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Abstract. The rapid increase in cybercrime, causing a reported annual economic
loss of $600 billion (Lewis, 2018), has prompted a critical need for effective cy-
ber defense. Strategic criminals conduct network reconnaissance prior to execut-
ing attacks to avoid detection and establish situational awareness via scanning
and fingerprinting tools. Cyber deception attempts to foil these reconnaissance
efforts by camouflaging network and system attributes to disguise valuable infor-
mation. Game-theoretic models can identify decisions about strategically deceiv-
ing attackers, subject to domain constraints. For effectively deploying an optimal
deceptive strategy, modeling the objectives and the abilities of the attackers, is a
key challenge. To address this challenge, we present Cyber Camouflage Games
(CCG), a general-sum game model that captures attackers which can be diversely
equipped and motivated. We show that computing the optimal defender strategy is
NP-hard even in the special case of unconstrained CCGs, and present an efficient
approximate solution for it. We further provide an MILP formulation accelerated
with cut-augmentation for the general constrained problem. Finally, we provide
experimental evidence that our solution methods are efficient and effective.
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1 Introduction

The ubiquity of Internet connectivity has spurred a significant increase in cybercrime.
Major cyber attacks such as recent data breaches at Equifax (Gutzmer, 2017), Ya-
hoo (Goel and Perlroth, 2016), as well as government agencies like the Office of Per-
sonnel Management (Peterson, 2015) are often executed by adept attackers conduct-
ing reconnaissance as the first stage for an effective cyber attack (Mandiant, 2013;
Joyce, 2016). Rather than attempting “brute force” exploits, scanning tools such as
NMap (Lyon, 2009), xProbe2 (Arkin and Yarochkin, 2003) and fingerprinting tech-
niques such as sinFP (Auffret, 2010) are used to identify vulnerabilities and develop
specific plans to infiltrate the network while minimizing the risk of detection.

To mitigate the reconnaissance abilities of attackers, deception techniques aim to
disguise valuable network information to create uncertainty. This can lead attackers to
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Fig. 1: The attacker scans virtual machines on the test-bed and the configuration observed via
NMAP can be set to differ from the true configuration that NMAP would show without our
deployed deception.

spend more time in reconnaissance activities (increasing the chances of detection), or
to attempt infiltration tactics that are less effective. Examples of such techniques in-
clude the use of honeypots or decoys (Ferguson-Walter et al, 2017), real systems using
deceptive defenses (De Gaspari et al, 2016), and obfuscated responses to fingerprint-
ing (Berrueta, 2003; Rahman et al, 2013). Canary (Thinkst, 2015) is an example of a
deception-based tool in commercial use, while CyberVAN (Chadha et al, 2016) is a
test-bed for simulating various deception algorithms. Fig. 1 shows a demonstration of
our model on CyberVAN.

There are two general factors to consider when deploying cyber deception tech-
niques. First, strategic use of deception is vital due to the significant costs and feasibil-
ity constraints that must be considered; e.g., deception via counter-fingerprinting tech-
niques like HoneyD, OSfuscate, and IPMorph typically degrades performance (Rahman
et al, 2013). In most deception methods, we must also consider the costs of deploying,
and maintaining deceptive strategies which may include both computational resources
and developer time.

Second, optimizing the effectiveness of deception depends on modeling the prefer-
ences and capabilities of the attacker. The attacker’s goals can greatly vary — they may
exactly conflict the defender’s, or they could be partially orthogonal. For instance, an
economically motivated attacker may find utility primarily in financial records whereas
the defender may consider losing national security data as a more critical loss. In many
cases, the preferences may be strongly governed by the available exploits. Despite this
diversity in real-world adversaries, previous game theoretic models for cyber decep-
tion assume zero-sum payoffs, implying directly conflicting attacker motives. Hence, to
eliminate this fundamental limitation, this paper considers general-sum payoffs in this
setting. Furthermore, for situations where there may be uncertainty in the defender’s
knowledge of attacker’s payoffs, this work serves as a vital stepping stone to model
such uncertainty (more details on related work in Sec. 1.1).

The main contributions of this paper are as follows. First, we present Cyber Cam-
ouflage Games — a general-sum game model that presents completely distinct com-
putational challenges and insights relative to the previous zero-sum models. Second,
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we prove that computing an optimal solution is NP-hard even for unconstrained CCG
and present a Fully Polynomial Time Approximation Scheme (FPTAS) for this case.
Third, for CCG with constraints, we present an MILP formulation to find an optimal
solution, harnessing polytopal strategy space for compactness and boosted with cut
augmentation. Finally, we experimentally evaluate our algorithms and show substantial
improvement in scalability and robustness.

1.1 Related work

The Cyber Deception Game (CDG) (Schlenker et al, 2018) is a game-theoretic decep-
tion model limited to zero-sum settings. It cannot model diversely modeled attackers and
only focuses on the challenge of deception being costly and partly infeasible but fails
to present the strategic challenge which exists regardless of top-end deception methods,
which our model highlights. Since a zero-sum model also implicitly implies perfectly
known payoffs which may not always be possible, eliminating this fundamental limita-
tion by considering general-sum payoffs as we do, can allow for a more holistic model
in the future that considers uncertainty when making decisions, as many security game
models previously have (Kiekintveld et al, 2011, 2013; Nguyen et al, 2014).

Other works in cyber defense (Alpcan and Başar, 2010; Laszka et al, 2015; Serra
et al, 2015; Schlenker et al, 2017) have adopted game theoretic models, including sev-
eral that aim to strategically deploy honeypots (Pıbil et al, 2012; Durkota et al, 2015).
However, these do not consider camouflaging the network as in our model. De Gaspari
et al (2016) provide a realistic systems architecture for active defense using the same
types of deception abilities we consider, but they do not address how to strategically op-
timize these tactics under practical constraints. Several use moving target defense that
mitigate attacker reconnaissance by using movement to adapt and randomize the attack
surface of a network or system (Albanese et al, 2014; MacFarland and Shue, 2015; Al-
banese et al, 2016; Achleitner et al, 2016), but this work typically does not model nor
optimize against a strategic adversary.

Despite being a Stackelberg game for a security domain, CCGs have a very distinct
structure in comparison with Stackelberg Security Games (SSG) (Tambe, 2011), since
the core defensive action of “masking” differs from “defending” targets in SSG in sev-
eral ways. First, security resources are limited in SSGs, while in CCG every target can
be masked. Second, covering a target in SSGs directly improves its security, whereas in
CCGs, the effectiveness of masking depends on how other machines are masked to alter
the attacker’s information state. Finally, SSGs typically focus on mixed strategies and
the Strong Stackelberg Equilibria (SSE), whereas CCGs are restricted to pure strategies
and therefore need the Weak Stackelberg Equilibrium (WSE) concept. Pita et al (2010)
present a robust approach for sub-optimal attackers that can be adapted for WSE com-
putation in normal-form Stackelberg games, but cannot be directly applied to CCGs due
to the exponential strategy space.

2 Cyber Camouflage Games

We refer to a network administrator as the “defender” and a cybercriminal as the “at-
tacker”. CCGs have the components explained as follows.
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Network Configurations. A network consists of a set of machines indexed inK :=
{1, . . . , |K|}. Each machine has a true configuration (TC) which is modeled as a tuple
of attributes such as [OS Linux, Webserver TomCat 8]. The TC should be a complete
description of the security relevant features of the machine, so machines with the same
TC are considered identical. Let I index the set of TCs present in the network. The true
state of the network (TSN) is defined by a vector n = (ni)i∈I where each ni denotes
the number of machines with TC i.

Using deception techniques, the defender can disguise each machine by obfuscating
some of its attributes. We say the defender “masks” each machine with an observed
configuration (OC); J denotes the set of all possible OCs. An OC similarly captures
the set of observed attributes, e.g., [OS Linux, Webserver Nginx 1.8], and is assumed to
be a complete representation of the information observed by the attacker so machines
with the same OC are indistinguishable to the attacker. This framework can directly
capture deception via obfuscation of system attributes, and is also applicable to other
deception methods such as honeypots by including a “honeypot” as a TC, and the
configurations it mimics as OCs.

Deception Strategies. The defender’s strategy can be encoded as an integer matrix
Φ, where Φij denotes the number of machines with TC i, masked with OC j. The
observed state of the network (OSN) is a vector that, unlike the TSN, is a function of
the strategy Φ. We denote an OSN as m(Φ) := (mj(Φ))j∈J , where mj(Φ) =

∑
i Φij

denotes the number of machines masked by OC j for strategy Φ.
Strategy feasibility and costs. Achieving deception is often costly and not arbitrar-

ily feasible. We represent feasibility constraints using a (0,1)-matrix Π , where Πij = 1
if TC i can be masked with OC j. Further, Ji denotes the set of OCs that can mask
TC i, i.e., Ji := {j ∈ J | Πij = 1}. Next, we assume that masking a TC i with an
OC j, has a cost of cij incurred by the defender — this is relevant only if Πij = 1, and
denotes the combined costs from deployment, maintenance, degraded functionality, etc.
The defender can afford the total cost of masking up to a budget B. Let F denote the
set of strategies that are feasible and affordable — described with linear constraints:

F =

Φ
∣∣∣∣∣∣
Φij ∈ Z≥0, Φij ≤ Πijni ∀(i, j) ∈ I × J ,∑
j∈J

Φij = ni ∀i ∈ I,
∑
i∈I

∑
j∈J

Φij cij ≤ B


The first and the third constraints follow from the definition of Φ and n resp. The second
inequality imposes the feasibility constraints, and the fourth, the budget constraint.

Defender and Attacker Valuations. If a machine with TC i is attacked, the attacker
gets a utility vai — his valuation of TC i. Collectively, these are represented as a vector
va. Analogously, we define valuations vd for the defender; a higher vdi reflects a smaller
loss when TC i is compromised.

Remark 1. It is natural to set va as positive values and vd as negative ones, however, the
problem remains equivalent (as explained momentarily) if the defender valuations (or,
independently, the attacker valuations as well) are simultaneously scaled by a positive
constant or shifted by a constant, so we do not specify positivity of any values.

Game Model. We model the interaction as a Stackelberg game to capture the se-
quence of decisions between the players. The defender is the leader who knows the TSN
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n and can deploy a deception strategy Φ. The attacker observes the OSN and chooses
an OC to attack. Since the attacker cannot distinguish machines with the same OC, this
is interpreted as an attack on a randomly selected machine with this OC.

We assume that the defender can only play a pure strategy since it is usually not
possible to change the network frequently, making the attacker’s view of the network
static. We assume the attacker perfectly knows the defender’s strategyΦ to compute best
response, as in CDG (Schlenker et al, 2018), which is justified via insider information
leakage or other means of surveillance.

When the defender plays a strategy Φ, her expected utility when OC j is attacked
(with mj(Φ) > 0), is given by

ud(Φ, j) = E[vdi |Φ, j] =
∑
i∈Ij

P(i|Φ, j)vdi =
∑
i∈I

Φij
mj(Φ)

vdi .

Here, E[·] denotes the expectation operator, and P, the probability of TC of the attacked
machine, conditioned on its OC j and the defender strategy Φ. Similarly, the attacker’s
expected utility in this case is ua(Φ, j) =

∑
i∈I

Φij

mj(Φ)
vai . These utility expressions

justify Remark 1.
An illustrative example of CCGs is as follows.
CCG Example: Consider a CCG with 6 machines, 4 TCs and 3 OCs. Let the TSN

be n = (2, 2, 1, 1). Let the valuations be vd = (8, 2, 7, 11) and va = (7, 2, 5, 11). Let
J1 = {1}, J2 = {2}, J3 = {1, 3} and J4 = {2, 3}. Let the costs be c31 = 5, and
cij = 1 for all other feasible (i, j) pairs, and let the budgetB = 7. Thus, machines with
TC 1 and 2 have only 1 choice of OC to mask due to feasibility constraint. Masking TC
3 with OC 1 at cost 5 is too expensive, since masking the remaining machines costs at
least 3. Thus, due to the budget constraint, TC 3 has OC 3 as the unique choice. Thus,
the defender’s strategy space is

F =

Φ =


2 0 0
0 2 0
0 0 1
0 1 0

 , Φ′ =


2 0 0
0 2 0
0 0 1
0 0 1




If the defender plays Φ, attacker’s best response is to attack OC 1, yielding expected
utilities ua(Φ, 1) = 7, and ud(Φ, 1) = 8 for the attacker and the defender, resp.

Optimization problem Having defined the game model, we now discuss the so-
lution approach. Previous work on general-sum Stackelberg games has typically used
Strong Stackelberg equilibria (SSE). This assumes that whenever the follower has mul-
tiple best responses, he breaks ties in favor of the leader (i.e., maximizing her payoff),
which the defender can induce using mixed strategies. The defender cannot always in-
duce a specific response in a CCG since he is restricted to pure strategies (Guo et al,
2018).

Therefore, we consider the robust assumption that the attacker breaks ties against
the defender. This worst-case tiebreaking leads to Weak Stackelberg Equilibria (WSE)
(Breton et al, 1988). A drawback of WSE is that it may not exist (von Stengel and
Zamir, 2004). However, it has been shown to exist when the defender can play a finite
set of pure strategies as in CCG. We therefore adopt WSE and assume that the attacker
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chooses a best response to the defender strategy Φ, minimizing the defender utility
in case of a tie. Thus, the defender’s utility is umin(Φ) as defined by the following
optimization problem (OP):

min
j

ud(Φ, j) | ua(Φ, j) ≥ ua(Φ, j′) ∀j′ ∈ J . (1)

Hence, the defender needs to choose argmaxΦ u
min(Φ).

We first study the game without any feasibility or budget constraints. This uncon-
strained CCG underlines the inherent challenge of strategic deception even when so-
phisticated techniques are available for arbitrarily masking TCs with any OCs at low
costs.

Remark 2. Note that, setting all entries of Π to 1 makes all strategies feasible, and
setting the budget and costs so that B ≥

∑
i

nimax
j∈Ji

cij makes all feasible strategies

affordable.

3 Unconstrained CCGs

In this setting, masking any TC with any OC is possible, and every feasible strategy has
total cost within budget. First, we prove that

Theorem 1. Computing the optimal defender strategy in unconstrained CCGs is NP-
hard.

Proof. We prove the NP-hardness via a reduction from the subset sum problem, denoted
as SubsetSum, which is a well-known NP-complete problem. Given a set S of inte-
gers, SubsetSum is the decision problem to determine whether there is a non-empty
subset of S whose sum is zero.

An instance of SubsetSum is specified by a set of N integers {x1, . . . , xN} = S
(w.l.o.g., assume xn 6= 0 for any n and

∑
n∈[N ] xn 6= 0 since otherwise the problem

is trivial). Given such an instance of SubsetSum, we construct the following uncon-
strained general-sum CDG. First, let w = −

∑
n∈[N ] xn ∈ Z, so that,

∑
i xi + w = 0.

Let δ1, δ2 ∈ (0, 1) be small constants s.t. 1 − δ2 ≥ δ1 ≥ (N + 1)δ2. We construct a
CDG with (N+2) machines each with a different TC. Thus,K = I = {1, . . . , N,N+
1, N+2}, and the TSN n is the all-one vector. There are two OCs, i.e., J = {1, 2}. The
valuations for the attacker and the defender are defined as va = (x1, . . . , xN , w, δ2)
and vd = (−x1, . . . ,−xN ,−w + δ1, δ2) , respectively. We remark that, the defender’s
and attacker’s valuations are only non-zero-sum on the last two TCs. This completely
defines an unconstrained CDG instance.

We claim that the defender can achieve utility strictly greater than δ1+δ2
N+2 in the

constructed instance if and only if the SubsetSum instance is a YES instance. As a
result, any algorithm for computing the optimal defender utility for general-sum CDGs
can be transferred, in polynomial time, to an algorithm for SubsetSum. This implies
the NP-hardness of solving unconstrained CDGs.

We first show that if the SubsetSum is a YES instance, then the defender can
achieve a utility strictly greater than δ1+δ2

N+2 . By assumption, there exists a non-empty
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set S′ ⊂ S such that
∑
xn∈S′ xn = 0. Let N ′ = |S′| > 0. Consider the strategy

that masks all TCs in I ′ = {i | xi ∈ S′} to OC 1, and masks TCs in I \ I ′ to
OC 2. By construction, the attacker will have expected utility 0 on OC 1 but a strictly
positive utility on OC 2. As a result, the attacker will attack OC 2, resulting in expected
defender utility δ1+δ2

N+2−N ′ >
δ1+δ2
N+2 . As a result, the optimal defender utility must be

strictly greater than δ1+δ2
N+2 .

Next, we show that if the SubsetSum is a NO instance, then the optimal defender
utility is at most δ1+δ2N+2 . We consider the following particular masking strategies:

1. If all the TCs are masked by one OC, then the defender will achieve expected utility
−

∑
n xn−w+δ1+δ2

N+2 = δ1+δ2
N+2

2. If machine N + 2 is masked by (say) OC 1 and all other machines are masked by
OC 2, then the attacker has a better utlity in attacking OC 1, resulting in defender
utility δ2 ≤ δ1+δ2

N+2 by construction.
3. Otherwise, any other solution to the CDG instance corresponds to a partition of I

into two non-empty sets, denoted as I1, I2, which correspond to TCs masked as
OC 1, 2 respectively. Moreover, w.l.o.g., assume N + 2 ∈ I1 and |I1| > 1. Then
I2 is a strict subset of I \ {N + 2} which all have integer attacker values. Since
the SubsetSum is a NO instance, we know that the total attacker values in I2
cannot sum up to 0. If they sum up to a positive integer (thus at least 1), then two
properties hold: 1. The total attacker value in I1 is at most −1 + δ2 < 0; 2. The
total defender value in I2 is at most −1 + δ1 < 0. The first property implies that
the attacker will attack OC 2 and the second property implies that the defender will
get strictly negative utility. Similarly, if the total attacker values in I2 sum up to a
negative integer, the attacker will attack OC 1, still resulting in a negative defender
utility. To sum up, in this case, the optimal defender utility is at most δ1+δ2N+2 . This
concludes the proof.

Thus, this result is in sharp contrast to unconstrained CDGs where masking all
the machines with the same OC is an optimal strategy and thus the computation has
constant-time complexity.

We now show that despite the NP-hardness, the problem admits a Fully Polyno-
mial Time Approximation Scheme (FPTAS). To that end, we first need the following
proposition.

Proposition 1. Unconstrained CCGs always have an optimal defender strategy where
at most 2 OCs mask all the machines.

Proof. Let OC 1, 2 be feasible for all the TCs. Let Φ be any optimal strategy which
yields defender utility u. Let J ′ = argmaxj u

a(Φ, j) denote the set of attacker’s best
response OCs. Then consider a strategy Φ∗ as follows: Φ∗i1 =

∑
j′∈J ′ Φij′ , Φ∗i2 =∑

j′ /∈J ′ Φij′ ∀ i ∈ I, and Φ∗ij = 0 for all other OC j 6= 1, 2. Then, Φ∗ induces the
attacker to attack OC 1, resulting in defender utility at least u (as the defender utility
for every OC in J ′ is at least u). Thus, Φ∗ is optimal and uses at most 2 OCs to mask
all the machines.

Next, assume, w.l.o.g., that vdi ∈ [0, 1] ∀i (as the problem is equivalent if the valu-
ations are shifted, or, simultaneously scaled by a positive constant). Then, we show an
FPTAS:
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Theorem 2. For any ε > 0, there is a O(n3/ε) time algorithm that computes a decep-
tion strategy with defender utility at most ε less than the optimal.

Proof. We use dynamic programming (DP) to compute an approximate solution. To
start, we first discretize the defender valuations by rounding them down to the closest
multiples of ε. Let integer vi = bvdi /εc, so that viε is the defender valuation rounded
down. Note that vi ∈ [0, 1/ε].

By Proposition 4.4, we can w.l.o.g. focus on strategies using the 2 OCs to mask all
the machines. We design the strategy such that OC 1 is the attacker’s best response.
Our idea is to compute a 3-dimensional table A, where A[i, k, l] denotes the maximum
attacker valuation sum for attacking OC 1, over all the strategies in which OC 1 masks
exactly k machines, all from among the first imachines with the defender valuation sum
being lε for OC 1. By definition, A[i, k, l] satisfies the following recurrence relation:

A[i, k, l] = max{A[i− 1, k − 1, l − vi] + vai , A[i− 1, k, l]}

which follows from considering the two options for machine i — whether to mask it
with OC 1 or not. The base cases are A[0, 0, 0] = 0 and A[0, k, l] = −∞ if either k or
l are non-zero.

After computing table A, we are ready to compute the optimal defender strategy
w.r.t. the rounded defender payoffs. In particular, the maximum defender utility of our
strategy is the maximum value of lε such that ∃k > 0 with attacker’s utility for attacking
OC 1, i.e., A[n, k, l]/ k, being more than that of attacking OC 2, or equivalently, more
than the average attacker valuation

∑
i v

a
i ni/|n|. Such a table entry can be found by

enumerating A[n, k, l] for different k and l.
It is easy to see that the DP computes an optimal defender strategy for defender pay-

off v. To prove that this strategy is an additive ε approximation to the original problem
with defender payoffs vd, let Ud(u, Φ) denote the defender utility when using defender
valuations u and strategy Φ. Let Φ∗ denote the optimal strategy to the original problem
and Φ̂ be the strategy output by our algorithm. We have

Ud(vd, Φ̂) ≥ Ud(v, Φ̂) ≥ Ud(v, Φ∗) ≥ Ud(vd, Φ∗)− ε

where the first and third inequalities are due to the rounding down of vd to v entry-wise
by ε, and the second inequality follows by optimality of Φ̂. This concludes the proof.

4 Constrained CCGs

4.1 Optimal defender strategy MILP formulation.

Our goal is to compute the WSE, i.e., to compute max
Φ∈F

umin(Φ). As umin(Φ) is given

by OP (1), computing WSE is a bilevel OP which cannot ordinarily be reduced to a
single-level Mixed Integer Linear Program (MILP) (Sinha et al, 2018). In particular,
the single-level reduction has been shown for SSE computation, since the attacker’s
tiebreaking aligns with the defender’s objective. However, this does not apply to WSE
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due to the worst-case tiebreaking. Hence, we first formulate an OP which considers ε-
optimal responses for the attacker (for a small constant ε) and assume he selects the one
with the least defender utility. This OP (referred to as GS-MIP) is:

max
Φ,q,γ,α

γ (2)

s.t. α, γ ∈ R, Φ ∈ F , q ∈ {0, 1}|J |

q1 + . . .+ q|J | ≥ 1 (2a)
ε(1− qj) ≤ α− ua(Φ, j) ∀j ∈ J (2b)
M(1− qj) ≥ α− ua(Φ, j) ∀j ∈ J (2c)

γ ≤ ud(Φ, j) +M(1− qj) ∀j ∈ J (2d)
qj ≤ mj(Φ) ∀j ∈ J . (2e)

The maximization objective γ gives the defender’s optimal utility. The binary vari-
ables qj indicate if attacking OC j is an ε-optimal attacker strategy, of which there is
at least one an possibly more, as specified by (2a). (2b) and (2c) make α the optimal
attacker utility, and enforce qj = 1 for all the ε-optimal strategies for the attacker (using
a big-M constant). (2e) ensures that only the OCs which actually mask a machine are
considered as valid attacker responses. Finally, (2d) captures the worst-case tiebreaking
by requiring that γ is least of the utilities the defender can get from a possible ε-optimal
attacker response. 5

In reality, an optimal attacker corresponds to having ε = 0 by definition. Neverthe-
less, setting ε > 0 is necessary to enforce the worst-case tiebreaking as explained above
for constraint (2b); setting ε = 0 can be shown to lead to an SSE solution, and not
WSE. Despite this challenge, since the number of targets are finite, there must be an ε
such that only the optimal strategies are ε-optimal. Then, for such small enough ε, (2b)
would enforce that the attacker can choose from precisely the set of optimal strategies.
Hence, we conclude that,

Proposition 2. ∃ε > 0 s.t. OP (2) computes max
Φ∈F

umin(Φ).

Remark 3. ε should be set to a value that ensures that the second-best attacker utility is
at least epsilon less than optimal. It suffices to set it to L/k2 where L is the bit precision
of the valuations and k = |K| is the number of machines.

Other works considering ε-optimal responses include (Tijs, 1981) which computes
ε-optimal Nash equilibria and (Pita et al, 2010) which considers robust optimization
against boundedly rational opponents in Bayesian normal-form Stackelberg games. De-
spite similarities, in particular, that of a Stackelberg setting in the latter, their solution
methods do not apply here due to key differences in the CCG model, viz., non-Bayesian
setting, perfect rationality, restriction to pure strategies, and most importantly, compact
input representation via polytopal strategy space (Jiang et al, 2017). This makes it non-
viable to enumerate strategies like normal-form games. However, the utility functions

5 The additional constantM can be simply replaced by maxi,i′ |vai −vai′ | and maxi,i′ |vdi −vdi′ |
resp. in the 3rd, 4th constraints
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ud and ua are linear fractionals, i.e., ratios of expressions that are linear in Φ. This
property allows for an MILP formulation of GS-MIP despite the structural complexity
of CCGs, as follows.

We use an alternate representation of the defender’s strategy with a |K|× |J | (0,1)-
matrix Θ, where Θkj = 1 iff machine k is masked with OC j. Then, we can write the
OSN m as mj(Θ) =

∑
k∈K

Θkj , and the player utilities as,

ud(Θ, j) =

∑
i∈I

∑
k∈Ki

Θkjv
d
i

mj(Θ)
; ua(Θ, j) =

∑
i∈I

∑
k∈Ki

Θkjv
a
i

mj(Θ)
,

where,Ki is the set of machines with TC i. Substituting these expressions in constraints
of GS-MIP, e.g., say (2b), and multiplying the equation to get rid of fractional expres-
sions yields,

ε(1− qj)
∑
k

Θkj ≤ α
∑
k

Θkj −
∑
i∈I

∑
k∈Ki

Θkjv
a
i ∀j ∈ J .

The constraint above and the ones obtained by similarly transforming (2c), (2d),
(2e), contain bilinear terms that are products of a binary variable with a binary or con-
tinuous variable, which can be linearized using standard techniques. The complete re-
sultant MILP can be found in the appendix.

4.2 Cuts to Speed up the MILP Formulation

Symmetry breaking. Using the alternate representation Θ exponentially blows up the
feasibility region of the MILP, since each strategy Φ has many equivalent Θ represen-
tations due to machines having the same TC being identical. For instance, a strategy
Φ which masks the ni machines having TC i with a different OC each, results in ni!
equivalent Θ representations corresponding to the different permutations of machine
assignment to OCs. To break this symmetry, we add constraints to require that the
assignment of machines to OCs is lexicographically sorted within a TC, i.e., for ma-
chines k, k′ with the same TC, masked with different OCs ĵ and j′ resp., we must have
k < k′ ⇔ ĵ < j′. A linear constraint captures this for machines k, k′:∑

j∈J
jΘkj ≤

∑
j∈J

jΘk′j . (3)

Proposition 3. For any strategy Θ, and for machines k, k′, masked with OCs ĵ and j′

as per Θ, (3) ⇔ ĵ < j′. Further, adding constraints (3) to GS-MIP preserves at least
one optimal solution while eliminating all of the symmetric solutions.

Proof. For any strategy Θ, for any machine k, we must have
∑
j∈J

Θkj = 1. Suppose

machines k, k′ are masked with different OCs ĵ and j′. Thus, Θk = eĵ , and Θk′ = ej′
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(where ej denotes the unit vector with 1 in the jth coordinate and 0 elsewhere). Hence,∑
j∈J

jΘkj = ĵ and
∑
j∈J

jΘk′j = j′. Thus, it follows that

∑
j∈J

jΘkj <
∑
j∈J

jΘk′j ⇔ ĵ < j′

To ensure the lexicographically sorted assignment, it suffices to add constraint (3)
for only the pairs k, k′ which are consecutively indexed within each TC, i.e., |Ki| − 1
constraints for TC i, and thus, linearly many in total.

Bounding attacker’s optimal utility. The attacker’s optimal utility α, by definition,
is at least the utility ua(Θ, j) of attacking any OC j (follows from (2b)). Consequently,
it must be at least the average utility of all machines, i.e.,

Proposition 4. α ≥ 1
|K|
∑
i∈I niv

a
i .

Proof. By constraint (2b*), we have,

ε(1− qj)
∑
k

Θkj ≤ α
∑
k

Θkj −
∑
i∈I

∑
k∈Ki

Θkjv
a
i ∀j ∈ J

∑
i∈I

∑
k∈Ki

Θkjv
a
i ≤ α

∑
k

Θkj ∀j ∈ J

(∵ ε, q, Θ are non-negative by definition)∑
j∈J

∑
i∈I

∑
k∈Ki

Θkjv
a
i ≤

∑
j∈J

α
∑
k

Θkj∑
i∈I

∑
k∈Ki

∑
j∈J

Θkjv
a
i ≤ α

∑
k

∑
j∈J

Θkj∑
i∈I

∑
k∈Ki

vai ≤ α
∑
k

1 (∵ ∑
j∈J

Θkj = 1 ∀k by definition)

∑
i∈I

niv
a
i ≤ |K|α

α ≥

∑
i∈I

niv
a
i

|K|

Note that the R.H.S. above is a constant which bounds the variable α. Hence,
this constraint facilitates early pruning of infeasible solutions, leading to a substantial
speedup.

5 Experimental Results

For runtime comparisons, we consider relatively small problem sizes, since they suffice
to clearly highlight the efficiency of our solution methods, which is very crucial when
scaling to large-scale enterprise networks.
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Setup. We vary the parameters |K|, |I|, |J |, where a particular triple of |K|, |I|, |J |
defines a “scenario” for an experiment. Within each “scenario” we consider various
“settings” by randomly assigning TCs to machines, and sampling feasibility constraints
Πij , costs cij and budgetB. Within each “setting” , we consider various “instances” by
randomly sampling valuations vd, va. For any scenario considered, we report averaged
results over 30 problem settings, and 30 instances from each setting.

We now evaluate the runtime and the solution quality of our solutions, starting with
the more general constrained CCG.

5.1 Constrained CCG

MILP Runtime analysis. We compare the runtime of MILP with and without cut-
augmentation against a benchmark which computes the optimal strategy by obtain-
ing the normal-form game via explicit strategy enumeration. We set |K| = 30, and
|I| = |J | = 6 and randomly sample 30 settings with strategy space size between 5 and
125 million. For each setting, we compute the average runtimes over 30 instances. The
runtime analysis is presented in Fig. 2 (the individual instances are shown as the points
with the line showing the overall linear trend). Fig. 2a shows that the MILP when aug-
mented with can be computed within 4 seconds for instances with upto 125 million. In
comparison, Fig. 2b shows that the strategy enumeration approach is computationally
very expensive and grows linearly with the number of strategies (which grows expo-
nentially in game parameters). The runtime of MILP without cuts is also seen to grow,
although slower. However, the runtime of MILP when augmented with cuts is markedly
lower, providing up to 100-fold speedup over the benchmark. Table 1 shows the value
of the two cuts separately; the symmetry breaking cuts independently improve runtime
by up to 7 times, while the attacker valuation bounding cut produces up to 30 times
speedup.

(a) Runtime of MILP with cuts against the
strategy space size

(b) Comparison of MILP with and without cuts,
and Strategy enumeration benchmark

Fig. 2: Runtime Analysis
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Parameters
(|K|, |I|, |J |)

No
cuts

Symmetry
breaking

Attacker
val. bound

Both

20,4,4 0.42 0.21 0.11 0.10
25,5,5 17.45 1.50 0.50 0.39
30,6,6 49.59 7.21 1.71 1.45

Table 1: MILP runtime (sec):
Cut-augmentation impact

Parameters
(|K|, |I|) 2 OCs 3 OCs 4 OCs

200, 10 10.1 114 138
200, 25 10.2 78 121

Table 2: MILP runtime (sec) when 2 OCs
can mask all TCs

5.2 Unconstrained CCG

Optimality versus Efficiency. We compare the Runtime of the MILP which computes
the optimal solution, against the FPTAS for various values of ε (levels of approxima-
tion). Table 3a shows that the FPTAS runtime rapidly increases with ε as expected.
In comparison to the MILP, for ε = 0.01, it is 1.5 to 2.7 times as fast as the MILP
across the 4 settings, while allowing lower precision with ε = 0.1 leads to 20-50 times
improvement in runtime. Table 3b shows that the actual gap between the solution com-
puted by the FPTAS algorithm and the optimal solution is two to four times smaller
than the set precision ε.

Parameters
(|K|, |I|)

MILP
runtime

FPTAS runtime
ε = 0.1 ε = 0.05 ε = 0.01

200, 25 11.45 0.20 0.42 2.9
500, 25 71.14 2.65 5.58 30.4
200, 50 8.72 0.24 0.50 3.1
500, 50 43.72 2.98 6.02 31.2

(a) Runtime(sec) of MILP and FPTAS: varying ε.

Parameters
(|K|, |I|)

FPTAS optimality gap
ε = 0.1 ε = 0.05 ε = 0.01

200, 25 0.044 0.014 0.002
500, 25 0.029 0.013 0.002
200, 50 0.055 0.017 0.003
500, 50 0.068 0.023 0.004

(b) FPTAS solution quality

Table 3: FPTAS runtime and solution quality

MILP speedup with restriction to 2 OCs. For |K| = 200, and |I| ∈ {10, 25}, we
consider cases with 3 or 4 OCs of which 2 can mask all TCs at no cost. For comparison,
we consider the MILP runtime which only these 2 OCs were considered. For these
scenarios, it can be seen from Table 2 that considering only 2 OCs which can mask all
the machines, leads to an average runtime that is 8-12 times lower, compared to having
all OCs. This shows that pre-processing of the input to find such two OCs proves to
cause a huge reduction in runtime.

6 Summary

In this paper, we present a general-sum Cyber Deception Game model for strategic
cyber deception, also addressing uncertainties in the defender’s knowledge of attacker
valuations. We first consider the unconstrained CDG where there are no constraints
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on the feasibility or cost of deception strategies and prove that computing an optimal
solution is NP-hard here, in contrast to the zero-sum counterpart where it is to simply
mask all machines with the same OC. This result highlights the challenge in optimiz-
ing the strategy even when practical logistical or technological constraints in deploy-
ing deception are overcome. We also present a Fully Polynomial Time Approximation
Scheme (FPTAS) for the aforementioned NP-hard problem. For CDG with constraints,
we present an MILP formulation to find the optimal solution, boosted with compu-
tational improvements using compact strategy representations and added constraints.
Finally, we experimentally evaluate our algorithms and show that they give substantial
improvements in scalability.
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Appendix

Complete MILP formulation for OP (2)
We let vd, vd denote the least and the highest defender valuations, and similarly, va, va

the least and the highest attacker valuations. To linearize, we let the variables Xkj , Ykj ,
and Zkj represent the bilinear terms (1 − qj)Θkj , αΘkj , and γΘkj respectively and
add liner constraints which enforce the appropriate product value to them. The resultant
MILP is as follows.

max
Φ,q,γ,α

γ

s.t. α, γ ∈ R, Φ ∈ F , q ∈ {0, 1}|J |∑
j∈J

qj ≥ 1

ε
∑
k

Xkj ≤
∑
k

Ykj −
∑
i∈I

∑
k∈Ki

Θkjv
a
i ∀j ∈ J

∑
k

Ykj −
∑
i∈I

∑
k∈Ki

Θkjv
a
i ≤

∑
k

XkjM ∀j ∈ J

∑
k

XkjM +
∑
i∈I

∑
k∈Ki

Θkjv
d
i ≥

∑
k

Zkj ∀j ∈ J

qj ≤
∑
k∈K

Θkj ∀j ∈ J

Xkj + qj ≤ 1 ∀k ∈ K ∀j ∈ J
Xkj ≤ qj ∀k ∈ K ∀j ∈ J
Xkj + qj ≥ Θkj ∀k ∈ K ∀j ∈ J
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vaΘkj ≤ Ykj ≤ vaΘkj ∀k ∈ K ∀j ∈ J
α+ vaΘkj ≤ va + Ykj ∀k ∈ K ∀j ∈ J
α+ vaΘkj ≥ va + Ykj ∀k ∈ K ∀j ∈ J
vdΘkj ≤ Zkj ≤ vdΘkj ∀k ∈ K ∀j ∈ J
γ + vdΘkj ≤ vd + Zkj ∀k ∈ K ∀j ∈ J
γ + vdΘkj ≥ vd + Zkj ∀k ∈ K ∀j ∈ J
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Alpcan T, Başar T (2010) Network security: A decision and game-theoretic approach
Arkin O, Yarochkin F (2003) A fuzzy approach to remote active operating system fin-

gerprinting. URL http://www.syssecurity.com/archive/papers/Xprobe2.pdf
Auffret P (2010) Sinfp, unification of active and passive operating system fingerprint-

ing. Journal in Computer Virology 6(3):197–205, DOI 10.1007/s11416-008-0107-z,
URL https://doi.org/10.1007/s11416-008-0107-z

Berrueta DB (2003) A practical approach for defeating nmap os- fingerprinting
Breton M, Alj A, Haurie A (1988) Sequential stackelberg equilibria in two-person

games. Journal of Optimization Theory and Applications DOI 10.1007/BF00939867,
URL https://doi.org/10.1007/BF00939867

Chadha R, Bowen T, Chiang CJ, Gottlieb YM, Poylisher A, Sapello A, Serban C, Sug-
rim S, Walther G, Marvel LM, Newcomb EA, Santos J (2016) Cybervan: A cyber
security virtual assured network testbed. In: MILCOM 2016 - 2016 IEEE Military
Communications Conference, DOI 10.1109/MILCOM.2016.7795481

De Gaspari F, Jajodia S, Mancini LV, Panico A (2016) Ahead: A new architecture for
active defense. In: Proceedings of the 2016 ACM Workshop on Automated Decision
Making for Active Cyber Defense
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