Solving Zero-Sum Security Games in Discretized Spatio-Temporal Domains

APPENDIX

LP Formulation for Constant Number of
Resources (Fang et al. 2013)

For the sake of completeness, we describe the LP formula-
tion in (Fang, Jiang, and Tambe 2013) as follows.

Let variable p(i1, j1, 42, j2, .-, 1K, jK ; 1) be the probabil-
ity that resource k moves from position i at time n to po-
sition jj at time n + 1. Then, the following L P solves the
problem (Fang, Jiang, and Tambe 2013).

min u

M

M
f(il,...,iK;TL) = Z

M
> flineminin) =1

015t =1

u>(1-— Z

(i1yeeey 15) protecting t atn

p(ilujlu aZKquvn) € [07 1]

p(ilajla 72K,]K,TL)

f(ila --~7iK;n))wrn

where “}) rotecting tatn | €3NS summing over all

the profiles (i1, ...,7x) in which there exists at least an i,
satisfying that target ¢ is within the protection range of posi-
tion 7, at n.

The size of the above LP formulation has order
O(N M?K), which is polynomial in M and N but exponen-
tial in K.

Proof of Lemma 1

Lemma Statement:Separation oracles for P, and P, re-
duce to each other in poly(T,N) time.

Proof. P, = P, given a separation oracle O,, for P,,, one
can construct a separation oracle for P, by simply checking
the TN extra constraints (1 — 4,)wy, < u.

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

p(ilajlv"'7iKa.jK;n_ 1)

P, = Pu: let ug = maxt, wyy,. For any 7 € RTY,
xo € Py, if and only if (zg,ug) € P,. Furthermore, if z¢ ¢
P,,, any hyperplane a” 2 + bu = c separating (¢, ug) from
P, gives a hyperplane a”z = ¢ — bug separating xo from
Puw. a

Proof of Lemma 2

Lemma Statement: the separation oracle problem for P,
reduces to the following LP (L P,,) in polynomial time:

max E

te[T],n€[N]
s.t. z € Py

WinTtn

for arbitrary weight profile {wyy, }.
As aresult, L P, reduces to LP,, in polynomial time.

Proof. we’re following an argument from (Grotschel,
Lovasz, and Schrijver 1984); proof is provided for complete-
ness.

Assume we are given an oracle O that computes LP,,.
Consider another polyhedron P2 = {y : yTa < 1,Vx €
Py }. For any y, we can decide whether y € P;, by solv-
ing an instance of LP,,: maxy” z, s.t. z € P,,. This can be
computed by oracle O and output an optimal solution z*. If
yTox* < 1, theny € PS, otherwise y’ x* = 1 is a hyper-
plane separating y from P;.

Till now, we have constructed a separation oracle for P,
using O. Therefore, we can maximize any linear function
over P. in polynomial time, again by ellipsoid method.
Then, similar arguments as above implies that we can con-
struct a separation oracle for P° = {z : yTz < 1,vy €
P2} = Py. This proves that the separation oracle problem
for P,, reduces to LP,,.

Then we have, LP, reduces by ellipsoid method to the
separation oracle problem for P,, which again reduces to
the separation oracle problem for P,, (by Lemma 1), which
then reduces to LP,,. Od

Proof of Lemma 3

Lemma Statement: If X' < M, there exists an optimal ver-
tex solution for L P, corresponding to a defender pure strat-
egy. say {vr}re[k)» satisfying that vy, is strictly under vy
for all k.

Proof. If A = 0, i.e., each resource has to stay at the same
position, this is trivial. We prove it for the case A > 1.
Assume {v}, }re[k] is any optimal pure patrol strategy

with v}, = {v(o) (),. .,v,(cN)}. We first argue that there
is a way to construct another K paths {vz }xe[k], such that
vy, 1S weakly under vy, for all k.

We claim

Vg = {max k{mo)} maxk{ml 1, .

are also another K feasible patrol paths. Here “max k” is the
k’th largest value among {mg@)}ke[&]- Obviously, if this is
true, these paths would satisfy optimality, and vy, is weakly

under vy _1.

Let m% denote max k{m)} With slight abuse of nota-
tion, we also say mF € wv; if the path vZ passes through po-
sition mk. We show the move from mk to mk 11 1s feasible
for any n € [N] and k € [K]. If Ji such that m* and m?% _ ,
are both in v}, then this is trivial.

Otherwise let mF = m® e vl If mSJ)rl > mk,

since mF¥ is the k’th largest due to the construction, there
are at least k — 1 paths weakly above position mﬁ ex-
cluding v}, however there are at most k — 2 paths strictly
above position m~ 41 excluding v; because v} is one of the

those paths strictly above mk 11 (mn b1 > my +1) There-

fore, there exists a vj satisfying that it is weakly above

mE but weakly under mﬁ_H. So we have m’ > mF but

5121 < mk . This yields that it is feasible to go from m*

to my; +(gll—mg)) Sincem’“+(Sﬁl_mg)) <

mE 4+ (mh —mbk)=mk | < mﬁbil and the move mF~

to mﬁbil is feasible, the move mF* to m* 41 1s also feasible.

A similar argument applies to the case me)_l < mk 11

This shows that there exists an optimal set of K feasible
patrol paths vy, ..., v such that vy ; is weakly under vy, for
any k.

Now, we show that there is a way to adjust vy, ..., vx such
that they do not overlap and meanwhile maintain optimality.
We first adjust the time layer 0. Let mm{ in path vy, and)
in path vg 11 be the first overlap. We aim to adjust these paths
to make vy, ..., vx41 not overlap at time 0. If vy = vgy1,
then we simply remove path vy ; without any loss and start
anew path vi41 from an arbitrary uncovered position at time
0 (this position exists because K < M). Otherwise, let n(>
1) be the first time layer at which vy, and v 1 do not overlap,
thus mj > my, ;. So either of the following adjustments
would be feasible and maintain optimality.

1. Push up vy: set my < m{ + 1,¥n' < n; keep m}’
the same if m}g/ =M 3 if any path v; satisfying ¢ < k
overlaps with v at mj’ , also push v; up at time n’ by
setting m?l — m?l + L

1,Vn' < n; keep

m’,g;_l the same if mﬁ;l = 0; if any path v; satisfying

’ ’
. n n
2. Push down vgy1: set my, | < my | —

maxk{mN 1}, Vk € [K]

1 > k+ 1 overlaps with vy at mZ;l, also push v; down
at time n’ by setting m? < m} — 1.

Note that both of these two adjustments will keep the paths
weakly separate. Since vy, ..., v; do not overlap at time 0 due
to our choice of &, if mg = M — k+1 which means there are
no uncovered positions above vy, at time 0, then we take the
second adjustment (if more than two paths overlap at m? in
this case, push down all the paths, except vy, by 1 grid as the
second adjustment) and make the paths v, ..., Vg, Vg4+1 not
overlap at time 0. Otherwise, there is at least one uncovered
position above mY, then we take the first adjustment (always
choose vy, in this case if more than two paths overlap, since
we only care about vy, and vi4; currently). If mg + 1isun-
covered originally, we have made the paths vy, ..., vg4; not
overlap at time 0. Otherwise m) + 1 = m{_, and we re-
moved the overlap at m}, but create a new overlap at mj_.
Nevertheless, we know that there is an uncovered position
above m! and we made the overlapping position (i.e., m{+1
now) one step closer to this uncovered position. We then
continue this adjustment until we get to that uncovered po-
sition and make the paths vy, ..., v not overlap at time
0.

By now, we went one step further and made vy, ..., vg41
not overlap at time 0. We can continue this argument until
finally making all the paths not overlap at time 0. We now
consider time layer 1. Similarly, let rn, and . |, be the first
overlap and n(> 2) be the first time layer at which vy, and
V41 do not overlap (et n = N + 1 if v, always overlaps
vj+1 except at time 0). Since m{ > m2+1 and my; > my 4
(if n # N + 1), the following two adjustments are feasible
and maintain optimality: set mZ, — m’gl + 1 (keep m’gl the
same if m} = M) ormf,, < mf,, — 1 (keep m},, the
same if mZ;l = 0), V1 < n’ < n. Then similarly to time
0, we can make vy, ..., U4+ not overlap at time 1. Continu-
ing this adjustment procedure until time N, we get K paths
where for each pair of path, one is strictly under another
one. O

Proof of Lemma 4

Lemma Statement: If N is a constant, Algorithm 1 runs in
polynomial time and outputs an optimal vertex solution for
LP,, for any weight profile {wy,, }.

Proof. Lemma 3 guarantees there is always an optimal pure
strategy in which paths do not cross or touch. Algorithm
1 computes such an “ordered” optimal pure strategy us-
ing dynamic programming. This algorithm is polynomial-
time because [V is a constant, therefore the number of states
OPT (v; k) is poly(M,K). O

Proof of Theorem 2

Theorem Statement: If the protection ranges at different
grid points do not overlap with each other, then an optimal
vertex solution to L P, can be found in polynomial time.

Proof. We only need to focus on the pure strategies in which
paths do not overlap with each other. Considering the orig-

added

[] [) ®
[] 5 e [
[[]
[: [e O
[:0 ° :0.‘
[] [] [e o
0 1 N 0 1 N

Figure 1: Left: Original Grid; Right: Constructed Network.

inal grid in Figure 1, we set the reward of each grid point
as the sum of all the weights of targets within its protec-
tion range, then construct a weighted directed network as the
right panel in Figure 1, in which weights indicate rewards
obtained by passing through edges.

The network is constructed based on the original grid as
follows: adding a source S and a sink 7T'; Vn < N, adding
one more layer between time n and n + 1 (blue points); all
the feasible-move arrows become edges starting from each
added layer to the next layer; one-to-one edges (purple in
Figure 1) are added from each original layer to the corre-
sponding added layer. In addition, all the edges have capac-
ity 1 and only blue edges have non-zero weights (rewards),
which equal the rewards of their starting points in the origi-
nal grid.

Consider the problem of letting K units flow (possibly
fractionally) from source S to sink 7" such that the sum of the
rewards weighted weighted by the flow amount through the
corresponding edge is maximized. The following facts hold
for this problem (similar to the min-cost flow problem): 1.)
its optimal solution can be computed in polynomial-time be-
cause it has an LP formulation ; 2.) it has an integer optimal
solution because all capacities are integers; 3.) this integer
optimal solution can be computed in polynomial-time.

It is straightforward to check that the above max-
reward flow problem is equivalent to finding optimal non-
overlapped pure strategy in original grid in the following
sense: an integer flow in constructed network can be con-
verted to an optimal non-overlapping pure strategy in the
original grid (by contracting the blue edges) and vice versa,
and the sums of the collected rewards in both cases are
equal. O

Proof of Lemma 5

Lemma Statement: OPT(PCk) > £ if OPT(DC) =

Ko; and OPT(DC) < & if OPT(PC) = p.

Proof. First Part: By sampling a combination of K paths

from [K{) uniformly at random, we get a solution for PC

covering each target with probability at least K/ K.
Second Part: assume p is optimal for PC and MS =
U1,1 U1,K

l . 1 is the support of a mixed strategy
UR,1 -« URK

achieving the optimality. Here each row r of M S corre-

sponds to a pure strategy drawn with probability p, and

Zil pr = 1. Assume Algorithm 2 outputs Ky and paths
{vr}re(ko)- We show that Ko < %.

We look at the mixed strategy M S from another perspec-
tive, namely, as a set of grid points assigned with probability
weights, which we call p-weights from now on. For exam-
ple, any position in path uq j is a grid point assigned with
p-weight p;. Let X denote the set of all the grid points show-
ingin M S and px denote the p-weight of grid point X . Each
path u, ;, has N grid points, so the sum of the p-weight over

XisYyerPx =50 prx Kx N=KN.

Now we count this sum of p-weights from another way.
Let X%, denote the set of all the grid points at time n that
lie weakly above path v;} output by Algorithm 2. We show
the following inequality:)y . x,, Px = pk, Vk,n. If this
is true, by letting & = Ko we have KN = Y (., px >

PO > X e, Px = PNKy yielding Ko < .

We prove >y x,, Px = pk by induction on k. When
k = 0, this is trivial. Now, assume the inequality holds for
any k < r — 1, then we consider the case of k = r. We
first sort all the positions of path vy in a decreasing order
(ties are broken randomly). Denote the index of the ordered
time layers as nj, i.e., v;’ > v,”™" for all j. We then prove
ZXeij px > pr by induction on j.

When 7 = 1, this is the highest position in path v,.. So
there exists a target pair, say (¢, n1), that is not protected by
path vy, ...,v,_1, and v]"* is the lowest possible position that
still covers (t, n1), otherwise, v,. is not time-wise lowest be-
cause it can move v;'! to vt — 1. As a result, any grid point
in X,_1 ,, does not protect the pair (¢,n1). So all the grid
points that protect (¢, n) are weakly above v, but are not in
X1, 1.€., they are in &} ,,, \ X_1 ,. The sum of the p-
weights of these grid points is at least p, since (¢, n1) is cov-
ered by at least probability p. So we have } Sy, px >

Tny
ZXeXT_l,nl Px +Exexr,nl\xr_1,nl px > (r—1p+p=
pr due to induction hypothesis.

Now assume the inequality holds for j < ¢ — 1, we con-
sider the case j = 4. Since v, is time-wise lowest, the rea-
son that v, goes through v;'* can only be one of the fol-
lowing two: i.) there exists a pair (¢, n;) that is not covered
by &X._1 ,, and v}*¢ is the lowest possible position that still
covers (t,n;); ii.) the move from v™ — 1 to a position at a
neighboring time layer, i.e., v "1 or v™~1, is infeasible. In
the first case, we have) |y X, PX > pr with a similar ar-
gument as ¢ = 1. In the second case, w.l.o.g., say the move
from v ! to v™ —1 is not feasible. Then, v 1 —vi = A,
so all the paths going through points in A ,._; must ar-
rive at a points weakly above v}, i.e., points in X, ,,,. So
we have > vy px > Doxex. ., Px > pr, where
the second *“>” is due to the induction hypothesis on i
since n; — 1 ranks before n; in the order. This finishes our
proof. a

Proof of Theorem 3

Theorem Statement: O PT (PCy) = K/OPT(DC). Fur-
thermore, the optimal solution of PCx can be generated
from that of DC efficiently.

Proof. Lemma 5 yields OPT(PCk)OPT(DC) > K (by
first part) and OPT(PCg)OPT(DC) < K (by second
part). So OPT(PCk) = K/OPT(DC).

Next, we prove that a solution to PC can be obtained from
a solution to DC as follows. Given the optimal path set [Kj]
for DC, we can sample a combination of K paths (i.e., a
pure strategy for the defender) from [K{] uniformly at ran-
dom. This can be easily done in poly(Ky) time. Any target is

covered by a resource with probability Cf¢ ") X o = 7=
Ko
where C’Ilgo means K choose K. O

Proof of Theorem 4

Theorem Statement: The K output by Algorithm 2 is op-
timal.

Proof. Let T}, denote the set of all targets protected by re-
source k and T_j, = T}, i.e., the complement of T}, denote
all the targets not protected by k. It is easy to see that if K is
optimal (minimum) for protecting all targets, ky — 1 should
be optimal for protecting 7", Vk € [Ky].

We next show the key property of Algorithm 2: there ex-
ists an optimal solution for DC in which one resource fol-
lows precisely the same path as v; constructed in Algorithm
2. The theorem then follows by induction.

We prove this by contradiction. W.l.o.g. (Lemma 3), let
{u1,uz, ..., uk; } be a set of optimal paths satisfying that u;
is strictly above ;1 1, where u; = (uf,...,uY). We show
that v; constructed in Algorithm 2 is able to cover all the
targets covered by u;, and therefore {vy,uz, ..., ux;} is a
new optimal solution, in which one resource follows v .

Assume, for the sake of proof by contradiction, that this is
false. Then, there exist targets covered by u; but not by v;.
The uncovered targets must be under the protection range of
vy because v does not leave any pair (¢,n) above its pro-
tection range uncovered by construction. So there exists ¢
such that ! < v}. Note that u; does not leave any pair
(t,n) above its protection range uncovered, either, because
{u1,uz, ..., ug, } is a cover and uy is the highest path. How-
ever, the conclusion u{ < v} means v; is not the time-wise
lowest path that does not leave any pair (¢, n) above its pro-
tection range uncovered, which contradicts the construction
in Algorithm 2. O

Proof of Lemma 6

Lemma Statement L P, is NP-hard, if A,, < 2(A — 1) for
any n.

Proof. We prove this by reducing from vertex cover.

Construct the following special case: set A = 3, set patrol
radius r = %dA, i.e., the protection range is (m — %dA, m-+
%dA) at position m. Here da is the distance between two
neightboring spatial points. Therefore, the position m+ %d A
can be covered by a resource either at m or at m + 1, but the
position m can only be covered by a resource at m.

First, the following vertex cover problem (VC) is known
to be NP-hard: given integer K and any graph G = (V, E),

finding a subset V; C V that maximizes the number of edges
it covers subject to |Vy| = K. We reduce VC to LP,,.
Given K and any graph instance G = (V, E), we con-
struct an L P,, instance as follows. Create |V/| targets, each
one corresponding to a node in V. The moving paths for
these |V/| targets are constructed as path 1,2,3, etc. in the
left of Figure 2. Generally, two neighboring paths differ by a
horizontal translation of 4 time layers. These paths are con-
structed in such way that each pair of targets cross each other
exactly once and all the crossings have the same local ge-
ometry as shown in the right of Figure 2. Any pair of targets
does not occupy the same discretized position at any time.
We set the weight of each target to be 1 at any time layer.
Now, for any edge in E/, we add a “ziny” target with small
enough weight. Specifically, Ve = (u,v) € E, let n, denote
the discretized time when path v and v are closest, and u,,,
and v,,_ denote the position of path u and v at time n..! We
put a tiny target with weight € at the time n. on the point
in the middle between u,,, and v, (see the position of € in
Figure 2). Note that a resource can capture this € weight at
either u,,, or v, . One may think of this as a tiny target e
that has weight € only at this specific time and has weight 0
otherwise. We set € small enough to satisfy € < ‘—}{3‘, so that

sum of all the tiny weights is still less than 1, i.e., | Fle < 1.
This completes the construction of the L P,, instance.

Our first observation is that any optimal vertex solution to
L P, must first optimally capture the weights from the target
set V, because |E|e < 1, meaning that the loss of failing to
cover any target corresponding to a node in V' cannot be
recovered even by covering all the € tiny targets.

Now we show the only way to collect weights optimally
from those |V/| targets is to pick any K targets and follow
their paths precisely. The reason is that K resources can cap-
ture at most K targets at any time layer because of limited
protection radius and non-overlapping paths. So capturing a
sum of weights of KNV is the best one can do and following
any K targets achieves this. The reason that these are the
only optimal strategies is that the only time when a resource
can switch to another path is when the current path is about
to intersect that path, however the switch at that time is in-
feasible because it needs an acceleration of 2A — 1, greater
than the limit 2(A — 1).

As a result, maximizing the collected weights is equiva-
lent to choosing a target set [K] C V to follow, such that
the number of covered tiny targets is maximized. Note that
a tiny target e = (u,v) can be covered if and only if one of
its end points corresponds to a path in [K]. So, an optimal
vertex solution (i.e., optimal pure strategy) to LP,, gives an
optimal solution to the original VC problem instance. Since
G = (V, E) is arbitrarily chosen, L P,, is NP-hard. d

Column Generation

Column generation has been used to solve large linear pro-
grams as well as large scale games. Specifically in our prob-
lem, we start from an empty support set of defender pure

'Ina slight abuse of notation, here we use u, v to denote both

nodes in GG and paths corresponding to these nodes.

A4,=5>2(A-1)

Figure 2: Left: enumerated target paths; example position to
put an e tiny targets; Right: local intersection geometry, tiny
target position and an infeasible acceleration.

strategies, use L P, as an oracle to iteratively compute the
defender’s best response for any attacker mixed strategy and
add it to the support set. In each iteration, we first solve for
an optimal mixed strategy of the attacker under the assump-
tion that the defender is only allowed to select a pure strategy
from a restricted set I'. Then, we use our algorithms for the
weight collection problem to compute an optimal determin-
istic defender strategy with respect to the attacker’s mixed
strategy. The optimal pure defender strategy is added to I'
and the whole algorithm ends when the strategy to be added
is already in the set. Although the size of the I may be ex-
ponential in worst case, this method is empirically efficient
and can converge or get to near-optimal solutions by enu-
merating only a small fraction of all pure strategies (Jain et
al. 2011; Halvorson, Conitzer, and Parr 2009).

Experiment Results with Small Scale
Randomly Generated Instances

We test the algorithms proposed in this paper with small
scale randomly generated settings. The results are similar to
that with practical settings in the ferry domain. Figure 3(a)
shows the performance of the baseline strategy (LP) as the
number of resources (K) increases. The x-axis shows the
number of resources. LP is ensured to obtain the optimal
solution (AttEU Ratio equals to 1); however, the runtime in-
creases exponentially when K increases. When K >= 4,
LP runs out of memory and fails to return a solution. So LP
is only applicable when K is small.

Figure 3(b) shows that DP always achieves the optimal so-
lution. When the number of time steps (M) is small enough
(N <= 2), DP runs much faster than LP. However, the run-
time of DP increases exponentially as NV increases and it can
be even slower than the baseline algorithm. So DP is suitable
for cases with small V.

Figure 3(c) shows that NonOverlap achieves the optimal
solution when the protection radius is small enough to make
the protection range non-overlapped (r <= 0.083). As the
protection radius increases, the AttEU Ratio increases, indi-
cating a decreasing solution quality. However, when the pro-
tection radius is close to da /2 (e.g., 7 = 0.1 and r = 0.13),
the AttEU Ratio of NonOverlap is close to 1, meaning the
solution quality is close to optimal. Given that NonOverlap

outperforms the baseline in runtime significantly, we con-
clude that NonOverlap should be chosen when the protec-
tion range does not overlap and is a good approximation of
optimal solution when protection radius is close to da /2.

Figure 3(d) shows the performance of Hom as the util-
ity range increases. Utility range is defined as the difference
between the maximum and minimum utility of the targets.
When utility range equals zero, all targets are homogeneous.
From the figure, we know Hom obtains an optimal solution
when utility range is zero. As the utility range increases, the
solution quality of Hom degrades compared to the baseline.
When utility range is small, the solution quality is close to
optimal, which means Hom provides a good approximation
of the optimal solution. Furthermore, its runtime is orders of
magnitude shorter than the baseline.

The heuristic algorithm OrderGreedy achieves an optimal
or near-optimal solution in most of the small scale cases.
OrderGreedy also outperforms LP and DP significantly in
runtime, which indicates it to be a good heuristic algorithm
in many different settings.

References

Fang, F.; Jiang, A. X.; and Tambe, M. 2013. Optimal pa-
trol strategy for protecting moving targets with multiple mo-
bile resources. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS).

Grotschel, M.; Lovasz, L.; and Schrijver, A. 1984. the
ellipsoid method and its consequences in combinatorial op-
timization”. Combinatorica 4(4):291-295.

Halvorson, E.; Conitzer, V.; and Parr, R. 2009. Multi-step
multi-sensor hider-seeker games. In Proceedings of the 21st
International Jont Conference on Artifical Intelligence, 1J-
CAT’09, 159-166.

Jain, M.; Korzhyk, D.; Vanék, O.; Conitzer, V.; Péchoucek,
M.; and Tambe, M. 2011. A double oracle algorithm for
zero-sum security games on graphs. In The 10th Interna-

tional Conference on Autonomous Agents and Multiagent
Systems - Volume 1, AAMAS 11, 327-334.

3
2
2 ko)
F2 Z15
o} D 1
Wy u
kS <05
0 1 2 3 4 5 0 2 3 4 6 7
[El_P [OrderGreedy [INonOveriap [_JHom| | Il P I OP [OrderGreedy [C]NonOverlap [JHom|
15
g £10
c €
3 >
o 5 o 5
Ke) Ke)
0 1 2 3 4 5 0 2 3 4 6 7
Number of Resources Number of Time Steps
(a) Increase K (b) Increase N
3 2
il o
&2 g1
o S g
= =
g <05
0 0
0.01 0.04 0.07 0.1 0.13 0.16 0 1 5 10 100
\-LP [OrderGreedy [_JNonOverlap E]Hom\ ‘-LP [OrderGreedy []NonOverlap E]Hom‘
£ 210
g g
s s
[) o> 9
ke) o
0 0
0.01 0.04 0.07 0.1 0.13 0.16 0 1 5 10 100
Protection Radius Utility Range

(d) Increase Range

(c) Increase Re

Figure 3: Experimental Results For Randomized Settings

