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A classic paradigm of machine learning…

Estimation !𝑦

Statistical estimation 
or machine learning

Input/Data 𝑋

or model parameter 𝜃
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A classic paradigm of machine learning…

Estimation !𝑦

Statistical estimation 
or machine learning

Input/Data 𝑋

or model parameter 𝜃

𝑋′

In many applications, learning outcomes affect data providers’ 
welfare à leading to strategically supplied data
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Estimation !𝑦

Statistical estimation 
or machine learning

Input/Data 𝑋

or model parameter 𝜃

𝑋′

ü Classify loan applicants

In many applications, learning outcomes affect data providers’ 
welfare à leading to strategically supplied data
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Estimation !𝑦

Statistical estimation 
or machine learning

Input/Data 𝑋

or model parameter 𝜃

𝑋′

ü Classify loan applicants

ü Estimate insurance rate for applicants

In many applications, learning outcomes affect data providers’ 
welfare à leading to strategically supplied data
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Estimation !𝑦

Statistical estimation 
or machine learning

Input/Data 𝑋

or model parameter 𝜃

𝑋′

ü Classify loan applicants

ü Estimate insurance rate for applicants

ü Learning to recommend contents 

In many applications, learning outcomes affect data providers’ 
welfare à leading to strategically supplied data
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Estimation !𝑦

Statistical estimation 
or machine learning

Input/Data 𝑋

or model parameter 𝜃

𝑋′

ü Classify loan applicants

ü Estimate insurance rate for applicants

ü Learning to recommend contents 

ü Spam filters

In many applications, learning outcomes affect data providers’ 
welfare à leading to strategically supplied data
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Estimation !𝑦

Statistical estimation 
or machine learning

Input/Data 𝑋

or model parameter 𝜃

𝑋′

ü Classify loan applicants

ü Estimate insurance rate for applicants

ü Learning to recommend contents 

ü Spam filters
ü …..

In many applications, learning outcomes affect data providers’ 
welfare à leading to strategically supplied data

This Talk
1. Demonstrate why interesting (practically and theoretically)
2. Solutions that blend learning + incentives + algorithms
3. Illustrate their tradeoff and complementarity



9

Outline

A timely real-
world problem

A well-studied 
classic model

Vignette 1 

Elicit truthful information to 
improve statistical estimation

Vignette 2 

PAC-Learning in strategic 
environments
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Outline

A timely real-
world problem

Vignette 1 

Elicit truthful information to 
improve statistical estimation

Joint work with

Yifan Guo
(USTC, Math)

Weijie Su
(UPenn, Wharton)

Jibang Wu
(UChicago, CS)
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A Concern of ML Venues – Massive Sizes
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Lack of Qualified Reviewers ⇒ Large Noise

Ø70% of reviewers in NeurIPS 2016 are PhD students [Shah 2022]

ØNowadays, even many undergrad reviewers
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This work tries to develop a workable solution

Core idea: authors’ own information about their papers is 
another source of data for improving paper score estimation

Why? 

Authors often have good knowledge about their own papers 
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However, Challenges Remain

ØCannot be too fine-grained
ØCannot be too coarse neither (then not that useful)

Challenge 1: what information to elicit from authors? 

A good compromise: authors’ ranking of their papers

Challenge 2: how to guarantee authors will tell truthful information? 

Smart strategic 
agents!
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However, Challenges Remain

ØCannot be too fine-grained
ØCannot be too coarse neither (then not that useful)

Challenge 1: what information to elicit from authors? 

Challenge 2: how to guarantee authors will tell truthful information? 

ØEstimation method has to be designed so that information 
elicitation is aligned with authors’ incentives

A good compromise: authors’ ranking of their papers
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It Can Work in Idealized Situations! [Su, NeurIPS’21]

…

item 𝑖item 1 item 𝑛

owner

…
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Formal Model

…

item 𝑖item 1 item 𝑛

owner

…

ØGround-truth score: 𝑹 = (𝑅!, ⋯ , 𝑅")
ØReview score: 𝑦# = 𝑅#+ 𝑧# (noise) 

ØDesigner’s task: 
1. Ask for owner’s ranking 𝜋 of her items 
2. Use 𝜋 and {𝑦!}! to compute refined scores (𝑹(𝜋, {𝑦!}!)

ØOwner derives utility 𝑈( +𝑅!, ⋯ , +𝑅") from output scores

The design of ,𝑹 function matters – it may be gamed! 
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A Simple and Elegant Solution

…

item 𝑖item 1 item 𝑛

owner

…

<latexit sha1_base64="ssryWJFIJLDXkSYO7ld3Y9BbIbY="></latexit>

R̂ = argmin
r

ky � rk2

s.t. r⇡(1) � r⇡(2) � · · · � r⇡(n)

Isotonic regression
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A Simple and Elegant Solution

…

item 𝑖item 1 item 𝑛

owner

…

Thm [Su,’21]: Suppose owner’s utility function 𝑈(,𝑹) is convex, 
then isotonic mechanism is truthful.   

ØFormally, suppose 𝜋∗ is true ranking of 𝑅# ’s, then
𝔼%&'() 𝒚𝑈 ,𝑹 𝜋∗, 𝒚 ≥ 𝔼%&'() 𝒚𝑈 ,𝑹 𝜋, 𝒚 , ∀ 𝜋

<latexit sha1_base64="ssryWJFIJLDXkSYO7ld3Y9BbIbY="></latexit>

R̂ = argmin
r

ky � rk2

s.t. r⇡(1) � r⇡(2) � · · · � r⇡(n)

Isotonic regression
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A Simple and Elegant Solution

…

item 𝑖item 1 item 𝑛

owner

…

Thm [Su,’21]: Suppose owner’s utility function 𝑈(,𝑹) is convex, 
then isotonic mechanism is truthful.   

ØConvex utility captures the high-risk-
high-reward nature of research
§ Empirically justified with ICLR’22 data

<latexit sha1_base64="ssryWJFIJLDXkSYO7ld3Y9BbIbY="></latexit>

R̂ = argmin
r

ky � rk2

s.t. r⇡(1) � r⇡(2) � · · · � r⇡(n)

Isotonic regression
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Address More Realistic Peer Review Setups

…

item 𝑖item 1 item 𝑛

owner

…

Our Work

An Isotonic Mechanism for Overlapping Ownership. Jibang Wu, Haifeng Xu, Yifan
Guo, Weijie Su
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Address More Realistic Peer Review Setups

Main Question: Can we still elicit truthful information from owners 
to improve review score estimation?

Ans: Yes, though to some extent

An Isotonic Mechanism for Overlapping Ownership. Jibang Wu, Haifeng Xu, Yifan
Guo, Weijie Su
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Address More Realistic Peer Review Setups

Our approaches have two steps:

Complete ownership

Step 1

Partition general ownership into 
blocks of complete ownerships(Statistics + mechanism design)

(algorithm design)

Step 2

Main Question: Can we still elicit truthful information from owners 
to improve review score estimation?

Ans: Yes, though to some extent
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Step 1: the Complete Ownership Situation

Model: the same, except all owners hold ranking information
Goal:   elicit information from all owners to refine score estimation

𝑦" 𝑦# 𝑦$

1 > 2 > 3: 𝜋! 𝜋+: 2 > 1 > 3
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Step 1: the Complete Ownership Situation

Suppose we get ranking 𝜋% from every owner 𝑗, what’s the most natural 
way to calculate estimated score? 

1 > 2 > 3: 𝜋! 𝜋+: 2 > 1 > 3

The Weighted Isotonic Mechanism
1. Elicit 𝜋, from every 𝑗
2. Run isotonic regression to find ,𝑹(,) = Isotonic(𝜋, , 𝒚)
3. Output weighted combination ,𝑹 = ∑, 𝛼, ,𝑹(,)

𝑦" 𝑦# 𝑦$

{𝛼%} can be arbitrary



26

Step 1: the Complete Ownership Situation
1 > 2 > 3: 𝜋! 𝜋+: 2 > 1 > 3

𝑦" 𝑦# 𝑦$

Theorem [WXGS’23]. Under weighted isotonic mechanism and convex 
utility, every owner reports truthful ranking is a Nash equilibrium (NE)   
Moreover, this NE is payoff-dominant – everyone simultaneously 
achieves highest possible utility among all possible NEs. 

Ø Strong evidence of truthful behaviors
Ø Generalizes truthful behavior in previous single-agent optimization [Su’21] 

to truthful behaviors in multi-agent strategic gaming
Ø Proof uses a new technique majorization

An Isotonic Mechanism for Overlapping Ownership. Jibang Wu, Haifeng Xu, Yifan
Guo, Weijie Su
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Step 2: Generalizing to Overlapping Ownership

Ideally, we want to elicit ever 𝑗’s (partial) ranking 𝜋% for all her own items, 
and design a way to aggregate them (𝑹(𝜋", ⋯ , 𝜋&; 𝒚)

Ø Design such a statistical estimation (𝑹 seems quite challenging … 
Ø We resort to algorithmic approach – use partition to create independence

1. Partition ownership graph into blocks, each as a complete ownership
2. Run previous truthful mechanism independently for each block 

An Isotonic Mechanism for Overlapping Ownership. Jibang Wu, Haifeng Xu, Yifan
Guo, Weijie Su
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Step 2: Generalizing to Overlapping Ownership

Question is which partition gives the “best” score estimation? 

Any partition will lead to truthful equilibrium 

Ø Difficult to statistically quantify how good an estimation is
Ø However, intuitively, the larger a block is, the better 

≻ ≻ ≻ ≻ ≻ ≻ ≻
better 
than

𝑤 𝑙 ≥ 𝑤 𝑙! + 𝑤(𝑙")If 𝑙 = 𝑙! + 𝑙",   then
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Step 2: Generalizing to Overlapping Ownership

Question is which partition gives the “best” score estimation? 

Any partition will lead to truthful equilibrium 

Ø Difficult to statistically quantify how good an estimation is
Ø However, intuitively, the larger a block is, the better 

≻ ≻ ≻ ≻ ≻ ≻ ≻
better 
than

𝑤 𝑙 ≥ 𝑤 𝑙! + 𝑤(𝑙")If 𝑙 = 𝑙! + 𝑙",   then

Formally, suppose block sizes are 𝑙", 𝑙#, ⋯ , 𝑙', 
partition wellness = 𝑤 𝑙" +𝑤 𝑙# +⋯+𝑤(𝑙') for some convex 𝑤
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Step 2: Generalizing to Overlapping Ownership

Question is which partition gives the “best” score estimation? 

Any partition will lead to truthful equilibrium 

Ø Difficult to statistically quantify how good an estimation is
Ø However, intuitively, the larger a block is, the better Formally, suppose block sizes are 𝑙", 𝑙#, ⋯ , 𝑙', 

partition wellness = 𝑤 𝑙" +𝑤 𝑙# +⋯+𝑤(𝑙') for some convex 𝑤

Ø What is 𝑤 ? Impossible to know… à will resort to robust analysis
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Step 2: Generalizing to Overlapping Ownership

Partition Optimization
maximize/!,/",⋯ 𝑤 𝑙! + 𝑤 𝑙+ +⋯+𝑤(𝑙2)

subject to each block has ≥ 𝑘 owners (𝑘-strongness)

Challenges
Ø Have to solve this problem "blindly” without knowing 𝑤
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Step 2: Generalizing to Overlapping Ownership

Partition Optimization
maximize/!,/",⋯ 𝑤 𝑙! + 𝑤 𝑙+ +⋯+𝑤(𝑙2)

subject to each block has ≥ 𝑘 owners (𝑘-strongness)

Challenges
Ø Have to solve this problem "blindly” without knowing 𝑤
Ø Provably NP-hard even for 𝑤 as simple as 𝑤(𝑙) = max{𝑙 − 1, 0}

? ? ?
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Step 2: Generalizing to Overlapping Ownership

Partition Optimization
maximize/!,/",⋯ 𝑤 𝑙! + 𝑤 𝑙+ +⋯+𝑤(𝑙2)

subject to each block has ≥ 𝑘 owners (𝑘-strongness)

? ? ?

Thm [WXGS’23]. A simple greedy algorithm outputs a partition that is 
simultaneously a 𝑐 𝑤 = inf

()#
*(()
(⋅ *.(()

approximation for every convex 𝑤

Ø When 𝑤 𝑙 = 𝑙/ → 𝑐 𝑤 = 1/𝛼, and this ratio is tight for every monomial

Ø The algorithm simply greedily pick the largest next block

An Isotonic Mechanism for Overlapping Ownership. Jibang Wu, Haifeng Xu, Yifan
Guo, Weijie Su
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Step 2: Generalizing to Overlapping Ownership

A potential criticism: partition gives up rankings for papers across partitions

Ø Indeed, but we show that any truthful mechanism has to be partition-based

?

There is fundamental tradeoff between 
incentive constraints vs statistic efficiency 
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Empirical Evaluation 
Ø ICLR 2021–2023 dataset with review score 𝒚 and authorship graph
Ø Synthesized component: group-truth score, simulated as 𝑹 = 𝒚 + 𝐳 , 𝐳~𝒩(0, 𝜎)

Precision on acceptance (top 30%)
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Outline

A timely real-
world problem

A well-studied 
classic model

Vignette 1 

Elicit truthful information to 
improve statistical estimation

Vignette 2 

PAC-Learning in strategic 
environments
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Outline

A well-studied 
classic model

Vignette 2 

PAC-Learning in strategic 
environments

Joint work with

Ravi Sundaram
(Northeastern, CS)

Anil Vullikanti
(UVA, CS)

Fan Yao
(UChicago, CS)
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Classification

Data points’ features may be manipulated

negative

positive
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Data points’ features may be manipulated

[Goodfellow et al.’15]
[Eykholt et al.’18]
[Cullina et al.’18]
……

Adversarial attack

negative

positive
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Data points’ features may be manipulated

Strategic manipulation
[Hardt et al.’16]
[Hu et al.’19]
[Ghalme et al.’21]
……

Adversarial attack

negative

positive
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Data points’ features may be manipulated

Adversarial attack Strategic manipulation

negative

positive

[SVXY, JMLR’23] 

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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A Unified Model of Strategic Classification

(𝒙, 𝑦, 𝑟)

Ø Each data point is an economic agent, represented by (𝒙, 𝑦, 𝑟)
• 𝑟 ∈ ℝ capture the point’s incentive of being classified as positive

negative

positive

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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A Unified Model of Strategic Classification

(𝒙, 𝑦, 𝑟)

Ø Each data point is an economic agent, represented by (𝒙, 𝑦, 𝑟)
• 𝑟 ∈ ℝ capture the point’s incentive of being classified as positive

𝑟 > 0à prefers positive

𝑟 < 0à prefers negative

positive

negative

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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A Unified Model of Strategic Classification

Ø Each data point is an economic agent, represented by (𝒙, 𝑦, 𝑟)
• 𝑟 ∈ ℝ capture the point’s incentive of being classified as positive

Ø Manipulating feature from 𝒙 to 𝒛 incurs cost 𝑐(𝒙 − 𝒛)
• 𝑐 is an arbitrary semi-norm

positive

negative

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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A Unified Model of Strategic Classification

Ø Each data point is an economic agent, represented by (𝒙, 𝑦, 𝑟)
• 𝑟 ∈ ℝ capture the point’s incentive of being classified as positive

Ø Manipulating feature from 𝒙 to 𝒛 incurs cost 𝑐(𝒙 − 𝒛)
• 𝑐 is an arbitrary semi-norm

Ø Given classifier 𝑓: 𝑋 → {0, 1}, data point (𝒙, 𝑦, 𝑟) will manipulate its 
feature to 𝒛 that maximizes utility

𝑟 ⋅ 𝕀 𝑓 𝒛 = 1 − 𝑐 𝒙 − 𝒛

reward from 
classification outcome

Manipulation
cost

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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A Unified Model of Strategic Classification

Ø Each data point is an economic agent, represented by (𝒙, 𝑦, 𝑟)
• 𝑟 ∈ ℝ capture the point’s incentive of being classified as positive

Ø Manipulating feature from 𝒙 to 𝒛 incurs cost 𝑐(𝒙 − 𝒛)
• 𝑐 is an arbitrary semi-norm

Ø Given classifier 𝑓: 𝑋 → {0, 1}, data point (𝒙, 𝑦, 𝑟) will manipulate its 
feature to 

𝑟 ⋅ 𝕀 𝑓 𝒛 = 1 − 𝑐 𝒙 − 𝒛𝒛∗ 𝒙, 𝑟; 𝑓 = argmax
𝒛∈5

[ ]

This is a game now!

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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A Unified Model of Strategic Classification

Ø Data point is represented as (𝒙, 𝑦, 𝑟)
• 𝑟 ∈ ℝ capture the point’s incentive of being classified as positive

Ø Manipulating feature from 𝒙 to 𝒛 incurs cost 𝑐(𝒙 − 𝒛)
• 𝑐 is an arbitrary semi-norm, known to all agents

Ø Given any classifier 𝑓: 𝑋 → {0, 1}, data point (𝒙, 𝑦, 𝑟) will strategically 
manipulate its feature to 

𝑟 ⋅ 𝕀 𝑓 𝒛 = 1 − 𝑐 𝒙 − 𝒛

General Strategic Classification
Input: 𝑛 training data points 𝒙!, 𝑦!, 𝑟! , ⋯ , 𝒙" , 𝑦" , 𝑟" ∼ 𝒟
Learning goal: compute a classifier 𝑓 that predicts well based 
only on the manipulated feature 𝒛∗ 𝒙, 𝑟; 𝑓 during testing

𝒛∗ 𝒙, 𝑟; 𝑓 = argmax
𝒛∈5

[ ]

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023

Also called testing time attack
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A Unified Model of Strategic Classification

General Strategic Classification
Input: 𝑛 training data points 𝒙!, 𝑦!, 𝑟! , ⋯ , 𝒙" , 𝑦" , 𝑟" ∼ 𝒟
Learning goal: compute a classifier 𝑓 that predicts well based 
only on the manipulated feature 𝒛∗ 𝒙, 𝑟; 𝑓 during testing

Some notably special cases
ü 𝑟 = 0 à classic classification
ü 𝑟 = 1 à strategic classification (cf. [Hardt et al.’16])
ü 𝑟 = −𝑦 à adversarial classification (cf. [Cullina et al.’18])  

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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A Unified Model of Strategic Classification

General Strategic Classification
Input: 𝑛 training data points 𝒙!, 𝑦!, 𝑟! , ⋯ , 𝒙" , 𝑦" , 𝑟" ∼ 𝒟
Learning goal: compute a classifier 𝑓 that predicts well based 
only on the manipulated feature 𝒛∗ 𝒙, 𝑟; 𝑓 during testing

But will this general problem still be learnable? ü

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023



50

Recall classic ML setup 
ü Learnability (sample complexity) of a hypothesis class is 

governed by its VC-dimension
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The Learnability of Strategic Classifiers

… is governed by a variant, coined strategic VC-dimension (SVC)
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The Learnability of Strategic Classifiers

… is governed by a variant, coined strategic VC-dimension (SVC)
Ø Defined over the equilibrium of the classification outcome

positive

negative

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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The Learnability of Strategic Classifiers

1. Unifies learnability of all previous special cases
Ø Generalizes the fundamental theorem of classic PAC learning (𝑟 = 0)
Ø Recovers a few major learnability results in recent literature

• Sample complexity of [Hardt et al.’16] follows from their 𝑆𝑉𝐶 = 3
• Learnability of adversarial classifier [Cullina et al.’18] follows by 𝑟 = −𝑦

Theorem. Any strategic classification instance is (PAC) learnable 
with sample complexity 

𝑛 𝜖, 𝛿 = Θ(
𝑆𝑉𝐶 + log(1/𝛿)

𝜖+ )

where 𝜖 is accuracy loss and 𝛿 is the failure probability. 

… is governed by a variant, coined strategic VC-dimension (SVC)

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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The Learnability of Strategic Classifiers

2. Implies learnability of new setups with heterogeneous data preferences

Theorem. Any strategic classification instance is (PAC) learnable 
with sample complexity 

𝑛 𝜖, 𝛿 = Θ(
𝑆𝑉𝐶 + log(1/𝛿)

𝜖+ )

where 𝜖 is accuracy loss and 𝛿 is the failure probability. 

… is governed by a variant, coined strategic VC-dimension (SVC)

Classify the approval to different loan types

30-Year 
Fixed

15-Year 
Fixed

V.S

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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Instantiation to Linear Classification

Theorem. The SVC of 𝑑-dimensional linear classifiers is at
most 𝑑 + 1.

Ø 𝑑 + 1 is the VC of linear classifiers in classic setup
Ø Learning strategic linear classifiers is no harder statistically

However, it is computationally harder

Theorem. Empirical risk minimization for strategic linear
classification is NP-hard.

PAC-Learning for Strategic Classification. Ravi Sundaram, Anil Vullikanti, 
Haifeng Xu, Fan Yao. Journal of Machine Learning Research, 2023
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Summary

Incentive

Algorithms

Machine 
Learning

in both foundational models and pressing real-world problems
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Vignette 1 

Elicit truthful information to 
improve statistical estimation

Vignette 2 

PAC-Learning in strategic 
environments

Learning to play 
against adversaries

Incentives in recommendation 
policy design

Strategic behaviors 
in online learning

Summary
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Questions?
haifengxu@uchicago.edu


