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Appendix
Model for Analysis of Diversity in Teams
We present here the proof of Theorem 3. First we restate the
theorem:

Theorem 3. When m → ∞, breaking ties in favor of the
strongest agent is the optimal tie-breaking rule for a diverse
team.

Proof. Let s be one of the agents. If we break ties in favor
of s, the probability of voting for the optimal choice will be
given by:
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(2)
It is clear that Equation 2 is maximized by choosing agent

s with the highest ps0. However, we still have to show that
it is better to break ties in favor of the strongest agent than
breaking ties randomly. That is, we have to show that Equa-
tion 2 is always higher than Equation 1.

Equation 2 differs from Equation 1 only on the
last term. Therefore, we have to show that the last
term of Equation 2 is smaller than the last term of
Equation 1. Let’s begin by rewriting the last term of
Equation 1 as: n−1
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This implies that n−1
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Therefore, for the last term of Equation 2 to be
smaller than the last term of Equation 1 we have
to show that: n−1
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It follows that this equation will be true if ps0 ≥
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As s is the strongest agent the previous inequality is al-

ways be true. This is because ps0

1−ps0
=

∑n
i=1,i 6=s

ps0
(1−ps0)

n−1 and
ps0
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≥ pi0

(1−pi0)
∀i 6= s. Therefore, it is always better to

break ties in favor of the strongest agent than breaking ties
randomly.

Now we present the proof of Theorem 4:

Theorem 4. The performance of a diverse team monoton-
ically increases with m, if U(aj) ≥ U(aj′) implies that
pij ≥ pij′ .

Proof. Let an event be the resulted choice set of actions of
these n agents. We denote by P (V ) the probability of occur-
rence of any event in V (hence, P (V ) =

∑
v∈V p(v)). We

call it a winning event if in the event the action chosen by
plurality is action 0 (including ties). We assume that for all
agents i, if U(aj) ≥ U(aj′), then pi,j ≥ pi,j′ .

We show by mathematical induction that we can divide
the probability of multiple suboptimal actions into a new ac-
tion and pbest(m + 1) ≥ pbest(m). Let λ be the number
of actions whose probability is being divided. The base case
holds trivially when λ = 0. That is, there is a new action, but
all agents have a 0 probability of voting for that new action.
In this case we have that pbest does not change, therefore
pbest(m+ 1) ≥ pbest(m).

Now assume that we divided the probability of λ actions
and it is true that pbest(m+1) ≥ pbest(m). We show that it is
also true for λ+1. Hence, let’s pick one more action to divide
the probability. Without loss of generality, assume it is action
adm

, for agent c, and its probability is being divided into
action adm+1. Therefore, p′c,dm

= pc,dm
−β and p′c,dm+1 =

pc,dm+1 + β, for 0 ≤ β ≤ pc,dm
. Let pafterbest (m + 1) be

the probability of voting for the best action after this new
division, and pbeforebest (m+ 1) the probability before this new
division. We show that pafterbest (m+ 1) ≥ pbeforebest (m+ 1).

Let Γ be the set of all events where all agents voted, except
for agent c (the order does not matter, so we can consider
agent c is the last one to post its vote). If γ ∈ Γ will be a
winning event no matter if agent c votes for adm

or adm+1,
then changing agent c’s pdf will not affect the probability
of these winning events. Hence, let Γ′ ⊂ Γ be the set of all
events that will become a winning event depending if agent
c does not vote for adm

or adm+1. Given that γ ∈ Γ′ already



happened, the probability of winning or losing is equal to
the probability of agent c not voting for adm or adm+1.

Now let’s divide Γ′ in two exclusive subsets: Γdm+1 ⊂ Γ′,
where for each γ ∈ Γdm+1 action adm+1 is in tie with action
a0, so if agent c does not vote for adm+1, γ will be a winning
event; Γdm

⊂ Γ′, where for each γ ∈ Γdm
action adm

is in
tie with action a0, so if agent c does not votes for adm

, γ
will be a winning event. We do not consider events where
both adm+1 and adm

are in tie with a0, as in that case the
probability of a winning event does not change (it is given
by 1− p′c,dm

− p′c,dm+1 = 1− pc,dm − pc,dm+1).
Note that for each γ ∈ Γdm+1, the probability of a win-

ning event equals 1−p′c,dm+1. Therefore, after changing the
pdf of agent c, for each γ ∈ Γdm+1, the probability of a win-
ing event decreases by β. Similarly, for each γ ∈ Γdm , the
probability of a winning event equals 1 − p′c,dm

. Therefore,
after changing the pdf of agent c, for each γ ∈ Γdm

, the
probability of a winning event increases by β.

Therefore, pafterbest (m + 1) ≥ pbeforebest (m + 1) if and only
if P (Γdm) ≥ P (Γdm+1). Note that ∀γ ∈ Γdm+1 there
are more agents that voted for adm+1 than for adm . Also,
∀γ ∈ Γdm

there are more agents that voted for adm
than

for adm+1. If, for all agents i, pi,dm
≥ pi,dm+1, we have

that P (Γdm) ≥ P (Γdm+1). Therefore, pafterbest (m + 1) ≥
pbeforebest (m + 1), so we still have that pbest(m + 1) ≥
pbest(m). Also note that for the next step of the induction
be valid, so that we can still divide the probability of one
more action, it is necessary that p′c,dm

≥ p′c,dm+1.

Experimental Analysis
Synthetic Experiments We show here more details about
the synthetic experiments. We use a uniform distribution
to generate all random numbers. When creating a pdf, we
rescale the values assigned randomly, so that the overall sum
of the pdf is equal to 1. In the experiments presented in Fig-
ure 1, we used teams of 4 agents. For each agent of the di-
verse team, pi,0 is chosen uniformly random between 0.6
and 0.7. The remaining is distributed randomly from 10% to
20% of the next best actions (the number of actions that will
receive a positive probability is also decided randomly). For
the uniform team, we make copies of the best agent (with
highest pi,0) of the diverse team, but distribute the remain-
ing probability randomly from 1% to 3% of the next best
actions. In the experiment shown in Figure 2 each agent had
a probability of playing the best action of 10%, and the re-
maining probability was randomly distributed over the 10%
next best actions.

Computer Go Experiments We used modified versions
of Fuego, called Fuego∆ and FuegoΘ in the Computer Go
experiments. Fuego is an implementation of the UCT Monte
Carlo Go algorithm, therefore it uses heuristics to simulate
games in order to evaluate board configurations. Fuego uses
mainly 5 heuristics during these simulations, and they are
executed in a hierarchical order. The original Fuego agent
follows the order <Atari Capture, Atari Defend, Lowlib,
Pattern> (The heuristic called Nakade is not enabled by de-
fault). Our variation called Fuego∆ follows the order<Atari

Agent 9x9 11x11 13x13 15x15
Fuego 48.1% 48.6% 46.1% 48 %
GnuGo 1.1% 1.1% 1.9% 1.9%
Pachi 25.7% 22.9% 25.8% 26.9%
MoGo 27.6% 26.4% 22.7% 22 %

Fuego∆ 45.7% 45.8% 42.2% 40.4%
FuegoΘ 45.5% 40.2% 39.2% 37.6%
Agent 17x17 19x19 21x21
Fuego 49.3% 46.9% 46.6%
GnuGo 4.5% 6.8% 6.1%
Pachi 23.5% 20.8% 11 %
MoGo 27.1% 30.1% 27.1%

Fuego∆ 43 % 44.5% 47.4%
FuegoΘ 41.8% 42.3% 43.6%

Table 2: Winning rates of each one of the agents

Team 9x9 11x11 13x13 15x15
Diverse 32.2% 30.8% 29.6% 29.4%
Uniform 48.1% 48.6% 46.1% 48.0%

Team 17x17 19x19 21x21
Diverse 31.5% 31.9% 30.3%
Uniform 49.3% 46.9% 46.6%

Table 3: Average winning rates of the individual team mem-
bers across different board sizes.
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Figure 6: Histograms of agents for different board sizes.

Defend, Atari Capture, Pattern, Nakade, Lowlib>, while
FuegoΘ follows the order <Atari Defend, Nakade, Pattern,
Atari Capture, Lowlib>. Also, Fuego∆ and FuegoΘ have
half of the memory available when compared with the orig-
inal Fuego.

In Table 2 we show the winning rates of each one of the
agents, as we increase the board size. In Table 3 we see the
average winning rates of the team members.

Analysis We can see some of the generated histograms in
Figure 6. We can see that a strong agent, like Fuego, has
most of its probability mass in the higher ranked actions,
while weaker agents, like GnuGo, has the mass of its pdf
distributed over a larger set of actions, creating a larger tail.
Moreover, the probability mass of GnuGo is spread over a
larger number of actions when we increase the size of the
board.


