Algorithms and Incentives in Machine Learning

Princeton CSML Seminar and ECE Korhammer Seminar Series

Haifeng Xu

Department of Computer Science

and Data Science Institute

University of Chicago

A classic paradigm of machine learning...

 \checkmark

- Classify loan applicants
- Estimate insurance rate for applicants

- ✓ Classify loan applicants
 - Estimate insurance rate for applicants
- ✓ Learning to recommend contents

Input/Data $X \rightarrow X'$

- Classify loan applicants \checkmark
- \checkmark Estimate insurance rate for applicants
- ✓ Learning to recommend contents
- ✓ Spam filters

Outline

Outline

Joint work with

A timely realworld problem Jibang Wu Yifan Guo Weijie Su (UChicago, CS) (USTC, Math) (UPenn, Wharton)

Vignette 1

Elicit truthful information to improve statistical estimation

A Concern of ML Venues – Massive Sizes

Lack of Qualified Reviewers \Rightarrow Large Noise

>70% of reviewers in NeurIPS 2016 are PhD students [Shah 2022] >Nowadays, even many undergrad reviewers

X

(

Read 23 replies

This work tries to develop a workable solution

<u>Core idea</u>: authors' own information about their papers is another source of data for improving paper score estimation

Why?

Authors often have good knowledge about their own papers

\mathbb{X}

Collecting more data for a talk (thx!!!) In CS conference peer review, did you see reviewers who knew about your submissions even better than you do (in an overall sense)?

However, Challenges Remain

Challenge 1: what information to elicit from authors?

- Cannot be too fine-grained
- >Cannot be too coarse neither (then not that useful)

<u>A good compromise</u>: authors' ranking of their papers

Challenge 2: how to guarantee authors will tell truthful information?

However, Challenges Remain

Challenge 1: what information to elicit from authors?

Cannot be too fine-grained

Cannot be too coarse neither (then not that useful)

<u>A good compromise</u>: authors' ranking of their papers

Challenge 2: how to guarantee authors will tell truthful information?

Estimation method has to be designed so that information elicitation is aligned with authors' incentives

It Can Work in Idealized Situations! [Su, NeurIPS'21]

Formal Model

≻Ground-truth score: $\mathbf{R} = (R_1, \cdots, R_n)$

> Review score: $y_i = R_i + z_i$ (noise)

≻Designer's task:

- 1. Ask for owner's ranking π of her items
- 2. Use π and $\{y_i\}_i$ to compute refined scores $\widehat{R}(\pi, \{y_i\}_i)$

> Owner derives utility $U(\hat{R}_1, \dots, \hat{R}_n)$ from output scores

The design of \widehat{R} function matters – it may be gamed!

A Simple and Elegant Solution

A Simple and Elegant Solution $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$ Isotonic regression $\begin{array}{c} \hat{R} = \ \arg \min \\ \mathbf{r} \\ & &$

Thm [Su,'21]: Suppose owner's utility function $U(\widehat{R})$ is convex, then isotonic mechanism is truthful.

>Formally, suppose π^* is true ranking of R_i 's, then $\mathbb{E}_{\text{noisy } y} U\left(\widehat{R}(\pi^*, y)\right) \ge \mathbb{E}_{\text{noisy } y} U\left(\widehat{R}(\pi, y)\right), \quad \forall \pi$

A Simple and Elegant Solution owher item 1 item i item n $\hat{R} = \arg \min \|\mathbf{y} - \mathbf{r}\|^2$

Isotonic regression

Thm [Su,'21]: Suppose owner's utility function $U(\hat{R})$ is convex, then isotonic mechanism is truthful.

s.t. $r_{\pi(1)} \ge r_{\pi(2)} \ge \cdots \ge r_{\pi(n)}$

- Convex utility captures the high-riskhigh-reward nature of research
 - Empirically justified with ICLR'22 data

Address More Realistic Peer Review Setups

An Isotonic Mechanism for Overlapping Ownership. Jibang Wu, Haifeng Xu, Yifan Guo, Weijie Su

21

Address More Realistic Peer Review Setups

Main Question: Can we still elicit truthful information from owners to improve review score estimation?

Ans: Yes, though to some extent

An Isotonic Mechanism for Overlapping Ownership. Jibang Wu, Haifeng Xu, Yifan Guo, Weijie Su

Address More Realistic Peer Review Setups

Main Question: Can we still elicit truthful information from owners to improve review score estimation?

Ans: Yes, though to some extent

Our approaches have two steps:

Complete ownership (Statistics + mechanism design) Step 2

Partition general ownership into blocks of complete ownerships (algorithm design)

Step I: the Complete Ownership Situation

Model: the same, except all owners hold ranking information

Goal: elicit information from all owners to refine score estimation

Step I: the Complete Ownership Situation

Suppose we get ranking π_j from every owner *j*, what's the most natural way to calculate estimated score?

The Weighted Isotonic Mechanism

- 1. Elicit π_j from every *j*
- 2. Run isotonic regression to find $\widehat{R}^{(j)} = \text{Isotonic}(\pi_j, y)$
- 3. Output weighted combination $\widehat{\mathbf{R}} = \sum_{j} \alpha_{j} \widehat{\mathbf{R}}^{(j)}$

Step I: the Complete Ownership Situation

Theorem [WXGS'23]. Under weighted isotonic mechanism and convex utility, every owner reports truthful ranking is a Nash equilibrium (NE)

Moreover, this NE is payoff-dominant – everyone simultaneously achieves highest possible utility among all possible NEs.

- Strong evidence of truthful behaviors
- Generalizes truthful behavior in previous single-agent optimization [Su'21] to truthful behaviors in multi-agent strategic gaming
- Proof uses a new technique majorization

Ideally, we want to elicit ever *j*'s (partial) ranking π_j for all her own items, and design a way to aggregate them $\hat{R}(\pi_1, \dots, \pi_m; y)$

- > Design such a statistical estimation \widehat{R} seems quite challenging ...
- ➢ We resort to algorithmic approach use partition to create independence
 - 1. Partition ownership graph into blocks, each as a complete ownership
 - 2. Run previous truthful mechanism independently for each block

Any partition will lead to truthful equilibrium

Question is which partition gives the "best" score estimation?

- > Difficult to statistically quantify how good an estimation is
- ➤ However, intuitively, the larger a block is, the better

Any partition will lead to truthful equilibrium

29

Question is which partition gives the "best" score estimation?

- Difficult to statistically quantify how good an estimation is
- > Formally, suppose block sizes are l_1, l_2, \dots, l_k , partition wellness = $w(l_1) + w(l_2) + \dots + w(l_k)$ for some convex w

Any partition will lead to truthful equilibrium

Question is which partition gives the "best" score estimation?

- Difficult to statistically quantify how good an estimation is
- > Formally, suppose block sizes are l_1, l_2, \dots, l_k , partition wellness = $w(l_1) + w(l_2) + \dots + w(l_k)$ for some convex w
- > What is w ? Impossible to know... \rightarrow will resort to robust analysis

Partition Optimization

maximize_{l_1, l_2, \dots} [$w(l_1) + w(l_2) + \dots + w(l_k)$]

subject to each block has $\geq k$ owners (*k*-strongness)

Challenges

Have to solve this problem "blindly" without knowing w

Partition Optimization

maximize_{l_1, l_2, \dots} [?(l_1) + ?(l_2) + … + ?(l_k)]

subject to each block has $\geq k$ owners (*k*-strongness)

Challenges

- Have to solve this problem "blindly" without knowing w
- > Provably NP-hard even for w as simple as $w(l) = \max\{l 1, 0\}$

Partition Optimization

maximize_{l_1, l_2, \dots} [?(l_1) + ?(l_2) + … + ?(l_k)]

subject to each block has $\geq k$ owners (*k*-strongness)

Thm [WXGS'23]. A simple greedy algorithm outputs a partition that is simultaneously a $c(w) = \inf_{l \ge 2} \frac{w(l)}{l \cdot w'(l)}$ approximation for every convex w

→ When $w(l) = l^{\alpha} \rightarrow c(w) = 1/\alpha$, and this ratio is tight for every monomial

The algorithm simply greedily pick the largest next block

A potential criticism: partition gives up rankings for papers across partitions

> Indeed, but we show that any truthful mechanism has to be partition-based

There is fundamental tradeoff between incentive constraints vs statistic efficiency

Empirical Evaluation

- ICLR 2021–2023 dataset with review score y and authorship graph
- > Synthesized component: group-truth score, simulated as $\mathbf{R} = \mathbf{y} + \mathbf{z}$, $\mathbf{z} \sim \mathcal{N}(0, \sigma)$

Precision on acceptance (top 30%)

Outline

Joint work with

Ravi Sundaram (Northeastern, CS)

Anil Vullikanti (UVA, CS)

Fan Yao (UChicago, CS)

Vignette 2

PAC-Learning in strategic environments

Classification

Data points' features may be manipulated

Data points' features may be manipulated

Data points' features may be manipulated

Data points' features may be manipulated

> Each data point is an economic agent, represented by (x, y, r)

• $r \in \mathbb{R}$ capture the point's incentive of being classified as positive

> Each data point is an economic agent, represented by (x, y, r)

• $r \in \mathbb{R}$ capture the point's incentive of being classified as positive

> Each data point is an economic agent, represented by (x, y, r)

- $r \in \mathbb{R}$ capture the point's incentive of being classified as positive
- > Manipulating feature from x to z incurs cost c(x z)
 - *c* is an arbitrary semi-norm

44

> Each data point is an economic agent, represented by (x, y, r)

- $r \in \mathbb{R}$ capture the point's incentive of being classified as positive
- > Manipulating feature from x to z incurs cost c(x z)
 - c is an arbitrary semi-norm
- ➢ Given classifier $f: X → \{0, 1\}$, data point (x, y, r) will manipulate its feature to z that maximizes utility

$$\begin{array}{c} r \cdot \mathbb{I}(f(\mathbf{z}) = 1) - c(\mathbf{x} - \mathbf{z}) \\ reward from \\ classification outcome \\ cost \end{array}$$

> Each data point is an economic agent, represented by (x, y, r)

- $r \in \mathbb{R}$ capture the point's incentive of being classified as positive
- > Manipulating feature from x to z incurs cost c(x z)
 - c is an arbitrary semi-norm

7

➢ Given classifier $f: X → \{0, 1\}$, data point (x, y, r) will manipulate its feature to

$$\mathbf{z}^*(\mathbf{x}, r; f) = \arg \max_{\mathbf{z} \in X} \left[r \cdot \mathbb{I}(f(\mathbf{z}) = 1) - c(\mathbf{x} - \mathbf{z}) \right]$$

This is a game now!

46

General Strategic Classification

Input: *n* training data points $(x_1, y_1, r_1), \dots, (x_n, y_n, r_n) \sim D$ **Learning goal**: compute a classifier *f* that predicts well based only on the manipulated feature $z^*(x, r; f)$ during testing

$$\mathbf{z}^*(\mathbf{x},r;f) = \arg \max_{\mathbf{z}\in X} \left[r \cdot \mathbb{I}(f(\mathbf{z}) = 1) - c(\mathbf{x} - \mathbf{z}) \right]$$

Also called testing time attack

47

General Strategic Classification

Input: *n* training data points $(x_1, y_1, r_1), \dots, (x_n, y_n, r_n) \sim D$ **Learning goal**: compute a classifier *f* that predicts well based only on the manipulated feature $z^*(x, r; f)$ during testing

Some notably special cases

$$\checkmark r = 0 \rightarrow$$
 classic classification

- \checkmark $r = 1 \rightarrow$ strategic classification (cf. [Hardt et al.'16])
- ✓ r = -y → adversarial classification (cf. [Cullina et al.'18])

General Strategic Classification

Input: *n* training data points $(x_1, y_1, r_1), \dots, (x_n, y_n, r_n) \sim D$ **Learning goal**: compute a classifier *f* that predicts well based only on the manipulated feature $z^*(x, r; f)$ during testing

But will this general problem still be learnable?

Recall classic ML setup

 Learnability (sample complexity) of a hypothesis class is governed by its VC-dimension

... is governed by a variant, coined strategic VC-dimension (SVC)

... is governed by a variant, coined strategic VC-dimension (SVC)

Defined over the equilibrium of the classification outcome

... is governed by a variant, coined strategic VC-dimension (SVC)

Theorem. Any strategic classification instance is (PAC) learnable with sample complexity

$$n(\epsilon, \delta) = \Theta(\frac{SVC + \log(1/\delta)}{\epsilon^2})$$

where ϵ is accuracy loss and δ is the failure probability.

1. Unifies learnability of all previous special cases

- Seneralizes the fundamental theorem of classic PAC learning (r = 0)
- Recovers a few major learnability results in recent literature
 - Sample complexity of [Hardt et al.'16] follows from their SVC = 3
 - Learnability of adversarial classifier [Cullina et al.'18] follows by r = -y

... is governed by a variant, coined strategic VC-dimension (SVC)

Theorem. Any strategic classification instance is (PAC) learnable with sample complexity

$$n(\epsilon, \delta) = \Theta(\frac{SVC + \log(1/\delta)}{\epsilon^2})$$

where ϵ is accuracy loss and δ is the failure probability.

2. Implies learnability of new setups with heterogeneous data preferences

Classify the approval to different loan types

Instantiation to Linear Classification

Theorem. The SVC of *d*-dimensional linear classifiers is at most d + 1.

 \succ d + 1 is the VC of linear classifiers in classic setup

Learning strategic linear classifiers is no harder statistically

However, it is computationally harder

Theorem. Empirical risk minimization for strategic linear classification is NP-hard.

in both foundational models and pressing real-world problems

Thank You

Questions? haifengxu@uchicago.edu

