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ABSTRACT
An important way cyber adversaries find vulnerabilities in mod-

ern networks is through reconnaissance, in which they attempt to

identify configuration specifics of network hosts. To increase un-

certainty of adversarial reconnaissance, the network administrator

(henceforth, defender) can introduce deception into responses to

network scans, such as obscuring certain system characteristics.

We introduce a novel game-theoretic model of deceptive interac-

tions of this kind between a defender and a cyber attacker, which

we call the Cyber Deception Game. We consider both a powerful

(rational) attacker, who is aware of the defender’s exact deception

strategy, and a naive attacker who is not. We show that computing

the optimal deception strategy is NP-hard for both types of attackers.

For the case with a powerful attacker, we provide a mixed-integer

linear program solution as well as a fast and effective greedy algo-

rithm. Similarly, we provide complexity results and propose exact

and heuristic approaches when the attacker is naive. Our exten-

sive experimental analysis demonstrates the effectiveness of our

approaches.
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1 INTRODUCTION
Network security is an important problem faced by organizations

who operate enterprise networks housing sensitive information and

that complete important functions. This challenge is highlighted

by several recent major attacks which have caused severe damage,

such as the Equifax breach in 2017 and Yahoo in 2016 [13, 14].

Criminals who target networks first map them out by using network
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scanning tools. These tools answer important questions such as:

Which computers are connected to each other and what are their

IP addresses? What operating system is a computer running? What

ports are open and what services are they running? What are the

names of associated subnetworks and users? Given answers to all

of these questions, an attacker is able to maximize his chance of

successfully infiltrating the network and gaining a foothold. To

gain such information, attackers can use a suite of requests using

tools such as NMap [19].

To protect against attacks, network administrators use tech-

niques such as the whitelisting of applications, locking down per-

missions, and immediately patching vulnerabilities [16]. An inter-

esting direction of research is the use of deception as a framework

to improve cybersecurity defenses [4]. [1] explores ways to achieve

deception through OS and service obfuscation to thwart potential

attackers. Instead of directly stopping an attack, deceptive tech-

niques concentrate on diverting an adversary to attack non-critical

systems or honeypots using deceptive views of the network state.

Essentially, approaches for deception focus on making it difficult

for an attacker to accurately identify information about systems

on the network using tools like NMap. However, one drawback of

most of these previous approaches is that they do not adequately

model the adversarial nature of the cybersecurity domain.

Experienced attackers infiltrating a network spend a significant

amount of time during the reconnaissance phase of their attack to

find vulnerabilities throughout the network by mapping them out

through NMap scans, stealth SYN scans, TCP connections scans

along with others [16, 20]. After gathering all of this information,

the attacker then mounts their attack on a network. In the cyber

domain, the network administrator has asymmetric information as

she knows the true state of the network, i.e., properties of the system

such as its hardware type or the operating system, and further,

she can control the responses to scans sent by an adversary [2,

8]. By hiding or lying about part of each system’s configuration,

the defender could make it significantly harder for the adversary

to determine the true vulnerabilities present in systems on the

network. Since exploits generally rely on specific vulnerabilities

and versions of software, incorrectly identifying a system’s software

information decreases the likelihood of a successful attack.



Our work concentrates on how the defender can benefit the

most from determining a mix of true, false and obscure responses

to deceive the attackers. To highlight the defender’s advantage,

consider a network with 1 system running NGINX and 2 running

Apache Tomcat where the adversary has a specific exploit for NG-

INX. Without deception, the adversary can scan all systems to find

the one running NGINX and then deploy his exploit. However, if

the defender lies about the webserver, the adversary potentially

has to test his exploit on all systems to infiltrate the network. This

process increases the time spent by the adversary to compromise

the network (which gives the defender time to mount a better de-

fense) and increases the chances the defender catches an attack.

The problem for the defender then is to determine how to alter the

adversary’s perception of the network to minimize her expected

loss from an attack.

Our first contribution is the Cyber Deception Game (CDG) model

which captures the strategic interaction between the defender and

an adversary in network security. In this game, the defender chooses

how systems respond to scans and the attacker chooses which sys-

tem to attack based on the responses. For our second contribution,

we show that finding the defender’s optimal strategy against a pow-

erful attacker who knows the defender’s exact deception scheme

in CDGs is NP-hard and provide a Mixed Integer Linear Program

(MILP) to compute the optimal response scheme. We then propose a

greedy algorithm to quickly find good defender strategies in CDGs

which is shown to perform well experimentally in a fraction of the

time of the MILP. Third, we show that surprisingly that finding the

optimal strategy is still NP-hard when faced with naive attackers

who act according to prior fixed utilities given budget constraints,

and propose an algorithm to provide the exact solution. Finally, we

present experimental results showing the scalability of our solution

techniques and a comparison of the solution quality of proposed

techniques for both types of adversaries.

2 RELATEDWORK
The use of game theory for security has been studied extensively,

which we discuss in Section 3. Game theory has also been studied in

the context of cybersecurity problems [5, 18, 24, 25]. [11, 12, 17, 23]

study a honeypot selection game in which a defender chooses the

properties of the network and the attacker can use probe actions

to test the network where his actions are represented as attack

graphs. [10] studies a signaling game where the defender signals

to an adversary if a system is either real or a honeypot when the

adversary performs a scan. [22] extends the signaling game to

account for an adversary who can gain evidence about the true

state of a system. In our work, we consider a game scenario in which

the defender determines the optimal way to respond to scans sent

by a potential adversary given a set of possible responses. Further,

we explore different types of adversaries with varying awareness

of deception.

Deception has also been widely studied as a means to improve

the protection of enterprise networks from potential hackers and

intruders [1, 3]. [2] uses a graph-theoretic approach to confuse a po-

tential attacker bymanipulating his view of systems on the network.

However, this work focuses on finding a view which is measurably

different from the true state and does not adequately model the

response of a strategic adversary. [15] is the most closely related to

our work. The authors study how to respond to an attacker’s scan

queries using an annotated probabilistic logic model. We provide

a complimentary view using game theory to determine how a de-

fender manipulates scan responses to confuse an attacker’s view

of systems on the network. We also study varying adversary mod-

els, which can have a significant impact on the defender’s optimal

strategy which is not explored in [15].

3 CYBER DECEPTION GAME
The Cyber Deception Game (CDG) is a zero-sum Stackelberg game

between the defender (e.g., network administrator) and an adver-

sary (e.g., hacker). The defender moves first and chooses how the

systems should respond to scan queries from an adversary, and

the adversary subsequently moves by choosing a system to attack

based on the responses. Despite the similarities with game-theoretic

models in security domains, such as [6, 7, 26], there are two key dif-

ferences. First, the defender can only commit to a pure strategy and

not an arbitrary mixed strategy. This is because, in these domains,

network administrators modify the network very infrequently, and

thus, the attackers’ view of the network is static. Second, there are

no explicit security resources for the defender in CDGs. Conse-

quently, the existing approaches for solving standard Stackelberg

games in security domains, cannot be directly applied. The various

components of the game and the aforementioned model character-

istics are described in detail as follows:

Systems and True Configurations. The defender aims to pro-

tect a set K of systems, from possible exploits and intrusions. Each

system has certain attributes, e.g., an operating system, an anti-

virus protection mechanism, services hosted, etc. These attributes

altogether constitute the true configuration (TC) of the system. We

denote the set of all possible TCs by F . Each system has an associ-

ated utility, which captures how much the adversary would get by

attacking it. This utility solely depends on the TC of the system —

each f ∈ F induces a utility denoted by Uf to any system that is

assigned f .Uf can be negative if the security level of the system is

so high that the attacker’s efforts end in vain or the attacker gets

fake data from a seemingly successful attack, leading to a loss in

the end. It follows that, the true state of the network (TSN) can be

represented as a vector N = (Nf )f ∈F , where Nf ∈ Z>0 denotes

the number of systems on the network which have a TC f and∑
f ∈F

Nf = |K | (We assume Nf , 0, since such a TC simply need not

be considered).

Observed Configurations. The adversary attempts to gain in-

formation about every system on the network, via probes and scans.

By scanning a system, the adversary observes certain attributes,

which constitute the observable configuration (OC) of the system.

We denote the set of possible OCs by F̃ . We assume that it is possi-

ble for the defender to make some of the observable attributes of a

system appear different than what they truly are (e.g., altering the

TCP/IP stack of a system, spoofing a running service on a port). By

means of such alterations at her disposal, the defender controls the

OC an attacker sees when probing a system. Note that it may not be

possible for an arbitrary TC f to be made to appear as an arbitrary

OC
˜f ∈ F̃ — we call such a constraint a feasibility constraint, and



these are denoted by a (0,1)-matrix π . Iff πf , ˜f = 1, we say f can

be covered, or masked with
˜f . We denote the set of OCs which can

mask a TC f , by F̃f = { ˜f ∈ F̃ | πf , ˜f = 1}, and similarly, the set of

TCs which can be masked by an OC
˜f , by F

˜f = { f ∈ F | πf , ˜f = 1}.
From the adversary’s perspective, two systems having the same

˜f as their OC are indistinguishable, and hence, his observed state
of the network (OSN) can be represented as a vector Ñ = (Ñ

˜f ) ˜f ∈F̃
where Ñ

˜f ∈ Z≥0 denotes the number of systems which have an

OC
˜f . As is the case with the TSN N , we must have

∑
˜f ∈F̃

Ñ
˜f = |K |.

We assume that masking a TC f with an OC
˜f , has a cost of

c(f , ˜f ) incurred by the defender, which typically captures the mon-

etary costs for deploying network modifications necessary for such

a deception.

Defender Strategies. Naturally, F , F̃ , π , c and N are known to

the defender. Given all this information, the defender must decide

her strategy — for each TC f , she must decide how many of the Nf

systems having TC f , should be assigned the OC
˜f , where ˜f ∈ F̃f .

Thus, any possible strategy can be represented as a |F | × |F̃ | matrix

ϕ having non-negative integer entries, with ϕf , ˜f representing the

number of systems having TC f and OC
˜f . Hence, ϕ must satisfy

ϕf , ˜f ∈ Z≥0 ∀f ∈ F ,∀ ˜f ∈ F̃ (1)

Since the TSN N is fixed, ϕ must also satisfy∑
˜f ∈F̃

ϕf , ˜f = Nf ∀f ∈ F (2)

Since feasibility constraints π are specified, ϕ must also satisfy

ϕf , ˜f ≤ πf , ˜f Nf ∀f ∈ F , ∀ ˜f ∈ F̃ (3)

Finally, since setting any OC on a system has an associated cost,

we assume that the defender’s total cost cannot exceed a limit B,
which we call the budget constraint. Formally, ϕ must also satisfy∑

f ∈F

∑
˜f ∈F̃

ϕf , ˜f c(f , ˜f ) ≤ B (4)

The set of strategies ϕ which satisfy the constraints (1), (2), (3), and

(4), is denoted by Φ.1 When the defender plays ϕ ∈ Φ, the resulting
OSN Ñ is given by Ñ

˜f =
∑
f ∈F

ϕf , ˜f ∀ ˜f ∈ F̃ .

Adversary Strategies. Depending on the defender’s strategy,

the adversary observes Ñ as described above. All systems having

the same OC
˜f are indistinguishable to the adversary, and hence,

he must be indifferent between all such Ñ
˜f systems when deciding

which system to attack. As a result, we assume that he attempts

to choose the OC
˜f which gives him the highest expected utility

(described momentarily), and attack all the Ñ
˜f systems having this

OCwith an equal probability. In short, we say “the adversary attacks

an OC
˜f ” to mean he attacks all the systems having OC

˜f with an

1
The feasibility constraints can simply be captured via the budget constraint by setting

the costs of infeasible assignments to be higher than the budget. However, they are

essential in the model, since, in some cases, having no budget constraint allows an

efficient solution to the problem (e.g. Section 5), while still having the very practical

feasibility constraints keeps the problem non-trivial.

equal probability. A general mixed strategy for the adversary is to

attack the set of OCs with any probability distribution. However,

since there always exists a pure best-response strategy in any game,

it suffices to consider the adversary’s strategies as simply attacking

a particular
˜f .

Utilities. When the defender plays a strategy ϕ, the adversary’s

expected utility on attacking an OC
˜f with Ñ

˜f > 0, denoted by

Ū
˜f (ϕ) — or, as Ū

˜f for simplicity, when the underlying ϕ is unam-

biguously understood — is given by

Ũ
˜f = E[Uf |ϕ, ˜f ] =

∑
f ∈F ˜f

P(f |ϕ, ˜f )Uf =
∑
f ∈F

ϕf , ˜f

Ñ
˜f

Uf (5)

(5) follows from computing P(f |ϕ, ˜f ) using the fact that out of Ñ
˜f

systems having an OC
˜f , ϕf , ˜f have a TC f . Since the game is zero-

sum, the defender’s expected utility is−Ũ
˜f when

˜f is attacked. Note

the attacker cannot attack an OC
˜f with Ñ

˜f = 0, or equivalently,

his expected utility is −∞ if he does so.

Next, we illustrate the model using a simple example.

Figure 1: Simple example of an enterprise network.

Figure 1 shows a simple example enterprise network which

will be used as a running example. We have a set of systems K =
{k1,k2,k3}, set of TCs F = { f1, f2, f3} (shown in Figure 1 as the

green boxes) and set of OCs F̃ = { ˜f1, ˜f2} (shown in Figure 1 as the

yellow boxes). Let the feasibility constraints be given by the sets

F
˜f1
= { f1, f2} and F

˜f2
= { f2, f3}. The TCs are as follows:

f1 = [[os] L, [web] T, [ssh] O, [files] S]

f2 = [[os] L, [web] N, [ssh] O, [files] P]

f3 = [[os] W, [web] N, [ssh] O, [files] I]

For the TCs, the utilities are Uf1 = 10, Uf2 = 0, and Uf3 = 6. The

OCs are as follows:

˜f1 = [[os] L, [web] T]
˜f2 = [[os] W, [web] T]

For simplicity, let all the costs c(f , ˜f ) to be 0, so that there is essen-

tially no budget constraint. Based on the TCs assigned as shown,

the state of the network (Nf )f ∈F is (1, 1, 1). When the defender



assigns OCs as shown in Figure 1, her strategy ϕ is given by


˜f1 ˜f2

f1 1 0

f2 1 0

f3 0 1


The expected utility of the adversary (loss of the defender) when

he attacks
˜f1 or

˜f2 is respectively given by Ũ
˜f1
= (10 + 0)/2 = 5

and Ũ
˜f2
= 6/1 = 6. Thus, attacking

˜f2 leads to the highest expected

utility for the attacker.

AdversaryKnowledge andUtility Estimation. The attacker’s
awareness of the deception and the understanding of the defender’s

strategy may vary. Note that if the adversary is always able to find

the OC with highest expected utility, it is the worst case scenario

for the defender given the game is zero-sum. An attacker who is

fully aware of how the defender sends the false responses to scan

requests (via insider threats, information leakage, etc.) would have

such an ability. Formally, we define a powerful attacker to be one

who knows F , F̃ , π ,U and ϕ and chooses to attack the OC with the

(correct) highest expected utility Ũ
˜f computed through Equation

5. If the defender chooses a strategy that minimizes the expected

utility of a powerful attacker, she gets a robust strategy as the de-

fender can be assured that no matter the extent of the adversary’s

knowledge, no strategy he plays can lead to a greater loss for the

defender, in alignment with the minimax principle.

However, the attacker may not be so powerful. On the other

end of the spectrum, if the attacker is unaware of the defender’s

precise deception scheme or has a very limited understanding of the

situation such that he cannot make any meaningful inference, his

decision making would be completely dependent on the observed

configurations of the systems and some fixed preferences over OCs

in terms of the estimated expected utility. Formally, we define a

naive attacker to be one who chooses to attack an existing OC
˜f (i.e.,

one which has at least one system configured to it) with the highest

Ū
˜f where Ū

˜f is not dependent on the defender’s strategy and is

known to the defender. This is also equivalent to the case where

the attacker just has a fixed preference of the OCs. We analyze

CDGs with powerful attackers in Section 4, and CDGs with naive

attackers in Section 5.

4 OPTIMAL DEFENDER STRATEGY AGAINST
POWERFUL ADVERSARY

In this section, we compute the defender’s optimal strategy in a

CDG assuming a powerful adversary. The adversary attacks an

OC from the set argmax
˜f ∈F̃ Ũ ˜f and gets an expected utility of

max
˜f ∈F̃ Ũ ˜f , denoted in short as Ũ ∗(ϕ), where the negative value is

the defender’s expected loss. Hence, the defender aims to minimize

her loss by choosing her ϕ from the set argminϕ∈Φ Ũ
∗(ϕ).

4.1 Computational Complexity
We call the problem of finding optimal defender strategy against a

powerful adversary in a CDG as CDG-Robust .
We first investigate a special case. The following proposition

provides a tight lower bound on minϕ∈Φ Ũ
∗(ϕ).

Lemma 4.1. The expected loss of the defender when playing her
optimal strategy, is no lower than the average utility of the systems,
i.e.,

min

ϕ
Ũ ∗(ϕ) ≥ UAve(K) =

∑
f ∈F Nf Uf

|K |

Proof Sketch. Configuring the systems with different OCs ef-
fectively partitions the set K into subsets. Since the average utility
of all the systems in all these subsets is UAve(K), there exist at least
one subset whose average utility is no less than UAve(K). Therefore
the highest expected utility for the attacker, which is the maximum
average utility of all these subsets, is no less thanUAve(K). 2

Thus, even when the defender plays her optimal strategy, the

attacker’s expected utility is at leastUAve(K). Consequently, if the
inequality becomes tight for a strategy ϕ, it must be an optimal

strategy. It is easy to see that the bound becomes tight if and only

if Ũ ∗(ϕ) = Ũ
˜f (ϕ), ∀ ˜f . Clearly, this is true if and only if Ū

˜f is the

same for each
˜f set on any system, and trivially so, if only a single

OC is set on all the systems. Thus,

Corollary 4.2. If it is feasible for the defender to set the same
OC on all the systems making them all indistinguishable to the ad-
versary, doing so is an optimal strategy. Formally, if ∃ ˜f ∗ s.t. ∃ϕ∗ ∈
Φ where ϕ∗

f , ˜f ∗
= Nf ,∀f , then ϕ∗ ∈ argminϕ∈Φ Ũ

∗(ϕ).

It is possible to efficiently check if such an OC exists, by enumer-

ation. However, it may not exist, and we show that CDG-Robust is
NP-hard in general.

Proposition 4.3. CDG-Robust is NP-hard.

Proof. We prove the result via a reduction from the Partition

problem (PART ) which is known to be NP-complete. Given a multi-

set S of n positive integers that sum up to 2r , PART is the decision

problem to determine if S can be partitioned into two subsets S1

and S2 such that the sum of integers in S1 and S2 are each r . It can
be reduced to CDG-Robust as follows.

Let the input to PART be a set of integers S = {s1, . . . , sn } whose
elements sum to 2r . To construct a CDG, let the set of TCs be

F = { f1, . . . , fn } ∪ { fn+1, fn+2}, with utilities Ufi = si for each
i ∈ {1, . . . ,n} and Ufn+1

= Ufn+2
= −r . Next, let there be n + 2

systems, each having a different TC. Let the set of OCs be F̃ =

{ ˜f1, ˜f2}, with F̃fi = F̃ for each i ∈ {1, . . . ,n}, and F̃fn+1
= { ˜f1},

F̃fn+2
= { ˜f2}. Let all the costs be 0 so that the budget constraint

can be ignored. Assuming the adversary to be powerful, these

components completely define a CDG-Robust problem.

Note that, by Corollary 4.2 and the fact that

∑
f Uf = 0, we know

that the optimal strategy ϕ must have Ũ ∗(ϕ) ≥ 0. Now, suppose S
can be partitioned into subsets S1 and S2 such that the numbers in

each sum to r . Then, consider the strategy ϕ which masks the TCs

in { fi |si ∈ S1} and fn+1 with
˜f1, and masks the TCs in { fi |si ∈ S2}

and fn+2 with
˜f2. It is easy to check that Ũ

˜f1
(ϕ) = Ũ

˜f2
(ϕ) = 0 =

Ũ ∗(ϕ), making ϕ an optimal strategy. On the other hand, suppose

the defender’s optimal ϕ yields Ũ ∗(ϕ) = 0. Since
˜f1 must mask

2
A detailed proof can be found in the online appendix: http://teamcore.usc.edu/papers/

2018/App_AAMAS_ARS.pdf

http://teamcore.usc.edu/papers/2018/App_AAMAS_ARS.pdf
http://teamcore.usc.edu/papers/2018/App_AAMAS_ARS.pdf


fn+1, and
˜f2 must mask fn+2, neither of the OCs are unused. Since

Ũ ∗(ϕ) = 0, w.l.o.g., assume Ũ
˜f1
= 0. Hence, the sum of utilities of

the TCs masked with
˜f1 must be 0. Therefore, the sum of utilities

of TCs masked by
˜f2 is also 0. Then, S1 = {si |ϕfi , ˜f1

= 1}, and
S2 = {si |ϕfi , ˜f2

= 1} form a partition of S , each having sum of the

elements r . It follows that, PART should outputYES iffCDG-Robust
finds an optimal strategy ϕ with Ũ ∗(ϕ) = 0. This reduction, being

polynomial-time, proves the claim.

□

4.2 The Defender’s Optimization Problem
The defender’s optimal strategy ϕ can be computed by solving the

optimization problem given below.

min

u,ϕ
u (6a)

s.t. u
∑
f ∈F

ϕf , ˜f ≥
∑
f ∈F

ϕf , ˜f Uf ∀ ˜f ∈ ˜f (6b)

Constraints (1) ∼ (4)

The objective function in Equation (6a) minimizes the utility u
the adversary receives for the game. Equation (6b) enforces that

the adversary chooses a best response to the defender’s strategy ϕ,

where the expected utility for attacking a given
˜f is given by (5).

Constraints (1)∼(4) represent a feasible defender strategy.
This optimization problem is non-convex due to constraint (6b),

which can be linearized, to convert the optimization problem to a

MILP as follows. First, we devise an alternate representation of the

defender’s strategy ϕ, as a |K | × |F̃ | (0,1)-matrix σ , where σk, ˜f = 1

denotes system k is masked with
˜f . Further, we represent the TSN

N via a vector x, where xk ∈ F represents the TC for system k .
Then, for each TC f , we have Nf = |Kf | where, Kf = {k ∈ K |
xk = F }, and ϕf , ˜f =

∑
k ∈Kf σk, ˜f ∀f ,∀ ˜f . Hence, the alternate

representations are indeed equivalent. Then, constraints equivalent

to (1)∼(4) can be easily formulated for σ and x with an additional

constraint

∑
˜f ∈F̃ σk, ˜f = 1 ∀k ∈ K to ensure feasibility. More

importantly, equation (6b) can be reformulated as

u
∑
k ∈K

σk, ˜f ≥
∑
k ∈K

σk, ˜f Uxk ∀ ˜f ∈ F̃ (7)

The left-hand side of (7) can be seen as the sum of a set of terms

uσk, ˜f , each of which is the product of binary variable σk, ˜f and

the continuous variable u. Such an expression can be linearized by

introducing variables zk, ˜f for each k ∈ K and
˜f ∈ F̃ , and enforcing

zk, ˜f = uσk, ˜f . Consequently, we can rewrite (7) as:∑
k ∈K

zk, ˜f ≥
∑
k ∈K

σk, ˜f Uxk (8)

To enforce zk, ˜f = uσk, ˜f , we consider u ∈ [U
min ,Umax ] where

Umin = minf ∈F Uf and Umax = maxf ∈F Uf . With these bounds

on u, we then include the constraints for each z variable in the

optimization problem as follows:

Uminσk, ˜f ≤ zk, ˜f ≤ Umaxσk, ˜f (9)

u − (1 − σk, ˜f )U
max ≤ zk, ˜f ≤ u − (1 − σk, ˜f )U

min
(10)

After this conversion the optimization problem becomes a MILP.

The complete formulation can be found in the online appendix.

4.3 Greedy-Minimax Algorithm
Although we can solve the optimal ϕ via a MILP, it can still be

computationally expensive for large instances. Hence, we seek

heuristic algorithms which may be suboptimal but run fast and

perform well on average. In this section, we describe a simple

approach to sequentially assign OCs to the systems, by greedily

minimizing attacker’s maximum expected utility for the partially

built strategy at each stage. Algorithm 1 gives the pseudo-code.

Algorithm 1: Greedy-Minimax

1 minIndCost[] ← (min
˜f c(f , ˜f ))f ∈F

2 minTotCost ← ∑
f Nf ∗minIndCost[f ]

3 initializeminu∗, σbest
4 For iter = 1 . . .numIter

5 Kl ist [] ← shuffle(K)
6 initialize remB ← B, reqB ←minTotCost

7 initialize σ [], N̄ [], Ū []
8 For i = 1 . . . |K |
9 k ← Kl ist [i], f ← x[k]

10 σ [k] ← GMMAssiдn(f ,σ [], N̄ , Ū [], remB, reqB)
11 N̄ [σ [k]] ← N̄ [σ [k]] + 1

12 update(Ū [σ [k]])
13 remB ← remB − c(f ,σ [k])
14 reqB ← reqB −minIndCost[f ]
15 compute u∗ = max

˜f Ū [ ˜f ]
16 update(minu∗,u∗,σbest ,σ )
17 return σbest
18 Procedure GMMAssiдn(f ,σ [], N̄ , Ū [])
19 initialize newU ∗[]
20 For ˜f ∈ F̃f
21 If (reqB −minIndCost[f ] + c(f , ˜f ) > remB) Then
22 Continue
23 σ [k] ← ˜f

24 newU ∗[ ˜f ] ← U ∗(σ )
25 F̃best ← argmin

˜f newU
∗[ ˜f ]

26 generate ˜fbest ∼ uniRand(F̃best )
27 return ˜fbest

Greedy-Minimax starts by computing for each f ∈ F , the min-

imum cost of masking f with any feasible OC, and subsequently,

the minimum total cost of masking all the systems (Lines 1-2). Next,

σbest andminu∗ are initialized, which respectively denote the fi-

nal output strategy of the algorithm and the corresponding utility

(Line 3). Subsequently, the algorithm is conducted in a number of

iterations. In each iteration, a random shuffle of the set of systems

is obtained, referred to as Kl ist above. Subsequently, the strategy
σ which is a candidate solution corresponding to this shuffle, the



corresponding observed state of the network (N̄
˜f ) ˜f ∈F̃ , and the cor-

responding utilities (Ū
˜f ) ˜f ∈F̃ are all initialized. These are constantly

maintained as the algorithm loops through Kl ist , building the so-
lution by assigning an OC to a system one by one (Lines 8-10).

The OC to be assigned for a system is determined via the function

GMMAssiдn() which is the essence of this heuristic algorithm. The

input to this function is the TC f of the system in question, and

the currently built solution in terms of σ , N̄ , Ū , remB, reqB. Given
these, the function considers the candidate OCs in F̃ one by one,

refutes those which lead to the violation of the budget constraint

(i.e., make the resultant minimum required budget to exceed the re-

sultant remaining budget). For every other
˜f , it computes resultant

Ū
˜f if the system is masked with

˜f , and stores it in the array newU ∗

(Lines 19, 23-24). Finally, based on these, it uniformly randomly

chooses an OC from those which minimize the resultant utility

newU ∗() (Lines 25,26). Once GMMAssiдn() returns an OC
˜f , it is

assigned to the system in question, N̄
˜f , Ū ˜f are updated accordingly,

as well as the remaining budget and the minimum required (Lines

11-14). Once the loop through Kl ist is over and the full strategy

σ is built, its utility u∗ is computed, and compared withminu∗, to
updateminu∗ and σbest appropriately (Lines 15-16).

It is possible to conceive examples where this heuristic approach

does not yield a good solution on an arbitrary shuffle, even for

problem instances with small parameters. Such an example with

4 systems, 4 TCs and 2 OCs is discussed in the online appendix.

Further, we also show an example (in the online appendix) where

the solution value is Θ(|K |) times as bad as the optimal, on expo-

nentially many shuffles. This motivates getting candidate solutions

for a large number of shuffles and choosing the best among them

as described above. Since the greedy choice does not guarantee op-

timality, we also propose Soft-GMM, a slight modification of GMM

which makes assignment probabilistically, and not deterministically.

It works exactly as GMM, except Lines 25,26 — it draws fbest from

a distribution P(F̃ ) where, P( ˜f ) ∝ exp(−newU ∗[ ˜f ]).

5 OPTIMAL DEFENDER STRATEGY AGAINST
NAIVE ADVERSARY

The robust approach to solving CDGs, i.e., assuming a powerful

adversary with knowledge of ϕ, can cause the defender to not fully

realize the benefit of her informational advantage when faced with

a less powerful attacker. In particular, the adversary may value

OCs in a fixed manner that is known to the defender.
3
In this case,

the values Ū
˜f are fixed and the defender’s strategy does not affect

the adversary’s expected utility for attacking some
˜f . Importantly,

if there is no budget constraint we can solve for the defender’s

optimal strategy ϕ in polynomial time using Algorithm 2. W.l.o.g.

we assume the adversary has a strict preference ordering over F̃
as if Ū

˜f is equal for any two OCs, the sets could be merged from

the defender’s perspective, with the feasibility constraint and cost

adjusted accordingly.

Algorithm 2 begins by initializing ϕ, Γ∗ (which stores the TCs

the adversary attacks) and
˜f ∗ (the OC the adversary attacks given

3
As an example, the adversary could estimate his utility according to values derived

from the NIST National Vulnerability Database [21].

Algorithm 2: Compute defender’s optimal ϕ with fixed Ū
˜f .

1 initialize ϕ, Γ∗, ˜f ∗

2 sort(F̃ ) //descending by utility Ū
˜f

3 minUtil[] := (min
˜f Ū ˜f )f

4 For i = 1, . . . , |F̃ |
5 initialize Γ

′

6 P1:={ f |minUtil[f ] > Ū
˜fi
}

7 If P1 , ∅
8 break
9 P2:={ f |minUtil[f ] = Ū

˜fi
}

10 P3:={ f |minUtil[f ] < Ū
˜fi
and

˜fi ∈ F̃f }
11 P4:={ f |minUtil[f ] < Ū

˜fi
and

˜fi < F̃f }
12 Γ

′
:= P2

13 update(Γ
′
, P3)

14 update(Γ∗,Γ
′
,

˜f ∗, ˜fi )

15 update(ϕ,Γ∗, ˜f ∗)
16 return ϕ

ϕ). In Line 3 we compute the matrix minUtil[] which stores the

lowest utility achievable for each TC which is min
˜f ∈F̃f Ū ˜f . The For

loop in Line 4 iterates over all
˜f ∈ F̃ which is sorted descending by

Ū
˜f (Line 2) and determines for each

˜f the best set of TCs to mask if

˜f is attacked by the adversary in Lines 5 through 12. To do this, F
is split into 4 separate sets P1, P2, P3 and P4 and the set of TCs to be

masked with
˜fi is stored in Γ

′
. Note that for each f we enumerate

Nf copies for the algorithm. P1 contains all TCs which cannot be

masked with an
˜f that has Ū

˜f < Ū
˜fi
. Intuitively, if this set is non-

empty it means the defender is not able to devise a strategy ϕ such

that the adversary prefers to attack
˜fi , and hence, all subsequent

˜fi will never be preferred by the adversary. P2 (P4) contain TCs f

which must be masked (cannot be masked) with
˜fi . P3 then contains

all TCs f which can be masked with
˜fi but may also be masked

with another OC
˜fj , ˜fi . The function update(Γ

′
, P3) sorts the TCs

in ascending order and iterates over the TCs f ∈ P3 and masks all

TC f with
˜fi ⇐⇒ Uf ≤ EU (Γ′). In Line 13 update(Γ∗, Γ′ , ˜f ∗, ˜fi )

sets Γ∗ = Γ
′
and

˜f ∗ = ˜fi if EU (Γ
′) < EU (Γ∗). Finally, the function

update(ϕ, Γ∗, ˜f ∗) in Line 14 determines the OCs
˜f
′
for all f < Γ∗

given Ū
˜f ′ < Ū

˜f ∗ and the strategy ϕ is returned.

Proposition 5.1. Given fixed utilities Ū
˜f and no budget constraint,

Algorithm 2 computes the optimal strategy ϕ in O(|F | |F̃ |).

It is possible to efficiently compute the defender’s optimal strat-

egy when there is no budget constraint. When the defender has

a budget constraint, however, the question arises if her optimal

strategy can be found efficiently as well. We call this problem

CDG-Fixed and show it is NP-Hard.

Proposition 5.2. CDG-Fixed is NP-hard.



Proof. We prove the proposition via a reduction from the 0-1

Knapsack problem (0-1 KP), which is a classical NP-hard prob-

lem. Given a budget B and a set of m items each with a weight

wi and value vi , 0-1 KP is the optimization problem of finding the

subset of items Y which maximizes

∑
i ∈Y vi subject to the bud-

get constraint

∑
i ∈Y wi ≤ B. We now show that 0-1 KP can be

reduced to CDG-Fixed . For convenience, we use [m] to denote the

set {1, 2...,m} and S = ∑
i ∈[m]vi denote the sum of all utilities.

Given a 0-1 KP instance as described above, we construct a CDG

instance as follows. Let the set of TCs be F = { f1, . . . , fm }∪{ fm+1},
with utilities Ufi = vi ,∀i ∈ [m] and Ufm+1

= −W for some fixed

constantV . Note Nf = 1 ∀f ∈ F . Let the set of OCs be F̃ = { ˜f1, ˜f2},
with F̃fi = F̃ ∀i ∈ [m] and F̃fm+1

= { ˜f1}. Set the costs as c(fi , ˜f1) = 0,

c(fi , ˜f2) = wi for all i ∈ [m] and c(fm+1, ˜f1) = 0. Set Ū
˜f1
> Ū

˜f2
.

Assuming a naive adversary, these components completely define a

CDG-Fixed problem. Since fm+1 is bound to be masked by
˜f1, and

Ū
˜f1
> Ū

˜f2
, attacking

˜f1 is a dominant strategy for the adversary.

Observe that

∑
f ∈F Uf is

∑
i ∈[m]vi−V = S−V . We claim that the

optimal objective of the 0-1 KP instance is greater than S −V if and

only if the optimal defender utility in the constructed CDG-Fixed
problem, i.e.,U ∗(ϕ), is negative. We prove the⇐ direction as the⇒
is a similar proof. Let ϕ∗ be the optimal solution to the CDG-Fixed
problem. By definition, the set Y = {i : ϕ∗

fi , ˜f2
= 1} is a feasible

solution to the 0-1 KP since the cost of mapping fi to ˜f2 iswi . The

sum of all utilities of all systems is S−V whereasU ∗(ϕ∗) < 0 means

the total utilities of systems mapped to
˜f1 is less than 0, this implies

that the total utilities of systems mapped to
˜f2 is at least S −V . Note

each system mapped to
˜f2 corresponds to an item and hence, the

optimal objective of the 0-1 KP is also at least S −V .

The above claim shows that for any constant V , we can check

whether the optimal objective of the 0-1 KP is greater than S −V
by solving a CDG-Fixed instance. Using this procedure as a black-

box, we can perform a binary search to find the exact optimal

objective of the 0-1 KP with integer values within O(poly(log(S)))
steps (both S and weights are machine numbers with input size

O(log(S))). As a result, we have constructed a polynomial time

reduction from computing the optimal objective of any given 0-1 KP

to solving the CDG-Fixed problem. This implies the NP-hardness

of the CDG-Fixed problem. □

CDG-Fixed can be solved with Algorithm 2 via a modification

to the function update(Γ′ , P3) in Line 13. Given Γ
′
, we compute the

minimum budget B
′
required to mask all TCs f ∈ Γ

′
with

˜fi and

mask all TCs f ∈ P3 and f ∈ P4 with
˜fj such that Ū

˜fj
< Ū

˜fi
. If

Γ
′
= ∅, then for f ∈ P3 wemask f with ˜fi if c(f , ˜fi ) < B

′
. Assuming

P3 is sorted ascending, once the defender assigns
˜fi to a TC f she

is done. If Γ
′
, ∅, the defender must solve multiple MILPs, with

n = nΓ′ , . . . , |K | to find the best Γ
′
. Denote uΓ′ = EU (Γ′).

min

ϕ
nΓ′uΓ′ +

∑
f

ϕf , ˜f Uf (11a)

s.t.

∑
f

ϕf , ˜fi
≤ n − nΓ′ (11b)

Constraints (1) ∼ (4)

6 EXPERIMENTS
We evaluate the CDG model and solution techniques using synthet-

ically generated game instances. The game payoffs are set to be

zero-sum, and for each TC, the payoffsUf are uniformly distributed

in [1, 10]. Each OC
˜f is randomly assigned a set of TCs it can mask,

while ensuring each TC can be masked with at least one OC. To

generate the TSN, each system is randomly assigned a TC uniformly

at random. The costs c(f , ˜f ) are uniformly distributed in [1, 100]
with the budget B uniformly distributed in-between the minimum

cost assignment and maximum cost assignment. All experiments

are averaged over 30 randomly generated game instances.

6.1 Powerful Adversary - Scalability and
Solution Quality Loss
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Figure 2: Runtime Comparison and Solution Quality Com-
parison (15 Systems) - MILP and Greedy MaxiMin (GMM)
with 1000 random shuffles.

When solving for the defender’s optimal strategy ϕ strategy for

enterprise networks, it is important to have solution techniques

which can scale to large instances of CDGs. Our first experiment

compares the scalability of the MILP to the Greedy Minimax (GMM)

algorithm with 1000 random shuffles and the solution quality of

the two approaches. In Figure 2(a) we show the runtime results

with the runtime in seconds on the y-axis and the number of OCs

varied on the x-axis. The runtime for solving the MILP increases

dramatically as the number of OCs increases while GMM finishes

in under 1 seconds in all cases.

While GMM is much faster than the MILP, it is not guaranteed

to provide the optimal solution. However, our experimental results

show that empirically the solution quality loss is very small. In

Figure 2(b) we compare the solution quality of the MILP to GMM,

where the attacker’s utility is given on the y-axis and the number

of OCs are varied on the x-axis. Importantly, GMM shows a low

solution quality loss for the defender compared to the MILP with a

minimum loss of 1.76% for 12 OCs and a maximum loss of 3.40%

for 16 OCs. This experiment highlights the scalability of GMM and

shows the loss in solution quality from GMM gives a reasonable

trade-off between computational efficiency and solution quality.

An interesting feature of GMM is how often it returns the optimal

solution for the defender as the CDG game size changes. Table 1

compares the solution quality of GMM (with 1000 random shuffles)

versus the MILP for several game sizes with 10 and 20 systems

where the number of OCs are varied from 2 to 10. Interestingly,



# OCs 2 4 6 8 10

10 systems 0 0.092% 0.015% 0.028% 0.512%

Optimal Instances 30 29 29 29 25

20 systems 0 0.028% 0.615% 1.91% 3.18%

Optimal Instances 30 28 17 12 9

Table 1: Solution Quality % loss and number of optimal in-
stances for GMM versus MILP.
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Figure 3: Solution Quality Comparison (20 systems and 20
OCs) - Comparison of Hard-GMM (GMM -H) and Soft-GMM
(GMM - λ) varying the number of shuffles.

for CDGs with 10 systems, Hard-GMM is able to find the optimal

solution in a vast majority of instances (142 out of 150 instances).

However, for CDGs with 20 systems, GMM fails to recover the

optimal solution in about a third of the instances (96 out of 150).

Nevertheless, the loss of solution quality still remains low (3.18%)

even when GMM returns the optimal solution a third of the time.

We also tested the solution quality of a variation of GMM, called

Soft-GMM or GMM−λ. Instead of greedily choosing the OC with

minimax expected utility at the stage, we apply a soft-min function

[9] with parameter λ controlling the greediness of the next choice.

Figure 3 shows the solution quality of GMM (denoted as GMM-H)

and GMM−λ with varying λ values. GMM−.01 is very close to ran-

domly choosing OCs for the systems and performs poorly compared

to larger λ values, indicating that GMM is an effective heuristic

and performs much better than random assignment. Importantly,

the randomness in GMM−λ leads to a potential of finding better

strategies than GMM since GMM-Hard is restricted to a limited

strategy space and GMM−λ is not. This can be seen by comparing

the results for GMM-Hard and GMM-10 where the latter outper-

forms the solution quality achieved with GMM-Hard at 8000 and

16000 shuffles. We defer further investigation to future work.

6.2 Comparing Solutions for Different Types of
Adversaries

Our last experiment compares how the optimal strategies for the

two adversary models (powerful versus naive) perform in the oppo-

site case. Figure 4(a) compares the solution quality of the MILP in

Section 4 to Algorithm 2 when the adversary is assumed to know ϕ
with the attacker’s utility on the y-axis and the number of systems

varied on the x-axis. This figure highlights that for the powerful

adversary the MILP performs significantly better than Algorithm 2

(except for 5 systems) and shows the risk of underestimating the

adversary’s information when devising the defender’s strategy ϕ.
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Figure 4: Solution Quality Comparison (10 OCs) - In (a) we
show the solution quality of the two types of defender strate-
gies against a powerful adversary. In (b) we show the solu-
tion quality of the strategies against a naive adversary.

In Figure 4(b) we compare the solution quality of Algorithm 2 to the

MILP when the adversary is assumed to have fixed utilities. As the

figure shows, the improvement in utility is dramatically higher for

Algorithm 2 compared to the MILP. The reason for this difference

lies in Algorithm 2 leveraging the adversary’s fixed preferences

over OCs and minimizes the value of systems masked with the OC

the adversary will attack. The MILP, however, minimizes the worst

case utility given the adversary may attack any OC and hence, fails

to leverage the defender’s advantage to a high benefit.

7 CONCLUSION AND FUTUREWORK
In this paper, we study the problem of how a network administrator

should respond to scan requests from an adversary attempting to in-

filtrate her network. We show that computing the optimal defender

strategy against a powerful adversary is NP-hard and provide an

MILP to solve for her optimal strategy. Additionally, we provide

a greedy algorithm which quickly finds good defender strategies

and performs well empirically. We then show that computing the

optimal strategy against a naive attacker is still NP-hard given a

budget constraint. Finally, we give extensive experimental analysis

demonstrating the effectiveness of our approaches.

Looking to future work, there are several important problems

that need to be tackled from CDGs of which we highlight two.

First, we assume the adversary only attacks a single system, but in

practice, adversaries can attack multiple systems which effects the

defender’s optimal response scheme. Secondly, our work considers

a powerful adversary or onewith a fixed set of preferences over OCs.

In reality, an adversary’s knowledge of the defender’s strategy lies

in-between these two extremes in the information spectrum. For

future work, it will be important to model the adversary’s partial

information and how it alters the defender’s response scheme.
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