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Abstract. Uncertainty is one of the key challenges in Stackelberg
security games (SSGs) — a well known class of games which have
been used to solve various real-world problems in security domains
such as airport security and wildlife protection. In these domains, se-
curity agencies (defender) are generally uncertain about underlying
characteristics of attackers such as the attackers’ preference or behav-
ior. Previous work in SSGs has proposed different learning methods
to reduce uncertainty about attackers based on historical attack data.
However, since these learning algorithms depend on the attack data,
a clever attacker can manipulate its attacks to influence the learning
outcome. Such deception of the attacker could lead to ineffective de-
fense strategies that favor the attacker.

This work studies the strategic deception of the attacker with pri-
vate type information in a repeated Bayesian Stackelberg security
game (RBSSG) setting. We investigate a basic deception strategy,
named imitative attacker deception — that is the attacker pretends
to have a different type and consistently plays according to that de-
ceptive type throughout the whole time horizon. We provide four
main contributions. First, we present a detailed equilibrium computa-
tion and analysis of standard RBSSGs with a non-deceptive attacker.
To our knowledge, our work is the first to present an exact algo-
rithm to compute an RBSSG equilibrium. Second, we introduce a new
counter-deception algorithm, built on our equilibrium computation
of standard RBSSGs, to address the attacker’s deception. Third, we
introduce two new heuristics to overcome the computational chal-
lenge of the exact algorithm: one heuristic limits the number of time
steps to look ahead and the other limits the number of observational
attack histories in consideration. Fourth, we conduct extensive ex-
periments, showing the significant loss of the defender and benefit of
the attacker as a result of the attacker deception. We also show that
our counter-deception algorithm can help in substantially diminish-
ing the impact of the attacker’s deception on the players’ utility.

1 Introduction
Stackelberg security games (SSGs) have been widely applied for solv-
ing many real-world security problems. There have been several de-
ployed applications of SSGs in security domains such as ferry protec-
tion and wildlife conservation [4, 22]. One of the key characteristics
in these domains is the defender’s uncertainty about the attackers’
preferences and behaviors. Through repeated interactions with the
attacker, the defender can collect observational attack data to gain
knowledge about these characteristics of the attacker. Such knowl-
edge is then incorporated into generating an effective defense strat-
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egy [1, 3, 8, 10, 11, 13, 15, 16, 19, 24]. In wildlife security, for ex-
ample, rangers have to conduct patrols within a conservation area to
protect animals from poachers. During patrols, rangers can collect
poaching signs such as snares and use the collected poaching data to
build a behavior model of the poachers. The rangers then design pa-
trols, assuming the poachers follow the learnt behavior model [4, 16].

However, since the defender relies on the historical attack data, a
clever attacker can manipulate its attacks to fool the defender’s learn-
ing algorithms. That is, the attacker would choose actions that do not
result in the highest immediate reward, but influence the learning out-
come to a long-term benefit for the attacker. The deceptive attacker
aims at finding an optimal strategic deception that maximizes its to-
tal accumulated expected reward over time. Such deception of the
attacker could deteriorate the effectiveness of the defender’s strat-
egy. Note that, in standard SSGs, the attacker is assumed to be non-
manipulative in the sense that it only attempts to maximize its imme-
diate reward, regardless of the defender’s learning.

Motivated by this deception challenge, this work studies a basic
deception strategy of the attacker, named imitative attacker decep-
tion in RBSSGs. In RBSSGs, the defender is uncertain about the at-
tacker type. However, he knows a prior distribution over the attacker
types. At each time step, the defender commits to a mixed strategy
and the attacker responds accordingly. The attacker responses at pre-
vious time steps are then used to update the defender’s belief about
the attacker types at current step. The defender then determines a
new defense strategy based on his updated belief. To influence the
defender’s learning outcome towards the attacker’s benefit, the at-
tacker can imitate a type (which may be different from its true type)
and consistently plays the game according to that type.

In this work, we provide four main contributions. First, we propose
a new game-theoretic algorithm to compute an exact equilibrium
of the standard RBSSGs in which the attacker is non-manipulative.
This computation equilibrium serves as a basis for us to develop new
counter-deception algorithms to address the attacker’s deception. To
our knowledge, this is the first exact algorithm for computing an
RBSSG equilibrium. Our algorithm leverages the linearity property of
the players’ utility to provide a Mixed Integer Linear Program (MILP)
to compute an equilibrium of the game.

Second, to address the attacker imitative deception, we introduce a
new game-theoretic algorithm, which is an extension of the MILP for-
mulation for standard RBSSG equilibrium, to find an optimal counter-
deception strategic plan for the defender. In our algorithm, the de-
fender chooses a defense plan designed based on his observations
about the attacker’s historical attack activities. Third, we introduce
two new heuristics: limited-look-ahead and limited-memory-length
heuristics. The main ideas are to only consider a small number of
future time steps or a small number of observation histories when



computing the defender’s strategic plan. Therefore, our heuristics can
overcome the challenges of an exponential number of observation
histories and future possibilities in the proposed exact algorithm.

Fourth, we provide a detailed analysis on both the runtime per-
formance and solution quality of our proposed algorithms. We show
that the attacker’s imitative deception could cause a significant loss
in utility for the defender if the defender does not address the at-
tacker deception. Our results also show that our counter-deception
game-theoretic algorithm helps in reducing such loss drastically.

2 Related Work
Most relevant to our work is the extensive recent study on deception
(on the attacker side) in SSGs [6, 17, 18] or more generally Stackel-
berg games [7]. In [6, 7, 17], in particular, they also focused on the
follower’s imitative deception. However, the existing work all con-
sidered single-shot Stackelberg games whereas we study the attacker
deception in repeated Bayesian Stackelberg games. The work in [18]
considered repeated security games but in a simultaneous game set-
ting. This existing work then focused on computing and analyzing
the Bayesian Nash equilibrium of the game. Our work, on the other
hand, studies the attacker deception in a Stackelberg (sequential-
move) setting, which has completely different characteristics.

Our work contributes to the rich literature on understanding decep-
tion in security domains [5, 21]. In particular, a line of recent work
examines deception from the defender’s side and study how to mis-
lead the attacker’s decision by exploiting the defender’s knowledge
regarding uncertainties [9, 20, 23, 25]. However, our focus here is
to study the natural counterpart, i.e., attacker deception. Our work
also relates to the causative-attack problem in adversarial learning in
which a data generator intentionally transforms the training data to
trick machine learning algorithms of a learner [2, 14]. While exist-
ing work in adversarial learning mainly focuses on prediction accu-
racy, both the defender and attacker in our deception problem face
a decision making problem of optimizing their own utilities and the
defender has the learn to make his optimal decisions.

On the technical side, our first technical result presents an algo-
rithm for solving a repeated Bayesian Stackelberg security game
(RBSSG) based on optimization programs. In, [15], they considered
a similar problem but used the Monte Carlo tree search to design a
heuristic, and possibly sub-optimal, algorithm whereas our algorithm
is exact. To our knowledge, this is the first exact algorithm for solv-
ing RBSSGs. Our work is also related to the large literature for solv-
ing extensive games since repeated Stackelberg games can be viewed
as a special class of extensive-form games. Indeed, our accelerated
heuristic algorithm, limited-look-ahead, are inspired by the limited
look ahead idea used in extensive form games (see, e.g., [12]).

3 Repeated Bayesian Stackelberg Security Games
We first provide preliminaries of standard repeated Bayesian Stackel-
berg security games (RBSSGs) in which the attacker is non-deceptive
— the attacker plays a myopic best response at each time step. We
then present our new algorithm to compute an exact RBSSG equilib-
rium. Table 1 summarizes notations used throughout our paper.

3.1 Preliminaries
In Stackelberg security games (SSGs), there is a set of N impor-
tant targets [N ] = {1, 2, . . . , N}. A defender has to assign a lim-
ited number of security resources to the targets, denoted by K with

Notation Description
N Number of targets
T Number of time steps
K Number of security resources

{1, 2, . . . ,Λ} Set of attacker types
Rdi , P

d
i Defender’s reward and penalty at target i

Rλi , P
λ
i Attacker type λ’s reward and penalty at i

pλ Prior probability of attacker type λ
x = {xi}Ni=1 xi is the defender’s coverage probability at i

ht Attack history at time step t: (i1, . . . , it−1)

ht′....t Partial attack history (it′ , . . . , it−1)

π = {x(ht)} Defender’s strategy plan: x(ht) is
defender’s mixed strategy w.r.t ht, for all ht

as = {asλ}λ asλ = {asλt }Tt=1 is an attack sequence
of type λ; asλt = iλt is the attacked target at t

asλ1...t An attack sequence of type λ up to step t
Λ(ht) Set of attacker types λ s.t. asλ1...t−1 ≡ ht.

β(λ | ht) Defender’s updated belief on attacker types
EUd(x, i) Defender’s immediate expected utility at i
EUλ(x, i) Type λ’s immediate expected utility at i
EUd,tλ Abbreviation of EUd(x(ht), i

λ
t )

Udt (ht) Abbreviation of defender’s total expected utility:
Udt (x(ht), {iλt }λ,ht) w.r.t attack history ht

Table 1: Summary of important notations

K < N , to protect these targets. A pure strategy of the defender is
an allocation of the security resources to the targets. A mixed strat-
egy of the defender is a probabilistic distribution over all of his pure
strategies. In this work, we focus on the scenario in which there
is no scheduling constraint on the defender’s strategy. In this case,
a mixed strategy of the defender can be equivalently represented
as a marginal coverage probability vector, x = {x1, x2, . . . , xN},
where xi ∈ [0, 1] is the probability the defender protects target i and∑
i xi = K. In SSGs, an attacker, who is aware of x, responds by

attacking a target with the highest expected utility for the attacker.
In the Bayesian setting, there is a set of the attacker types:
{1, 2, . . . ,Λ}. Each type λ is associated with a prior probability
pλ ∈ [0, 1] where

∑
λ pλ = 1. At the beginning, a type of the

attacker is randomly drawn from this prior distribution to play the
game. The attacker knows its true type. On the other hand, the de-
fender does not know which attacker type is playing. However, the
defender knows the prior distribution over the attacker types {pλ}.
When the attacker of type λ attacks target i, if the defender is pro-
tecting that target, then the attacker receives a penalty of Pλi while
the defender gets a reward of Rdi . Conversely, if the defender is not
protecting i, then the attacker obtains a reward of Rλi > Pλi and the
defender receives a penalty of P di < Rdi . Given a mixed strategy x
of the defender, when the attacker attacks target i, the attacker (of
type λ) and defender’s expected utility can be formulated as follows:

EUd(x, i) = xiR
d
i + (1− xi)P di

EUλ(x, i) = xiP
λ
i + (1− xi)Rλi

In the repeated setting, the game has T time steps. At each
step t, the defender chooses a mixed strategy to play and the at-
tacker chooses to attack a target in response. We denote by ht =
{i1, i2, . . . , it−1} the attack history at step t with it′ is the attacked
target at time step t′ ≤ t − 1. A strategy plan of the defender con-
sists of all of his mixed strategies π = {x(ht)} with respect to all
attack histories {ht}. An attack sequence of the attacker of type λ is



denoted by asλ = {iλ1 , iλ2 , . . . , iλT } where iλt is the attacked target at
step t. Given (π, {asλ}λ), the defender’s total expected utility can
be computed using backward induction as follows:

At time step T , given an attack history hT , the defender’s total
expected utility is computed as follows:

UdT (x(hT ), {iλT }λ,hT ) =
∑

λ
β(λ | hT )EUd(x(hT ), iλT )

which is an expectation over all attacker types. The defender’s up-
dated belief, {β(λ | hT )}Λλ=1, which is a posterior distribution over
attacker types given the observation history hT , is computed using
the Bayes approach as follows:

β(λ | hT ) ∝ pλ if hT ≡ {iλ1 , iλ2 , . . . , iλT }
β(λ | hT ) = 0, otherwise.

At time step t < T , given an attack history ht, the defender’s total
expected utility is computed as follows:

Udt (x(ht), {iλt }λ,ht) =
∑

λ
β(λ | ht)EUd(x(ht), i

λ
t )

+
∑

λ
β(λ | ht)Udt+1(x(ht, i

λ
t ), {iλt+1}λ, (ht, iλt ))

which is the sum of two terms: (i) the first term is the immediate
expected utility as a result of the pair (x(ht), {iλt }λ) at current step
t; and (ii) the second term is the future expected utility. The updated
belief β(λ | ht) is computed similar to β(λ | hT ).

A key assumption of RBSSGs is that the attacker is myopic. That
is, the attacker attacks a target at which the attacker’s immediate
expected utility is highest. Based on this assumption and the com-
putation of the defender’s total expected utility, we can define the
repeated Bayesian Stackelberg equilibrium of the game.

Definition 1 (Repeated Bayesian Stackelberg Equilibrium). A pair
of strategies, (π∗,as∗(π∗)) , forms an equilibrium if and only if:

• Attacker plays a myopic best response: for any x,

asλ,∗t (x) ∈ argmax
i

EUλ(x, i), ∀λ

• Defender commits to the best strategy plan:

x∗(ht) ∈ argmax
x

Udt (x, {asλ,∗t (x)}λ,ht), ∀ feasible ht

An attack history ht = {i1, i2, . . . , it−1} is feasible if it matches an
attacker type’s sequence of myopic best responses up to t − 1. That
is, there is a type λ such that it′ ∈ argmaxiEU

λ(x(ht′), i) where
the history ht′ = {i1, i2, . . . , it′−1}, ∀t′ ≤ t.

3.2 Equilibrium Computation

According to Definition 1, finding an equilibrium of the game in-
volves multiple nested optimization problems, which are not easy to
solve. In this section, we show that these nested optimization prob-
lems can be merged into one single mixed integer linear program. We
first present Lemma 1, showing that given a fixed updated belief, the
defender’s total expected utility at each time step is a linear combi-
nation of multiple separate terms. Each term refers to the defender’s
immediate expected utility with respect to the defender’s mixed strat-
egy and the attacker’s attack choice at that time step.

Lemma 1. Let’s suppose the defender and attacker play (π,as =
{asλ}λ). At each step t, given a feasible attack history ht, the de-
fender’s total expected utility can be represented as follows:

Udt (ht) =
∑
λ

β(λ | ht)
T∑
t′=t

EUd,t
′

λ (1)

where Udt (ht) is the abbreviation of the total expected utility
Udt (x(ht), {iλt }λ,ht) and EUd,t

′

λ is the abbreviation of the imme-
diate expected utility EUd(x(ht′), i

λ
t′) with respect to the type λ.4

The attack history ht is feasible if ht ≡ {iλ1 , . . . , iλt−1} for some λ.

Proof. We prove the statement using backward induction. We can
easily show that Equation (1) is correct when t = T . Suppose that (1)
holds true for some t+ 1 ≤ T , we will show that it is true for t′ = t.

At time step t, given a feasible history ht, we denote by Λ(ht) =
{λ : ht ≡ (iλ1 , . . . , i

λ
t−1)} the set of attacker types which have

the sequence of attacks before t identical to ht. We also denote by
Z(ht) = {iλt : λ ∈ Λ(ht)} the set of targets which are chosen to
attack at time step t by the attacker types in Λ(ht). The defender’s
total expected utility is computed as follows:

Udt (ht) =
∑

λ∈Λ(ht)

β(λ | ht)EUd,tλ +
∑

λ∈Λ(ht)

β(λ | ht)Udt+1(ht, i
λ
t )

=
∑

λ∈Λ(ht)

β(λ | ht)EUd,tλ︸ ︷︷ ︸
first term

+
∑

i∈Z(ht)

 ∑
λ∈Λ(ht,i)

β(λ | ht)

Udt+1(ht, i)

︸ ︷︷ ︸
second term

in which the first term accounts for the immediate expected utility
and the second term accounts for the future expected utility. Since (1)
is true for t+ 1, this second term can be reformulated as:

∑
i∈Z(ht)

 ∑
λ∈Λ(ht,i)

β(λ | ht)

 ∑
λ∈Λ(ht,i)

β(λ | ht, i)
T∑

t′=t+1

EUd,t
′

λ


Note that, the defender’s belief at each step can be updated using the
Bayesian approach, as shown below:

β(λ | ht) =
pλ∑

λ′∈Λ(ht)

pλ′
, ∀λ ∈ Λ(ht)

β(λ | ht, i) =
pλ∑

λ′∈Λ(ht,i)

pλ′
, ∀λ ∈ Λ(ht, i)

As a result, the second term can be reformulated as follows:

∑
i∈Z(ht)

������
∑

λ′∈Λ(ht,i)

pλ′∑
λ′∈Λ(ht)

pλ′


 ∑
λ∈Λ(ht,i)

pλ

������
∑

λ′∈Λ(ht,i)

pλ′

T∑
t′=t+1

EUd,t
′

λ


=

∑
i∈Z(ht)

∑
λ∈Λ(ht,i)

pλ∑
λ′∈Λ(ht)

pλ′

T∑
t′=t+1

Ud,t
′

λ

=
∑

λ∈Λ(ht)

β(λ | ht)
T∑

t′=t+1

Ud,t
′

λ

Finally, by combining the first term and the reformulation of the sec-
ond term, we obtain Equation (1) for time step t.

4 We use these abbreviations when the context is clear for simplification.



Based on Lemma 1, we introduce the MILP (2–9) which aims at
maximizing the defender’s total expected utility at time step t = 1.
As we prove later, (2–9) returns an equilibrium of the game. Essen-
tially, this MILP has the following variables:

• EUd,tλ : represents the defender’s immediate expected reward at
step t with respect to the attacker type λ.

• HUλt : is the attacker’s immediate highest expected utility at t.
• zλt (i): the binary variable which represents if the attacker type λ

attacks target i at step t (i.e., zλt (i) = 1) or not (i.e., zλt (i) = 0).
• {xλt (i)}i: represents the defender strategy that type λ faces at t.
• {xi(ht)}: refer to the defender’s strategy plan.

max
∑

λ
pλ
∑T

t=1
EUd,tλ (2)

s.t. HUλt ≥ EUλ(xλt , i), ∀λ, t, i (3)

HUλt ≤ EUλ(xλt , i) + (1− zλt (i))M, ∀λ, t, i (4)

EUd,tλ ≤ EUd(xλt , i) + (1− zλt (i))M, ∀i (5)

∀ht = (i1, i2, . . . , it−1) and ∀i ∈ [N ] :

xλt (i)≤xi(ht)+(t−1−
∑

t′<t
zλt′(it′))M (6)

xλt (i)≥xi(ht)−(t−1−
∑

t′<t
zλt′(it′))M (7)∑

i
zλt (i) = 1, zλt (i) ∈ {0, 1}, ∀λ, t, i (8)∑
i
xi(ht) ≤ K,xi(ht) ∈ [0, 1], ∀(ht, i) (9)

Constraints (3–4) guarantee that HUλt is the immediate highest ex-
pected utility for the attacker type λ and the attacker attacks target
i at step t (i.e., zλt (i) = 1) only if i is its myopic best response.
Constraint (4) indicates that the immediate expected utility of the de-
fender, EUd,tλ , is equal to the defender’s expected utility at target i
if the attacker type λ attacks this target at step t. Constraint (6–7)
ensures that the defender strategy which the type λ faces at t is the
same as the defender strategy with respect to the attack history ht
if the attacker’s sequence of attacks matches ht (i.e., λ ∈ Λ(ht) or
zλt′(it′) = 1, ∀t′ < t). Constraints (8–9) represent feasibility condi-
tions on the players’ strategies. Finally, M is a very large constant.

Theorem 1. The MILP (2–9) returns an equilibrium of the game.

Proof. We prove this statement using forward induction. It is obvi-
ous that (2–9) returns the best strategy of the defender at time step
t = 1 since (2–9) aims at maximizing the defender’s total expected
utility at t = 1. Suppose that this best-strategy statement is true
with all t′ ≤ t for some t, we show that it holds true for t + 1.
Given a fixed partial strategy plan π1...t = {x∗(ht′)} where t′ ≤ t,
the partial sequence of best-response attacks for each attacker type
λ, asλ,∗1...t = {iλ,∗1 , . . . , iλ,∗t }, can be predetermined. We denote by
Ht+1 = {ht+1 : ht+1 ≡ asλ,∗1...t, for some λ} the set of all myopic-
best-response histories of all attacker types prior to time step t+ 1.

As a result, the objective of the MILP (2–9) consists of two terms:
(i) the first term

∑
λ pλ

∑t
t′=1 U

d,t′

λ is fixed; and (ii) the second term∑
λ pλ

∑T
t′=t+1 U

d,t′

λ can be decomposed as follows:

∑
λ

pλ

T∑
t′=t+1

Ud,t
′

λ =
∑

ht+1∈Ht+1

∑
λ∈Λ(ht+1)

pλ

T∑
t′=t+1

Ud,t
′

λ

=
∑

ht+1∈Ht+1

 ∑
λ′∈Λ(ht+1)

pλ′

 ∑
λ∈Λ(ht+1)

β(λ | ht+1)

T∑
t′=t+1

Ud,t
′

λ



in which each term only depends on the history ht+1. Therefore, the
MILP (2–9) can be decomposed into multiple following MILPs, each
maximizes the defender’s total expected utility at ht+1.

max
∑

λ∈Λ(ht+1)

β(λ | ht+1)

T∑
t′=t+1

Ud,t
′

λ

s.t. constraints (3-9) are satisfied w.r.t t′ ≥ t+ 1.

Each of these MILPs returns a best strategy of the defender with re-
spect to an attack history ht+1 ∈ Ht+1.

4 Attacker Imitative Deception and An Example
Since the defender’s equilbrium strategy plan is designed for han-
dling a myopic (non-manipulative) attacker, this plan may be vulner-
able against a manipulative attacker. That is, the attacker can play
deceptively to mislead the defender about the attacker’s true type. In
this work, we focus on a basic imitative deception, i.e., the attacker
pretends to have a different type and plays consistently according to
that type in the whole time horizon. The attacker’s goal is to lead
the defender to learning a wrong posterior distribution over attacker
types, which eventually benefits the attacker. In particular, given the
defender’s equilibrium strategy plan, π∗, the total expected utility of
the attacker type λ for mimicking a type λ′ is computed as follows:∑T

t=1
EUλ(x∗(hλ

′
t ), iλ

′
t )

where iλ
′
t is the best response of the attacker type λ′ at step t and

hλ
′
t ≡ (iλ

′
1 , . . . , i

λ′
t−1) is the sequence of best responses of attacker

type λ′ upto step t − 1. The attacker type λ will iteratively search
through the set of the attacker types to find a deceptive type λ′ to
imitate so as to maximize its total expected utility. Example 1 shows
that the attacker obtains a significant benefit while the defender suf-
fers a significant loss due to the attacker’s deception.

Example 1. Let’s consider a simple 2-target games with two at-
tacker types and two time steps. The prior distribution over the at-
tacker types is {0.5, 0.5}. The game payoff is shown in Table 2. Each

Target 1 Target 2
Rewards 2, 2, 3 6, 8, 9
Penalties -8, -2, -4 -10, -8, -1

Table 2: An example of a 2-target game.

cell represents a payoff tuple of the defender, the attacker type 1, and
type 2, respectively. For example, at target 1, the reward and penalty
of the defender are 2 and −8, respectively. The reward and penalty
of attacker type 1 and 2 are (2,−2) and (3,−4), respectively. The
equilibrium strategies of the defender are determined as follows:

1. At step 1, the defender plays the mixed strategy (.2353, .7647).
2. If the defender observes the attacker attacks target 1 at step 1,

then the defender plays (.5, .5) at step 2.
3. If the defender observes the attacker attacks target 2 at step 1,

then the defender plays (.2353, .7647) at step 2.

Non-deceptive attacker. If the attacker plays non-deceptively, the
attacker type 1 will attack target 1 since its expected utility at target
1 is 2× (1− 0.2353) + (−2)× 0.2353 = 1.0588 which is greater
than that at target 2, which is 8× (1− 0.7647) + (−8)× 0.7647 =
−4.2352. On the other hand, the attacker type 2 will attack target 2.



As a result, at the end of time step 1, the defender can infer that
type 1 is playing if he observes target 1 is attacked. Otherwise, if he
observes target 2 is attacked, the defender knows type 2 is playing.
Thus, the defender can choose an optimal defense strategy at step 2
according to his updated belief, which is (.5, .5) if he observes that
target 1 is attacked and (.2353, .7647), otherwise.

Consequently, the defender obtains a total expected utility of
−1.5883 while the attacker type 1 and type 2 receive a total expected
utility of 1.0588 and 2.706, respectively. The attack sequence of type
1 is (1, 2) of attacking target 1 at step 1 and attacking target 2 at
step 2. The attack sequence of type 2 is (2, 2).

Deceptive attacker. Let’s consider what happens if the attacker
plays deceptively. First, Type 1 has no incentive to play deceptively.
In fact, if Type 1 pretends to be type 2 (which means type 1 will play
the attack sequence (2, 2), Type 1 would receive a total expected
utility of (8× (1−0.7647)+(−8)×0.7647)+(8× (1−0.7647)+
(−8) × 0.7647) = −8.4704 < 1.0588 where 1.0588 is the total
expected utility of Type 1 if he plays non-deceptively.

On the other hand, Type 2 would like to pretend to be Type 1.
Indeed, if Type 2 mimics Type 1 (which means Type 2 would play the
attack sequence (1, 2)), the total expected utility which Type 2 would
receive is: (3× (1− 0.2353) + (−4)× 0.2353) + (9× (1− 0.5) +
(−1) × 0.5) = 5.3529 > 2.706 where 2.706 is the total expected
utility that Type 2 would receive if playing non-deceptively.

As a result, since both attacker types play the attack sequence of
(1, 2), the defender would receive a total utility of (2 × 0.2353 +
(−8) × (1 − 0.2353)) + 6 × 0.5 + (−10) × (1 − 0.5) = −7.647
which is much less than −1.5883.

5 Defense against Imitative Attacks
To address the challenge of the attacker’s imitative deception, we de-
sign a carefully-tuned defender strategy plan that takes into account
the attacker’s deception. The goal of the defender is to find an optimal
strategy plan that maximizes the defender’s total expected utility. The
problem can be formulated as the following Mixed Integer Quadratic
Program (MIQP) which is an extension of the MILP (2-9):

max
∑

λ′

(∑
λ
pλq(λ, λ

′)
)∑T

t=1
EUd,tλ′ (10)

s.t. Uλ ≤
∑T

t=1
EUλ,tλ′ + (1− q(λ, λ′))M, ∀λ, λ′ (11)

Uλ ≥
∑T

t=1
EUλ,tλ′ , ∀λ, λ′ (12)

EUλ,tλ′ ≤ EUλ(xλ
′
t , i) + (1− zλ

′
t (i))M, ∀λ, λ′, t, i (13)

EUλ,tλ′ ≥ EUλ(xλ
′
t , i)− (1− zλ

′
t (i))M, ∀λ, λ′, t, i (14)∑

λ′
q(λ, λ′) = 1, q(λ, λ′) ∈ {0, 1}, ∀(λ, λ′) (15)

Constraints (3-9) are satisfied. (16)

where the objective is non-linear. In addition to the variables from
(2-9), this MIQP has the following additional variables:

• q(λ, λ′): represents the deception choice of type λ; q(λ, λ′) = 1
if type λ pretends to be type λ′ and q(λ, λ′) = 0, otherwise.

• Uλ: is the optimal total expected utility of type λ.
• EUλ,tλ′ : is the immediate expected utility of type λ at step t if this

type pretends to be type λ′.

Constraints (11–12) ensure each type λ chooses the best deceptive
type to mimic. Constraints (13–14) guarantee that if type λ pretends

to be type λ′, the type λ will receive an immediate expected utility at
each t which depends on (i) the defense strategy that type λ′ faces at
t; and (ii) the corresponding myopic best response of type λ′.

In the objective (10), the factor
(∑

λ pλq(λ, λ
′)
)

is essentially the
probability the defender faces the myopic-best responses of type λ′.
Therefore, the objective (10) is the defender’s total expected utility
and the MIQP (10–16) returns an optimal defender strategy plan.

Mixed Integer Linear Program Conversion. To convert this
MIQP into a MILP, we introduce a new variable, v(λ, λ′) =
q(λ, λ′)

∑T
t=1 EU

d,t
λ′ , with the following additional constraints:

v(λ, λ′) ≤
T∑
t=1

EUd,tλ′ + (1− q(λ, λ′))M, ∀λ, λ′ (17)

v(λ, λ′) ≥
T∑
t=1

EUd,tλ′ − (1− q(λ, λ′))M, ∀λ, λ′ (18)

v(λ, λ′) ≥ −q(λ, λ′)M, ∀λ, λ′ (19)

v(λ, λ′) ≤ q(λ, λ′)M, ∀λ, λ′ (20)

where constraints (17–18) guarantee that v(λ, λ′) =
∑T
t=1 EU

d,t
λ′

if type λ pretends to be type λ′ (q(λ, λ′) = 1). On the other hand,
constraints (19–20) ensure that v(λ, λ′) = 0 if q(λ, λ′) = 0.

Given the new variables {v(λ, λ′)}, we can convert the non-linear
objective in (10) to the following linear objective:∑

λ′

∑
λ

pλv(λ, λ′)

Overall, solving (10–16) is computationally expensive since the
MILP involves an exponential number of attack histories and future
possibilities. Therefore, we propose the following two accelerated
heuristics: (i) limited-history-length heuristic — we limit the length
of historical attack sequences on which the defender’s strategies de-
pend on. That is, the defender’s strategy at each step t only depends
on a truncated attack history h(t−δT+1):t = {it−δT , . . . , it−1}
where δT is the length of historical attacks in consideration; and (ii)
limited-look-ahead heuristic — we limit the number of future time
steps to consider. The two heuristics are elaborated in next sections.

5.1 Limited-History-Length Heuristic

Given a limited history length δT , the problem of finding an optimal
strategy plan for the defender can be represented as a MILP similar to
(10–16) excepts the constraints (6 – 7). In particular, we replace these
two constraints by the following two constraints: ∀h(t−δT+1):t,

xλ
′
t (i) ≤ xi(t,h(t−δT+1):t) + (δT −

∑
t−δT≤t′≤t−1

zλ
′

t′ (it′))M

xλ
′
t (i) ≥ xi(t,h(t−δT+1):t)− (δT −

∑
t−δT≤t′≤t−1

zλ
′
t′ (it′))M

Here, {xi(t,h(t−δT+1):t)} is the defender strategy at step t with re-
spect to the truncated history h(t−δT+1):t. The above two constraints
guarantee that the strategy {xλ

′
t (i)} which the attacker type λ′ faces

at step t is the defender strategy {xi(t,h(t−δT+1):t)} if the se-
quence of best responses of type λ′ in the previous δT steps matches
the truncated attack history h(t−δT+1):t = {it−δT , . . . , it−1} (i.e.,
zλ

′
t′ (it′) = 1 for all t′ ∈ {t− δT, . . . , t− 1}).



5.2 Limited-Look-Ahead Heuristic
The overview of the limited-look-ahead heuristic is illustrated in
Algorithm 1. Essentially, Algorithm 1 divides the time horizon
{1, 2, . . . , T} into multiple time blocks; each block consists of
δT0 +1 time steps: {1, . . . , δT0 +1}, {δT0 +2, . . . , 2∗δT0 +2} . . . .
The algorithm then iteratively computes the defender’s strategies
within each time block based on a modification of the MILP (10 –
16). In this modified MILP, the total number of time steps is set to
that time block only while the defender strategies in previous time
blocks are pre-computed in the previous iteration of the algorithm.

Algorithm 1: Limited-Look-Ahead Heuristic

1 T : total number of steps, δT0: limited number of future steps;
2 Initialize t = 1 and partial strategy plan π∗1...t−1 = ∅;
3 while t ≤ T do
4 Set δT = δT0;
5 if t+ δT0 > T then δT = T − t;
6 Solve MILP (10–16) with a fixed partial plan π∗1...t−1 and

total δT + 1 steps (t, . . . , t+ δT ) to consider;
7 Obtain π∗1...t+δT = π∗1...t−1 ∪ {x∗i (t′,ht′)}t+δTt′=t ;
8 Update t = t+ δT + 1;

Since the strategies in previous time blocks are precomputed and
fixed, it results in fixed sequences of best responses of attacker types
prior to the current time blocks. As a result, the total number of attack
histories considered in the modified MILP is O(Λ×NδT0).

6 Experiments
In our experiments, we evaluate both the solution quality and runtime
performance of our proposed algorithms. We focus on analyzing the
loss of the defender and the benefit of the attacker in terms of ex-
pected utility as the result of the attacker deception. The rewards and
penalties of the players are generated uniformly at random within
the range of [1, 10] and [−10,−1], respectively. The prior distribu-
tion over the attacker types are generated uniformly at random. We
examine games with (i) three attacker types (2, 3, and 4 time steps);
and four attacker types (2 and 3 time steps). We compare the players’
utilities for playing strategies computed in three scenarios:

• The attacker is deceptive and the defender takes into account the
attacker’s deception. Five algorithms are evaluated: Optimal —
the players’ strategies are computed by the exact algorithm (10–
16); LA 1-Step and LA 2-Step — the players’ strategies are gen-
erated based on the limited-look-ahead heuristic with 1 step and 2
steps to look ahead, respectively; and LM 1-Step and LM 2-Step
— the limited-memory-length heuristic is used with 1 step and 2
steps of observation history to consider.

• The attacker is non-deceptive and the defender also assumes so
(Non-Dec). The defender’s strategies are generated based on the
MILP introduced in Section 3.2.

• The attacker is deceptive while the defender assumes the attacker
is non-deceptive (Dec-Unaddressed).

6.1 Solution quality
In our first set of experiments, we examine various security game
settings with 3 attacker types. For each game setting (i.e., a tuple
(N,K, T ) of the number of targets, the number of security resources,
the number of time steps), we generates 100 game instances.

We first examine which game instances in which the attacker
has incentive to play deceptively. Note that, the attacker’s incentive
comes from obtaining a higher expected utility for playing decep-
tively. Otherwise, the attacker would play truthfully. We summarize
our result in Table 3 which shows the percentage of the game in-
stances in which the attacker plays deceptively for its benefit. In Ta-
ble 3, the percentage of games in which the attacker is deceptive in-
creases when the number of steps increases. This result reflects that
the attacker is more likely to be deceptive for a longer-term benefit.

2 steps 3 steps 4 steps
34% 57% 61%

Table 3: Percentage of games in which the attacker is deceptive.

We next examine the loss of the defender and benefit of the at-
tacker when the attacker plays deceptively. The results are shown in
Figures 1 and 2. The x-axis is the number of targets in the games
and the y-axis is the defender’s expected utility (Figure 1) or the
attacker’s expected utility (Figure 2) on average. Note that in 2-
step and 3-step games, LA 2-step and Optimal are exactly the
same since LA 2-step considers all three steps of the games. There-
fore, in 3-step games, we do not include the results of Optimal

for the sake of representation. Finally, in 4-step games, LM 1-step,
LM 2-step, and Optimal are too computationally expensive. There-
fore, we only compare between LA 1-step, LA 2-step, Non-Dec,
and Dec-Unaddressed.

Figure 1: Analysis on defender’s averaged utility in 3-attacker games

Figure 1 shows that the defender suffers a significant loss when
he does not address the attacker’s deception (Non-Dec versus
Dec-Unaddressed). Conversely, the defender strategies generated
by our counter-deception algorithms lead to a significant increase in
the defender’s utility (Optimal, LM 1-Step, LM 2-Step, LA 1-Step,
and LA 2-Step). In fact, the defender’s utility for addressing the at-
tacker deception is approximately the same as the non-deceptive case
in most game settings. This result shows that our counter-deception



Figure 2: Analysis on attacker’s average utility in 3-attacker games

algorithms helps in diminishing drastically the impact of the at-
tacker’s deception. In addition, our approximate heuristics provides
the defender’s utility close to the exact algorithm.

Figure 2 shows the impact of the attacker’s deception on the at-
tacker’s utility. The attacker receives a substantially higher expected
utility for playing deceptively when the defender does not han-
dle the attacker’s deceit (Dec-Unaddressed versus Non-Dec). How-
ever, when the defender takes the attacker’s deception into account
(Optimal, LM 1-Step, LM 2-Step, LA 1-Step, and LA 2-Step), the
attacker benefit for being deceptive is reduced significantly.

Finally, Figure 3 shows the defender and attacker’s utility in games
with 4 attacker types. We compare between LA 1-Step, LA 2-Step,
Non-Dec, and Dec-Unaddressed. Note that in 2-step and 3-step
games, LA 2-Step and Optimal are equivalent. In Figure 3, we also
observe a similar trend in the loss of the defender and the benefit of
the attacker compared with the 3-attacker case.

Figure 3: Analysis on players’ average utility in 4-attacker games

(a) 3-type games (b) 3-type games

(c) 3-type games (d) 4-type games

Figure 4: Runtime performance

6.2 Runtime performance
Our evaluation on runtime performance is shown in Figure 4. The
x-axis is the number of targets and the y-axis is the averaged runtime
in seconds. Overall, the runtime of our counter-deception algorithms
grows gradually when the number of targets increases. The Non-Dec
algorithm (to deal with a non-deceptive attacker) has the best run-
time performance compared to all other algorithms (for address-
ing the attacker’s deception). In 2-step games, Optimal, LM 1-Step,
LM 2-Step, LA 1-Step, and LA 2-Step are identical. Therefore, the
runtime performance of these algorithms is the same in Figure 4(a).
In 3-step games (Figure 4(b)) and 4-step games (Figure 4)(c), among
the evaluated counter-deception algorithms, LA 1-Step runs signif-
icantly faster compared to the other algorithms. In consideration
of the trade-off between solution quality and runtime performance,
LA 1-Step is shown to be the best to solve games with a large T .

7 Summary
In this work, we focus on addressing the challenge of attacker de-
ception in RBSSGs. We study the imitative attacker deception — a
basic deception strategy of the attacker in which the attacker mimics
a type (which is different from its true type) and consistently plays
the game according to that deceptive type. We have four main contri-
butions. First, we present a new exact algorithm to compute an equi-
librium of standard RBSSGs, when the attacker is not manipulative.
Second, built on this equilibrium computation, we introduce a new
exact counter-deception algorithm to address the attacker’s imitative
deception. Third, we present two new heuristics: limited-look-ahead
and limited-memory-length, to deal with the computation challenge
of exponentially many observation histories and future possibilities.
Finally, our extensive experiments show a significant benefit of the
attacker and significant loss of the defender when the attacker de-
ception is not addressed. Our counter-deception algorithm helps in
drastically reducing the impact of the attacker deception.
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