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Abstract
Most models of Stackelberg security games assume
that the attacker only knows the defender’s mixed
strategy, but is not able to observe (even partially)
the instantiated pure strategy. Such partial observa-
tion of the deployed pure strategy – an issue we
refer to as information leakage – is a significant
concern in practical applications. While previous
research on patrolling games has considered the at-
tacker’s real-time surveillance, our settings, there-
fore models and techniques, are fundamentally dif-
ferent. More specifically, after describing the infor-
mation leakage model, we start with an LP formu-
lation to compute the defender’s optimal strategy in
the presence of leakage. Perhaps surprisingly, we
show that a key subproblem to solve this LP (more
precisely, the defender oracle) is NP-hard even for
the simplest of security game models. We then ap-
proach the problem from three possible directions:
efficient algorithms for restricted cases, approxima-
tion algorithms, and heuristic algorithms for sam-
pling that improves upon the status quo. Our exper-
iments confirm the necessity of handling informa-
tion leakage and the advantage of our algorithms.

1 Introduction
Stackelberg security games played between a defender
(leader) and an attacker (follower) have been widely stud-
ied in the past few years [Korzhyk et al., 2010; Letchford
and Vorobeychik, 2011b; 2011a; Tambe, 2011; Basilico et al.,
2012]. Most models, in particular, including all the deployed
security systems in [Tambe, 2011], assume that the attacker
is not able to observe (even partially) the defender’s instan-
tiated pure strategy (i.e., which targets are being protected),
thus he makes decisions based only on his knowledge of the
defender’s mixed strategy. This fails to capture the attacker’s
real-time surveillance, by which he may partially observe the
deployed pure strategy. For example, the attacker may ob-
serve the protection status of a certain target while approach-
ing for an attack; or in some security domains information
regarding the protection status of certain targets may leak to
the attacker due to real-time surveillance or even an insider
threat; further, well-prepared attackers may approach certain

adversarially chosen target to collect information before com-
mitting an attack.

Unfortunately, this problem– an issue we refer to as infor-
mation leakage – has not received much attention in Stackel-
berg security games. In the literature of patrolling games,
attackers’ real-time surveillance is indeed considered [Ag-
mon et al., 2008b; 2008a; Basilico et al., 2009a; 2009b;
Bošanský et al., 2011; Vorobeychik et al., 2014]. However,
all these papers study settings of patrols carried out over space
and time, i.e., the defender follows a schedule of visits to mul-
tiple targets over time. In addition, they assume that it takes
time for the attacker to execute an attack, during which the
defender can interrupt the attacker by visiting the attacked
target. Therefore, even if the attacker can fully observe the
current position of the defender (in essence, status of all tar-
gets), he may not have enough time to complete an attack
on a target before being interrupted by the defender. The
main challenge there is to create patrolling schedules with the
smallest possible time between any two target visits. In con-
trast, we consider information leakage in standard security
game models, where the attack is instantaneous and cannot
be interrupted by the defender’s resource re-allocation. Fur-
thermore, as may be more realistic in our settings, we assume
that information is leaked from a limited number of targets.
As a result, our setting necessitates novel models and tech-
niques. We also provide efficient algorithms with complexity
analysis.

This paper considers the design of optimal defender strat-
egy in the presence of partial information leakage. Consid-
ering that real-time surveillance is costly in practice, we ex-
plicitly assume that information leaks from only one target,
though our model and algorithms can be generalized. We
start from the basic security game model where the defender
allocates k resources to protect n targets without any schedul-
ing constraint. Such models have applications in real secu-
rity systems like ARMOR for LAX airport and GUARDS for
airports in general [Tambe, 2011]. We first show via a con-
crete example in Section 2 how ignoring information leakage
can lead to significant utility loss. This motivates our design
of optimal defending strategy given the possibility of infor-
mation leakage. We start with a linear program formulation.
However, perhaps surprisingly, we show that it is difficult to
solve the LP even for this basic case, whereas the optimal
mixed strategy without leakage can be computed easily. In



particular, we show that the defender oracle, a key subprob-
lem used in the column generation technique employed for
most security games, is NP-hard. This shows the intrinsic
difficulty of handling information leakage. We then approach
the problem from three directions: efficient algorithms for
special cases, approximation algorithms and heuristic algo-
rithms for sampling that improves upon the status quo. Our
experiments support our hypothesis that ignoring information
leakage result in significant loss of utility for the defender,
and demonstrates the value of our algorithms.

Note: due to space limit all the proofs in this paper are
either described with sketches or omitted. Formal proofs can
be found in the full version.

2 Model of Information Leakage
Consider a standard zero-sum Stackelberg security game with
a defender and an attacker. The defender allocates k secu-
rity resources to protect n targets, which are denoted by the
set [n] = {1, 2, ..., n}. In this paper we consider the case
where the security resources do not have scheduling con-
straints. That is, the defender’s pure strategy is to protect
any subset of [n] of size at most k. For any i ∈ [n], let ri
be the reward [ci be the cost] of the defender when the at-
tacked target i is protected [unprotected]. We consider zero-
sum games, therefore the attacker’s utility is the negation of
the defender’s utility. Let s denote a pure strategy and S be
the set of all pure strategies. With some abuse of notation, we
sometimes regard s as a subset of [n] denoting the protected
targets; and sometimes view it as an n-dimensional 0−1 vec-
tor with k 1’s specifying the protected targets. The intended
interpretation should be clear from context. The support of
a mixed strategy is defined to be the set of pure strategies
with non-zero probabilities. Without information leakage, the
problem of computing the defender’s optimal mixed strategy
can be compactly formulated as linear program (1) with each
variable xi as the marginal probability of covering target i.
The resulting marginal vector ~x is a convex combination of
the indicator vectors of pure strategies, and a mixed strategy
achieving marginal ~x with small support can be efficiently
sampled [Tsai et al., 2010].

maximize u
subject to u ≤ rixi + ci(1− xi), for i ∈ [n].∑

i∈[n] xi ≤ k
0 ≤ xi ≤ 1, for i ∈ [n].

(1)

Building on this basic security game, our model goes one
step further and considers the possibility that the protection
status of one target leaks to the attacker. Here, by “protection
status" we mean whether this target is protected or not in an
instantiation of the mixed strategy. We consider two related
models of information leakage:

1. PRobabilistic Information Ieakage (PRIL): with proba-
bility pi(≥ 0) a single target i leaks information; and
with probability p0 = 1−

∑n
i=1 pi no targets leak infor-

mation. So we have ~p = (p0, p1, ..., pn) ∈ ∆n+1 where
∆n+1 is the (n + 1)-dimensional simplex. In practice,
~p is usually given by domain experts and may be deter-
mined by the nature or property of targets.

2. ADversarial Information Leakage (ADIL): with proba-
bility 1 − p0, one adversarially chosen target leaks in-
formation. This model captures the case where the at-
tacker will strategically choose a target for surveillance
and with certain probability he succeeds in observing the
protection status of the surveyed target.

Given either model – PRIL with any ~p ∈ ∆n+1 or ADIL
– we are interested in computing the optimal defender pa-
trolling strategy. The first question to ask is: why does the
issue of information leakage matter and how does it affect the
computation of the optimal defender strategy? To answer this
question we employ a concrete example.

Consider a zero-sum security game with 4 targets and 2 re-
sources. The profiles of reward ri [cost ci] is ~r = (1, 1, 2, 2)
[~c = (−2,−2,−1,−1)], where the coordinates are indexed
by target ids. If there is no information leakage, it is easy to
see that the optimal marginal coverage is ~x = ( 2

3 ,
2
3 ,

1
3 ,

1
3 ).

The attacker will attack an arbitrary target, resulting in a de-
fender utility of 0. Now, let us consider a simple case of infor-
mation leakage. Assume the attacker observes whether target
1 is protected or not in any instantiation of the mixed strategy,
i.e., p1 = 1. As we will argue, how the marginal probability
~x is implemented would matter now. One way to implement
~x is to protect target {1, 2} with probability 2

3 and protect
{3, 4} with probability 1

3 . However, this implementation is
“fragile" in the presence of the above information leakage. In
particular, if the attacker observes that target 1 is protected
(which occurs with probability 2

3 ), he infers that the defender
is protecting target {1, 2} and will attack 3 or 4, resulting in
a defender utility of −1; if target 1 is not protected, the at-
tacker will just attack, resulting in a defender utility of −2.
Therefore, the defender gets expected utility − 4

3 .
Now consider another way to implement the same marginal

~x by the following mixed strategy:
{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
10/27 4/27 4/27 4/27 4/27 1/27

If the attacker observes that target 1 is protected (which
occurs with probability 2

3 ), then he infers that target 2 is pro-

tected with probability
10
27

10
27 + 4

27 + 4
27

= 5
9 , and target 3, 4 are

both protected with probability 2
9 . Some calculation shows

that the attacker will have the same utility 1
3 on target 2, 3, 4

and thus will choose an arbitrary one to attack, resulting in
a defender utility of − 1

3 . On the other hand, if target 1 is
observed to be unprotected, the defender gets utility −2. In
expectation, the defender gets utility 2

3 × (− 1
3 )+ 1

3 × (−2) =

− 8
9 .
As seen above, though implementing the same marginals,

the latter mixed strategy achieves better defender utility than
the former one in the presence of information leakage. How-
ever, is it optimal? It turns out that the following mixed strat-
egy achieves an even better defender utility of− 1

3 , which can
be proved to be optimal: protect {1, 2} with probability 5

9 ,
{1, 3} with probability 2

9 and {1, 4} with probability 2
9 .

This example shows that compact representation by
marginal coverage probabilities is not sufficient for com-
puting the optimal defending strategy assuming information
leakage. This naturally raises new computational challenges:



how can we formulate the defender’s optimization problem
and compute the optimal solution? Is there still a compact
formulation or is it necessary to enumerate all the exponen-
tially many pure strategies? What is the computational com-
plexity of this problem? We answer these questions in the
next section.

3 Computing Optimal Defender Strategy
We will focus on the derivation of the PRIL model. The for-
mulation for the ADIL model is provided at the end of this
section since it admits a similar derivation. Fixing the de-
fender’s mixed strategy, let ti (¬ti) denote the event that tar-
get i is protected (unprotected). For the PRIL model, the
defender’s utility equals

DefU = p0u+
∑n
i=1 pi(ui + vi)

where u = minj [rj Pr(tj) + cj Pr(¬tj)] is the defender’s
utility when there is no information leakage; and

ui = Pr(ti)×minj [rj Pr(tj |ti) + cj Pr(¬tj |ti)]
= minj [rj Pr(tj , ti) + cj Pr(¬tj , ti)]

is the defender’s utility multiplied by probability Pr(ti) when
target i leaks out its protection status as ti (i.e., protected);
vi = minj [rj Pr(tj ,¬ti) + cj Pr(¬tj ,¬ti)] is the defender
utility multiplied by Pr(¬ti) when i leaks out status ¬ti.

Define variables xij = Pr(ti, tj) (setting xii =
Pr(ti)). Using the fact that Pr(ti,¬tj) = xii − xij and
Pr(¬ti,¬tj) = 1 − xii − xjj + xij , the following linear
program computes the defender’s optimal patrolling strategy:

maximize p0u+
∑n
i=1 pi(ui + vi)

subject to u ≤ rjxjj + cj(1− xjj), for j ∈ [n].
ui ≤ rjxij + cj(xii − xij), for i, j ∈ [n].
vi ≤ rj(xjj − xij)+

cj(1− xii − xjj + xij), for i, j ∈ [n].
xij =

∑
s:i,j∈s θs, for i, j ∈ [n].∑

s θs = 1
θs ≥ 0, for s ∈ S.

(2)
where u, ui, vi, xij , θs are variables; s denotes a pure strat-

egy and the sum condition “s : i, j ∈ s" means summing over
all the pure strategies that protect both targets i and j (or i if
i = j); θs denotes the probability of choosing strategy s.

Unfortunately, LP (2) suffers from an exponential explo-
sion of variables, specifically, θs. From the sake of compu-
tational efficiency, one natural idea is to find a compact rep-
resentation of the defender’s mixed strategy. As suggested
by LP (2), the variables xij , indicating the probability that
targets i, j are both protected, are sufficient to describe the
defender’s objective and the attacker’s incentive constraints.

Let us call variables xij the pair-wise marginals and think
of them as a matrix X ∈ Rn×n, i.e., the i’th row and j’th
column of X is xij (not to be confused with the marginals
~x). We say X is feasible if there exists a mixed strategy, i.e.,
a distribution over pure strategies, that achieves the pair-wise
marginals X . Clearly, not all X ∈ Rn×n are feasible. Let
P(n, k) ∈ Rn×n be the set of all feasible X . The following
lemma shows a structural property of P(n, k).

Lemma 1. P(n, k) is a polytope and any X ∈ P(n, k) is
a symmetric positive semi-definite (PSD) matrix.

Therefore, we would be able to compute the optimal strat-
egy efficiently in polynomial time if the constraints determin-
ing the polytope P(n, k) were only polynomially many – re-
call that this is the approach we took with LP (1) in the case
of no information leakage. However, perhaps surprisingly,
the problem turns out to be much harder in the presence of
leakage.

Lemma 2. Optimizing over P(n, k) is NP-hard.
We prove Lemma 2 by reduction from the k-densest sub-

graph problem. This suggests that there is no hope of find-
ing polynomially many linear constraints which determine
P(n, k), assuming P 6= NP . In fact, P(n, k) is closely re-
lated to a fundamental geometric object, known as the corre-
lation polytope, which has applications in quantum mechan-
ics, statistics, machine learning and combinatorial problems.
We refer the reader to [Pitowsky, 1991] for more information.

Another approach for computing the optimal defender
strategy is to use the technique of column generation, which
is a master/slave decomposition of an optimization problem.
The essential part of this approach is the slave problem, which
is also called the “defender best response oracle" or “defender
oracle" for short [Jain et al., 2010]. We defer the description
of the defender oracle to Section 3.1, while only mention that
Lemma 2 also implies the follows.

Lemma 3. The defender oracle is NP-hard.
By now, we have shown the evidence of the difficulty of

solving LP (2) using either marginals or the technique of col-
umn generation. For the ADIL model, a similar argument
yields that the following LP formulation computes the opti-
mal defender strategy. It is easy to check that it shares the
same marginals and defender oracle as the PRIL model.

maximize p0u+ (1− p0)w
subject to u ≤ rjxjj + cj(1− xjj), for j ∈ [n].

ui ≤ rjxij + cj(xii − xij), for i, j ∈ [n].
vi ≤ rj(xjj − xij)+

cj(1− xii − xjj + xij), for i, j ∈ [n].
w ≤ ui + vi, for i ∈ [n].
X ∈ P(n, k)

(3)
where variable w is the defender’s expected utility when an

adversarially chosen target is observed by the attacker.

3.1 Leakage from Small Support of Targets
Despite the hardness results for the general case, we show
that the defender oracle admits a polynomial time algorithm
if information only leaks from a small subset of targets; we
call this set the leakage support. By re-ordering the targets,
we may assume without loss of generality that only the firstm
targets, denoted by set [m], could possibly leak information in
both the PRIL and ADIL model. For PRIL model, this means
pi = 0 for any i > m and for ADIL model, this means the
attacker only chooses a target in [m] for surveillance.

Why does this make the problem tractable? Intuitively the
reason is as follows: when information leaks from a small set
of targets, we only need to consider the correlations between



these leaking targets and others, which is a much smaller set
of variables than in LP (2) or (3). Restricted to a leakage sup-
port of size m, the defender oracle is the following problem.
Let A be a symmetric matrix of the following block form

A :

[
Amm Amm′
Am′m Am′m′

]
(4)

where m′ = n−m; Amm′ ∈ Rm×m′ for any integers m,m′
is a sub-matrix and, crucially, Am′m′ is a diagonal matrix.
Given A of form (4), find a pure strategy s such that sTAs is
maximized. That is, the defender oracle identifies the size-k
principle submatrix with maximum entry sum for any A of
form (4). Note that m = n in general case.

Before detailing the algorithm, we first describe some
notation. Let A[i, :] be the i’th row of matrix A and
diag(A) be the vector consisting of the diagonal entries of
A. For any subset C1, C2 of [n], let AC1,C2 be the sub-
matrix of A consisting of rows in C1 and columns in C2,
and sum(AC1,C2

) =
∑
i∈C1,j∈C2

Aij be the entry sum of
AC1,C2

. The following lemma shows that Algorithm 1 solves
the defender oracle. Our main insight is that for a pure strat-
egy s to be optimal, once the set C = s ∩ [m] is decided, its
complement C̄ = s \C can be explicitly identified, therefore
we can simply brute-force search to find the best C ⊆ [m].
Lemma 4 provides the algorithm guarantee, which then yields
the polynomial solvability for the case of small m (Theo-
rem 1).

Lemma 4. Let m be the size of the leakage support. Algo-
rithm 1 solves the defender oracle and runs in poly(n, k, 2m)
time. In particular, the defender oracle admits a poly(n, k)
time algorithm if m is a constant.

Algorithm 1 Defender Oracle
Input: matrix A of form (4).
Output: a pure strategy s.

1: for all C ⊆ [m] constrained by |C| ≤ k do
2: ~v = 2

∑
i∈C A[i, :] + diag(A);

3: Choose the largest k−|C| values from {vm+1, ..., vn},
and denote the set of their indices as C̄;

4: Set valC = sum(AC,C) + sum(vC̄);
5: end for
6: return the pure strategy s = C∪C̄ with maximum valC .

Theorem 1. (Polynomial Solvability) There is an efficient
poly(n, k) time algorithm which computes the optimal de-
fender strategy, if m is a constant.

3.2 An Approximation Algorithm
We now consider approximation algorithms. Recall that in-
formation leakage is due to the correlation between targets,
thus one natural way to minimize leakage is to allocate each
resource independently with certain distributions. Naturally,
the normalized marginal ~x∗/k becomes a choice, where ~x∗
is the solution to LP (1). To avoid the waste of using multi-
ple resources to protect the same target, we sample without
replacement. Formally, the independent sampling without re-
placement algorithm proceeds as follows: 1. compute the

optimal solution ~x∗ of LP (1); 2. independently sample k ele-
ments from [n] without replacement using distribution ~x∗/k.

Zero-sum games exhibit negative utilities, therefore an ap-
proximation ratio in terms of utility is not meaningful. To
analyze the performance of this algorithm we shift all the pay-
offs by a constant, −mini ci, and get an equivalent constant-
sum game with all non-negative payoffs. Theorem 2 shows
that this algorithm is “almost” a (1 − 1

e ) − approximation
to the optimal solution in the PRIL model, assuming infor-
mation leaks out from any target i with equal probability
pi = 1−p0

n . We note that proving a general approximation
ratio for any ~p ∈ ∆n+1 turns out to be very challenging, intu-
itively because the optimal strategy adjusts according to dif-
ferent ~p while the sampling algorithm does not depend on ~p.
However, experiments empirically show that the ratio does
not vary much for different ~p on average (see Section 5).

Theorem 2. Assume each target leaks information with
equal probability pi = 1−p0

n . Let c̄i ≥ 0 be the shifted cost
and UindepSample be the defender utility achieved by inde-
pendent sampling without replacement. Then we have:

UindepSample ≥ ( k−2
k−1
− 1

e
)
[
Opt(LP 2)− (1− p0)

∑n
i=1 c̄i
n

]
.

4 Sampling Algorithms
From Carathéodory’s theorem we know that, given any
marginal coverage ~x, there are many different mixed strate-
gies achieving the same marginal ~x (e.g., see examples in
Section 2). Another way to handle information leakage is
to generate the optimal marginal coverage ~x∗, computed by
LP (1), with low correlation between targets. Such a “good"
mixed strategy, e.g., the mixed strategy with maximum en-
tropy, is usually supported on a pure strategy set of expo-
nential size. In this section, we propose two sampling algo-
rithms, which efficiently generate a mixed strategy with ex-
ponentially large support and are guaranteed to achieve any
given marginal ~x.

4.1 Max-Entropy Sampling
Perhaps the most natural choice to achieve low correlation is
the distribution with maximum entropy restricted to achieving
the marginal ~x. This distribution can be formulated as the
solution of Convex Program (CP) (5).

maximize −
∑
s∈S θs ln(θs)

subject to
∑
s: i∈s θs = xi, for i ∈ [n].∑
s∈S θs = 1

θs ≥ 0, for s ∈ S.
(5)

However, naive approaches for solving CP (5) require expo-
nential time since there are O(2n) variables. Interestingly, it
turns out that this can be resolved.

Theorem 3. There is an efficient algorithm which runs in
poly(n, k) time and outputs a pure strategy s with probabil-
ity θ∗s for any pure strategy s ∈ S, where ~θ∗ is the optimal
solution to Convex Program (5) (within machine precision1).

1Computers cannot solve general convex programs exactly due
to possible irrational solutions. Therefore, our algorithm is optimal
within machine precision, and we simply call it "solved".



The proof of Theorem 3 relies on Lemmas 5 and 6.
Lemma 5 presents a compact representation of ~θ∗ based on
the KKT conditions of CP (5) and its dual – the unconstrained
Convex Program (6):

minimize f(~β) =
∑n
i=1 βixi + ln(

∑
s e
−βs), (6)

where variables ~β ∈ Rn and e−βs = Πi∈se
−βi .

Lemma 5. Let ~β∗ ∈ Rn be the optimal solution to CP (6)
and set αi = e−β

∗
i for any i ∈ [n], then the optimal solution

of CP (5) satisfies
θ∗s =

αs∑
s αs

, (7)

where αs = Πi∈sαi for any pure strategy s ∈ S.
Furthermore, ~β∗ can be computed in poly(n, k) time.

We note that the characterization of θ∗s in Lemma 5 is not
new (e.g., see [Singh and Vishnoi, 2013]), and we state it for
completeness. Our contribution lies at proving that CP (6)
can be computed efficiently in poly(n, k) time in our secu-
rity game settings despite the summation

∑
s e
−βs of O(2k)

terms. In particular, f(~β) is a convex function of n vari-
ables. If the function value and gradient can be computed
in polynomial time, then so is the optimal solution ~β∗. The
key idea to evaluate f(~β) is to use Dynamic Programming
(DP) to evaluate the sum

∑
s e
−βs inside the expression of

f(~β) and then do the other calculations explicitly.2 Notice
that the set of all pure strategies consists of all the subsets of
[n] of cardinality k. Let αi = e−βi and αs = Πi∈sαi. We
then build the following DP table T (i, j) =

∑
s:s⊆[j],|s|=i αs,

which sums over all the subsets of [j] of cardinality i. Our
goal is to compute T (k, n) =

∑
s e
−βs . We first initialize

T (1, j) =
∑j
i=1 αi and T (j, j) = Πj

i=1αi for any j. Then
using the following update rule, we can build the DP table
and compute T (k, n) in poly(k, n) time.

T (i, j) = T (i, j − 1) + αjT (i− 1, j − 1).

Our next lemma considers how to efficiently sample a pure
strategy s from an exponentially large support with probabil-
ity θ∗s represented by Equation (7).

Lemma 6. Given any input ~α ∈ [0,∞)n, Algorithm 2 runs
in poly(k, n) time and correctly samples a pure strategy s
with probability θs = αs∑

s αs
, where αs = Πi∈sαi.

We notice that approximately uniform sampling from com-
binatorial structures has been studied in theoretical computer
science [Jerrum et al., 1986]. Algorithm 2 uses a variant of
the algorithm in [Jerrum et al., 1986], and extends their re-
sults to the weighted (by θ∗s ) and exact case.

4.2 Uniform Comb Sampling
[Tsai et al., 2010] presented the Comb Sampling algorithm,
which randomly samples a pure strategy and achieves a given
marginal in expectation. The algorithm can be elegantly de-
scribed as follows (also see Figure 1): thinking of k resources

2∇f(~β) can be computed in a similar fashion.

Algorithm 2 Max-Entropy Sampling
Input: : ~α ∈ [0,∞)n, k.
Output: : a pure strategy s with |s| = k.

1: Initialize: s = ∅;
2: Compute the DP table T (i, j) =

∑
s:s⊆[j],|s|=i αs for

any i, j satisfying i ≤ k, j ≤ n and i ≤ j;
3: Set i = k, j = n;
4: while i>0 do
5: Independently add j to s with probability

p =
αjT (i− 1, j − 1)

T (i, j)
;

6: if j added to s then
7: i = i− 1;
8: end if
9: j = j − 1;

10: end while
11: return s.

as k buckets with height 1 each, we then put each target, the
height of which equals precisely its marginal probability, one
by one into the buckets. If one bucket gets full when fill-
ing in a certain target, we move the “rest" of that target to
a new empty bucket. Continue this until all the targets are
filled in, at which time we know that k buckets are also full.
The algorithm then takes a horizontal line with a uniformly
randomly chosen height from the interval [0, 1], and the k
targets intersecting the horizontal line constitute the sampled
pure strategy. As easily observed, Comb Sampling achieves
the marginal coverage in expectation [Tsai et al., 2010].

. . .  

. . .  

1

. . . 
 

. . . 
 

sample 

x
2 

x
1 

x3 
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x
n 

1 2 k 

Figure 1: Comb Sampling

However, is
Comb Sampling
robust against in-
formation leakage?
We first observe
that Comb Sampling
generates a mixed
strategy with support
size at most n + 1,
which precisely
matches the upper
bound of Carathéodory’s theorem.

Proposition 1. Comb Sampling generates a mixed strategy
which mixes over at most n+ 1 pure strategies.

Proposition 1 suggests that the mixed strategy sampled by
Comb Sampling might be very easy to explore. Therefore
we propose a variant of the Comb Sampling algorithm. Our
key observation is that Comb Sampling achieves the marginal
coverage regardless of the order of the targets. That is, the
marginal is still obtained if we randomly shuffle the order of
the targets each time before sampling, and then fill in them
one by one. Therefore, we propose the following Uniform
Comb Sampling (UniCS) algorithm:

1. Order the n targets uniformly at random;
2. fill the targets into the buckets based on the random or-
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Figure 2: Comparisons on real LAX airport data.

der, and then apply Comb Sampling.

Since the order is chosen randomly each time, the mixed strat-
egy implemented by UniCS mixes over exponentially many
pure strategies, and achieves the marginal.

Proposition 2. Uniform Comb Sampling (UniCS) achieves
the marginal coverage probability.

5 Experiments
Traditional algorithms for computing Strong Stackelberg
Equilibrium (SSE) only optimize the coverage probability at
each target, without considering their correlations. In this sec-
tion, we experimentally study how traditional algorithms and
our new algorithms perform in presence of probabilistic or
adversarial information leakage. In particular, we compare
the following five algorithms.

• Traditional: optimal marginal + comb sampling, the tra-
ditional way to solve security games with no scheduling
constraints [Kiekintveld et al., 2009; Tsai et al., 2010];

• OPT: the optimal algorithm for PRIL or ADIL model
(Section 3.1) using column generation with the defender
oracle in Algorithm 1;

• indepSample: independent sampling without replace-
ment (Section 3.2);

• MaxEntro: max entropy sampling (Algorithm 2);

• UniCS: uniform comb sampling (Section 4.2).

All algorithms are tested on the following two sets of data:
Los Angeles International Airport (LAX) Checkpoint

Data from [Pita et al., 2008]. This problem was modeled as
a Bayesian Stackelberg game with multiple adversary types
in [Pita et al., 2008]. To be consistent with our model, we
instead only consider the game against one particular type of
adversary – the terrorist-type adversary, which is the main
concern of the airport. The defender’s rewards and costs are
obtained from [Pita et al., 2008] and the game is assumed to
be zero-sum in our experiments.

Simulated Game Payoffs. A systematic examination is
conducted with simulated payoffs. All generated games have
20 targets and 10 resources. The reward ri (cost ci) of
each target i is chosen uniformly at random from the inter-
val [0, 10] ([−10, 0]).
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Figure 3: Comparisons in Simulated Games.

In terms of running time, all the algorithms run efficiently
as expected (terminate within seconds using MATLAB) ex-
cept the optimal algorithm OPT, which takes about 3 min-
utes per simulated game on average. Therefore we mainly
compare defender utilities. All the comparisons are listed in
Figure 2 (for LAX data) and Figure 3 (for simulated data).
The line “Basis" is the utility with no leakage and is listed
as a basis for utility comparisons. Y-axis is the defender’s
utility – the higher, the better. We examine the effect of the
total probability of leakage (i.e., the x-axis 1 − p0) on the
defender’s utility and consider 1 − p0 = 0, 0.1, ..., 1. For
probabilistic information leakage, we randomly generate the
probabilities that each target leaks information with the con-
straint

∑n
i=1 pi = 1− p0. For the case of leakage from small

support (for simulated payoffs only), we randomly choose a
support of size 5. All the utilities are averaged over 50 ran-
dom games except the ADIL model for LAX data. For the
simulated payoffs, we also consider a special case of uniform
leakage probability of each target (see Theorem 2). The fol-
lowing observations follow from the figures.

Observation 1. The gap between the line “Basis" and
“OPT" shows that information leakage from even one target
does cause dramatic utility decrease to the defender. More-
over, adversarial leakage causes more utility loss than prob-
abilistic leakage; leakage from a restricted small support of
targets causes less utility decrease than from full support.

Observation 2. The gap between the line “OPT" and “Tra-
ditional" demonstrates the necessity of handling information
leakage. In particular, the relative loss u(OPT )− u(Basis)
is approximately half of the relative loss u(Traditional) −
u(Basis) in Figure 3 (and 65% in Figure 2). Furthermore,
if leakage is from a small support (left-up panel in Figure 3),
OPT is close to Basis.



Observation 3. MaxEntro and UniCS have almost the
same performance (overlapping in all these figures). Both al-
gorithms are almost optimal when the leakage support is the
full set [n] (they almost overlap with OPT in the right-up and
left-down panels in Figure 3).

Observation 4. An interesting observation is that Indep-
Sample outperforms Traditional at 1− p0 = 0.3 or 0.4 in all
of these figures, which is around 1

e ≈ 0.37. Furthermore, the
gap between IndepSample and OPT does not change much at
different 1− p0.

Observation 5. From a practical view, if the leakage is
from a small support, OPT is preferred as it admits efficient
algorithms (Section 3.1); if the leakage is from a large sup-
port, MaxEntropy and UniCS are preferred as they can be
computed efficiently and are close to optimality. From a the-
oretical perspective, we note that the intriguing performance
of IndepSample, MaxEntropy and UniCS raises questions for
future work.

6 Conclusions and Discussions
In this paper, we considered partial information leakage in
Stackelberg security games. We focused on the one-target
leakage case, but do emphasize that our models, hardness re-
sults and algorithms can be easily generalized. Our results
raise several new research questions, e.g., is it possible to de-
rive a theoretical approximation guarantee for MaxEntro and
UniCS, and can we develop efficient algorithms to handle in-
formation leakage in other security game settings? More gen-
erally, it is an interesting problem to study analogous issues
of information leakage in other settings beyond security, e.g.,
auctions or general games.
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