in the
competition, compared to only the top 2. That isQ10 = 95.7 while
Q2 = 72.6. However, we also saw a significant increase in the
social welfare when using the Top-K mechanism. In particular, the
Top-2 mechanism resulted in social welfare equal to 240, while the
social welfare if all competitors competed in the actual contest (i.e.
with no filtering) was only 16. The principal’s total utility from
running the Top-2 mechanism was 170, which included both the
total value of the best product quality produced and the entry fees
collected from competitors 1 and 2, minus the actual prize amount.

Table 1 summarizes the statistics for the different contestants.
Note that only the top two agents (in bold) actually participated in

Agent αi pi(αi, α
K
−K) pi(αi, α−i) Si Bi Ui

1 62.4 0.53 0.23 368 322 46
2 60.2 0.47 0.20 323 298 25
3 57.9 0.44 0.17 298 323 -25
4 55.8 0.41 0.14 277 323 -46
5 54.7 0.39 0.13 266 323 -57
6 41.0 0.23 0.04 142 323 -181
7 40.0 0.21 0.04 135 323 -188
8 33.3 0.15 0.02 91 323 -232
9 32.6 0.14 0.02 87 323 -236

10 24.5 0.09 0.01 49 323 -274

Table 1: Statistics of Contestants.

the competition once we ran the Top-2 rule. The table clearly shows
the monotonicity property of Si, Bi and Ui within top K competi-
tors. The values for all other agents, 3 ≤ i ≤ 10, are computed for
the case where the contestant i misreported so as to become one of
the top 2 candidates, and competed against contestant 1. That is,
these values are the best the agents could do by misreporting. We
emphasize that by being truthful, their utilities would have been
zero, and thus this shows that honest reporting is in the agents’ best
interest.

6. CONCLUSION
In this paper we looked at the problem of efficiency in winner-

take-all crowdsourcing contests. Using a discrete choice model to
capture contestants’ production qualities, we defined a mechanism
which filters out low-production-quality contestants, before they
are asked to produce a solution. We showed that such a mecha-
nism has desirable incentive properties under a set of natural as-
sumptions, and does improve social welfare. We were also able to
provide insights into the problem of prize setting.

We believe that this work complements the research of Cavallo
and Jain [4]. While the discrete choice model we used can be seen
as a special case of the stochastic production model used by them,
it allows us to work with a much broader range of distributions. It
would be interesting to further study the relationship between the
two models, as well as their respective strengths and weaknesses
when it comes to modeling these contests.

There are several other promising directions for future work.
One parameter in the mechanism is K, and so a natural question
which arises is how should K be set so as to optimize the out-
come for the principal. A similar question is how the principal
will behave rationally if she is also considered as a strategic player
in this game. Our analysis has also only looked at the single-
winner setting, and so it would be interesting to look at the problem
where multiple winners are allowed in order to understand how that
would change the mechanism, and what advantages or disadvan-
tages might arise. Finally, since crowdsourcing contests are wide
spread in practice, it would be interesting to both verify the real-
ism of our discrete choice model assumptions, and see how our
proposed mechanism would work in practice.
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APPENDIX
Proof of Lemma 3.1
The proof of Lemma 3.1 is as follows.

PROOF. LetD(t) = F (x+ t)−F (−x+ t), soD′(t) = f(x+
t)− f(−x+ t).
f(ε) = f(−ε) implies D′(t) = −D′(−t). Since f(ε) is de-

creasing on ε ≥ 0, D′(t) ≤ 0 for any x ≥ 0. Thus, D(t) is also
symmetric and single peaked at t = 0 when x ≥ 0.
∀k ∈ [K], αk ≥ αK ≥ 1

2
α1, so |0 − αk| ≥ |α − αk| ∀α ∈

[0, α1]. The symmetry and single peaked property of D(t) implies
D(α− αk) ≥ Dk(−αk). That is, ∀α ∈ [0, α1],

F (x+α−αk)−F (−x+α−αk) ≥ F (x−αk)−F (−x−αk). (8)

Let ∆k(x) = F (x+α−αk)−F (x−αk), Inequality 8 implies
that ∆k(x) ≥ ∆k(−x) ≥ 0. Since F (x + α − αk) = ∆k(x) +

F (x− αk), we have

Gi(x+ α)−Gi(−x+ α)

=
∏

k∈[K]\{i}

F (x+ α− αk)−
∏

k∈[K]\{i}

F (−x+ α− αk)

=
∏

k∈[K]\{i}

[F (x− αk) + ∆k(x)]

−
∏

k∈[K]\{i}

[F (−x− αk) + ∆k(−x)]

≥
∏

k∈[K]\i

F (x− αk)−
∏

k∈[K]\i

F (−x− αk)

= Gi(x)−Gi(−x),

in which the inequality ” ≥ ” uses the following fact: if ak ≥ ck ≥
0 and bk ≥ dk ≥ 0, then

∏n
k=1(ak + bk) −

∏n
k=1(ck + dk) ≥∏n

k=1 ak −
∏n
k=1 ck.

To show inequality 3, consider any α ∈ [0, αi], we have |α −
αj | ≥ |α− αi|. Therefore D(α− αi) ≥ D(α− αj) which gives
∆(x) = F (x+α−αi)−F (x+α−αj) ≥ F (−x+α−αi)−
F (−x+ α− αj) = ∆(−x). So,

Gj(x+ α)−Gj(−x+ α)

=
Gj(x+ α)

F (x+ α− αi)
F (x+ α− αi)

− Gj(−x+ α)

F (−x+ α− αi)
F (−x+ α− αi)

≥ Gj(x+ α)

F (x+ α− αi)
(F (x+ α− αj) + ∆(x))

− Gj(−x+ α)

F (−x+ α− αi)
(F (−x+ α− αi) + ∆(−x))

= Gi(x+ α)−Gi(−x+ α)

+
Gj(x+ α)

F (x+ α− αi)
∆(x)− Gj(−x+ α)

F (−x+ α− αi)
∆(−x)

≥ Gi(x+ α)−Gi(−x+ α)

Proof of Lemma 3.2
The proof of Lemma 3.2 is as follows.

PROOF. We have the following derivation:

∂ pi(α, α
K
−i)

∂α

=
∂
∫∞
−∞Gi(ε+ α)f(ε)d ε

∂ α

I
=

∂
∫∞
−∞Gi(ε)f(ε− α)d ε

∂ α
II
= −

∫ ∞
−∞

Gi(ε)f
′(ε− α)d ε

III
= −

∫ 0

−∞
Gi(ε+ α)f ′(ε)d ε−

∫ ∞
0

Gi(ε+ α)f ′(ε)d ε

IV
= −

∫ ∞
0

(Gi(ε+ α)−Gi(−ε+ α))f ′(ε)dε

V

≥ −
∫ ∞
0

(Gi(ε)−Gi(−ε))f ′(ε)dε

=
∂ pi(α, α

K
−K)

∂α
|α=0



in which: step I uses variable transform ε→ ε−α; step II uses the
assumption that f(ε) is one-order differentiable within the support
set; step III uses variable transform ε→ ε+α; step IV uses sym-
metry property f ′(ε) = −f ′(−ε) ≤ 0; step V uses Inequality 2
from Lemma 3.1 and the fact that f ′(ε) ≤ 0, ∀ε ≥ 0.

Proof of Lemma 3.3
The proof uses Inequality 3 from Lemma 3.1 and the expression of
∂ pi(α,α

K
−i)

∂ α
|α=0 from the proof of Lemma 3.2.

Proof of Lemma 4.1
The proof of Lemma 4.1 is as follows.

PROOF. We have the following derivation:

E(Q(N))− E(Q(K))

=

∫
x∈R

d G(x,N)

dx
xdx−

∫
x∈R

d G(x,K)

dx
xdx

= x(G(x,N)−G(x,K))|+∞−∞ −
∫
x∈R

(G(x,N)−G(x,K))dx

I
=

∫
x∈R

(
∏
n∈[K]

F (x− αn)−
∏
n∈[N ]

F (x− αn))dx

=

∫
x∈R

∏
n∈[K]

F (x− αn)(1−
N∏

n=K+1

F (x− αn))dx

≥ 0

in which step I follows from the following fact:

lim
x→∞

x(G(x,N)−G(x,K)) = lim
x→∞

G′(x,N)−G′(x,K)

−1/x2
= 0,

because of the existence of the variance of f(ε).
For any n ∈ [K], αn only shows up in

∏
n∈[K] F (x − Eαn)

which is decreasing on αn, so E(Q(K)) − E(Q(N)) is also de-
creasing on αn. Similarly, for any n > K, αn only shows up in
1−

∏N
n∈K+1 F (x−Eαn) which is increasing on αn. Therefore,

E(Q(K))− E(Q(N)) is increasing on αn, ∀n > K.

Proof of the Claim in Theorem 4.2
The proof of the Claim used in Theorem 4.2 is as follows.

PROOF. For simplicity, let a = F (−x) ≤ 1
2

, ∀x ≥ 0. Ac-
cording to the symmetry of f(x), we have F (x) = 1 − a. So we
only need to prove: N(1− a)N−1 −K(1− a)K−1 −NaN−1 +

KaK−1 ≤
∑N
n=K+1[(1 − a)n−1 − an−1]. Let Bn = n(1 −

a)n−1 − nan−1 be a series, we compute Bn+1 −Bn, ∀n ≥ 2:

Bn+1 −Bn = (1− a)n − an − [n(1− a)n−1a− nan−1(1− a)]

≤ (1− a)n − an

in which the inequality “≤” follows from the facts that a ≤ 1
2

and
n ≥ 2, so (1− a)n−1a ≥ an−1(1− a).

So we have BN − BK ≤
∑N
n=K+1[(1 − a)n−1 − an−1] =∑N

n=K+1[F (x)n−1 − F (−x)n−1]

Proof of Theorem 4.3
The proof of Theorem 4.3 is as follows.

PROOF. We prove that −
∫∞
−∞GK(ε)f ′(ε)dε is decreasing on

αk, ∀k ∈ [K]\{K}.
Note that

−
∫ ∞
−∞

GK(ε)f ′(ε)dε = −
∫ ∞
0

(GK(ε)−GK(−ε))f ′(ε)dε.

Since −f ′(ε) ≥ 0, ∀ε ≥ 0, it’s sufficient to prove

GK(x)−GK(−x) =
∏

k∈[K]\{K}

F (x−αk)−
∏

k∈[K]\{K}

F (−x−αk)

is decreasing on αk for any x ≥ 0.
∀δ ∈ [0, α1], let ∆k(x) = F (x − (αk − δ)) − F (x − αk).

Similar to the argument in the proof of Lemma 3.1, one can show
that ∆k(x) ≥ ∆k(−x) ≥ 0.

Then we have the following derivation:

GK(x)
F (x− (αk − δ))
F (x− αk)

−GK(−x)
F (−x− (αk − δ))
F (−x− αk)

= GK(x)
F (x− αk) + ∆k(x)

F (x− αk)
−GK(−x)

F (−x− αk) + ∆k(−x)

F (−x− αk)

= GK(x)−GK(−x)

+[
GK(x)

F (x− αk)
∆k(x)− GK(−x)

F (−x− αk)
∆k(−x)]

≥ GK(x)−GK(−x)

This shows that GK(x) − GK(−x) is decreasing on αk, ∀k ∈
[K]\{K}.


