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ABSTRACT
This paper presents HEALER, a software agent that recommends
sequential intervention plans for use by homeless shelters, who or-
ganize these interventions to raise awareness about HIV among
homeless youth. HEALER’s sequential plans (built using knowl-
edge of social networks of homeless youth) choose intervention
participants strategically to maximize influence spread, while rea-
soning about uncertainties in the network. While previous work
presents influence maximizing techniques to choose intervention
participants, they do not address three real-world issues: (i) they
completely fail to scale up to real-world sizes; (ii) they do not han-
dle deviations in execution of intervention plans; (iii) constructing
real-world social networks is an expensive process. HEALER han-
dles these issues via four major contributions: (i) HEALER casts
this influence maximization problem as a POMDP and solves it us-
ing a novel planner which scales up to previously unsolvable real-
world sizes; (ii) HEALER allows shelter officials to modify its rec-
ommendations, and updates its future plans in a deviation-tolerant
manner; (iii) HEALER constructs social networks of homeless
youth at low cost, using a Facebook application. Finally, (iv)
we show hardness results for the problem that HEALER solves.
HEALER will be deployed in the real world in early Spring 2016
and is currently undergoing testing at a homeless shelter.

1. INTRODUCTION
HIV-AIDS kills 2 million people worldwide every year [24]. In

USA alone, AIDS kills around 10,000 people per annum [2]. HIV
has an extremely high incidence among homeless youth, as they are
more likely to engage in high HIV-risk behaviors (e.g., unprotected
sexual activity, injection drug use) than other sub-populations. In
fact, previous studies show that homeless youth are at 10X greater
risk of HIV infection than stably housed populations [5]. Thus,
any attempt at eradicating HIV crucially depends on our success at
minimizing rates of HIV infection among homeless youth.

As a result, many homeless shelters organize intervention camps
for homeless youth in order to raise awareness about HIV preven-
tion and treatment practices. These intervention camps consist of
day-long educational sessions in which the participants are pro-
vided with information about HIV prevention measures [18].

However, due to financial/manpower constraints, the shelters can
only organize a limited number of intervention camps. Moreover,
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in each camp, the shelters can only manage small groups of youth
(∼3-4) at a time (as emotional and behavioral problems of youth
makes management of bigger groups difficult). Thus, the shelters
prefer a series of small sized camps organized sequentially [17].
As a result, the shelter cannot intervene on the entire target (home-
less youth) population. Instead, it tries to maximize the spread of
awareness among the target population (via word-of-mouth influ-
ence) using the limited resources at its disposal. To achieve this
goal, the shelter uses the friendship based social network of the tar-
get population to strategically choose the participants of their lim-
ited intervention camps. Unfortunately, the shelters’ job is further
complicated by a lack of complete knowledge about the social net-
work’s structure [15]. Some friendships in the network are known
with certainty whereas there is uncertainty about other friendships.

Thus, the shelters face an important challenge: they need a se-
quential plan to choose the participants of their sequentially orga-
nized interventions. This plan must address four key points: (i) it
must deal with network structure uncertainty; (ii) it needs to take
into account new information uncovered during the interventions,
which reduces the uncertainty in our understanding of the network;
(iii) the plan needs to be deviation tolerant, as sometimes homeless
youth may refuse to be an intervention participant, thereby forcing
the shelter to modify its plan; (iv) the intervention approach should
address the challenge of gathering information about social net-
works of homeless youth, which usually costs thousands of dollars
and many months of time [17].

In this paper, we model the shelters’ problem by introducing
the Dynamic Influence Maximization under Uncertainty (or DIME)
problem. The sequential selection of intervention participants un-
der network uncertainty in DIME sets it apart from any other pre-
vious work on influence maximization, which mostly focuses on
single shot choices [1, 23, 9, 13]. Additionally, in previous work,
PSINET [27], a POMDP based tool, was proposed for solving this
problem, but it has three limitations. First, PSINET completely
fails to scale up to the problem’s requirements; running slowly
and out of memory. It runs very slowly for moderate-sized net-
works, and runs out of memory as the network is scaled up. Worse
still, even on these moderate sized networks, it runs out of memory
when the number of participants in an intervention are increased
(as shown later). Second, PSINET did not explicitly allow offi-
cials to modify its recommended plans if some participants refuse
to attend the intervention. Third, PSINET requires entire social net-
works of homeless youth as input, while homeless shelters lack the
money/time/manpower required to generate these input networks.

In this paper, we build a new software agent, HEALER
(Hierarchical Ensembling based Agent which pLans for Effective
Reduction in HIV Spread), to provide an end-to-end solution to
the DIME problem. HEALER addresses PSINET’s shortcomings



via four contributions. First, HEALER casts the DIME problem
as a Partially Observable Markov Decision Process (POMDP) and
solves it using HEAL (Hierarchical Ensembling Algorithm for
pLanning), a novel POMDP planner which quickly generates high-
quality recommendations (of intervention participants) for home-
less shelter officials. HEAL uses a hierarchical ensembling heuris-
tic to ensure low memory utilization, thereby enabling scale up.
HEAL hierarchically subdivides our original POMDP at two lay-
ers: (i) In the top layer, graph partitioning techniques are used to
divide the original POMDP into intermediate POMDPs; (ii) In the
second level, each of these intermediate POMDPs is further sim-
plified by sampling uncertainties in network structure repeatedly to
get sampled POMDPs; (iii) Finally, we use aggregation techniques
to combine the solutions to these simpler POMDPs, in order to gen-
erate the overall solution for the original POMDP. Our simulations
show that even on small settings, HEAL achieves a 100X speed
up and 70% improvement in solution quality over PSINET; and on
larger problems where PSINET is unable to run at all, HEAL con-
tinues to provide high quality solutions quickly. Second, HEALER
tolerates deviations in execution of intervention plans, as it periodi-
cally receives feedback from shelter officials about executed plans,
reasons about any deviations from its recommended plans, and up-
dates its plan accordingly to maximize solution quality. Third,
HEALER quickly gathers information about the homeless youth
social network (at low cost) by interacting with youth via a Face-
book application. Fourth, we analyze several novel theoretical as-
pects of the DIME problem, which illustrates its hardness.

(a) Computers at Homeless Shelter
where HEALER is deployed

(b) Emergency Resource Shelf at
the Homeless Shelter

Figure 1: Facilities at our Collaborating Homeless Shelter

We deploy HEALER in a real-world pilot study, in collabo-
ration with a homeless shelter (name withheld for anonymity),
which provides food and lodging to homeless youth aged 12-25.
They provide these facilities for∼55-60 homeless youth every day.
They also operate an on-site medical clinic where free HIV and
Hepatitis-C testing is provided. HEALER has been reviewed by
officials at our collaborating homeless shelter and their feedback
has been positive. We are currently preparing to register 100 youth
in our deployment of HEALER at this shelter. To the best of our
knowledge, this pilot study represents the first real-world evalu-
ation of such sequential influence maximization algorithms. We
expect deployment to commence in early Spring 2016.

2. RELATED WORK
First, we discuss work related to influence maximization. There

are many algorithms for finding ‘seed sets’ of nodes to maximize
influence spread in networks [9, 13, 1, 23]. However, all these
algorithms assume no uncertainty in the network structure and se-
lect a single seed set. In contrast, we select several seed sets se-
quentially in our work to select intervention participants. Also, our
problem takes into account uncertainty about the network structure
and influence status of network nodes (i.e., whether a node is in-
fluenced or not). Finally, unlike [9, 13, 1, 23], we use a different
diffusion model as we explain later. Golovin et. al. [7] introduced

adaptive submodularity and discussed adaptive sequential selection
(similar to our problem), and they proved that a Greedy algorithm
has a (1 − 1/e) approximation guarantee. However, unlike our
work, they assume no uncertainty in network structure. Also, while
our problem can be cast into the adaptive stochastic optimization
framework of [7], our influence function is not adaptive submodu-
lar (see Section 5), because of which their Greedy algorithm loses
its approximation guarantees.

Next, we discuss literature from social work. The general ap-
proach to these interventions is to use Peer Change Agents (PCA)
(i.e., peers who bring about change in attitudes) to engage homeless
youth in interventions, but most studies don’t use network charac-
teristics to choose these PCAs [20]. A notable exception is Valente
et. al. [25], who proposed selecting intervention participants with
highest degree centrality (the most ties to other homeless youth).
However, previous studies [3, 27] show that degree centrality per-
forms poorly, as it does not account for potential overlaps in influ-
ence of two high degree centrality nodes.

The final field of related work is planning for reward/cost opti-
mization. We only focus on the literature on Monte-Carlo (MC)
sampling based online POMDP solvers since this approach allows
significant scale-up [19]. The POMCP solver [21] uses Monte-
Carlo UCT tree search in online POMDP planning. Also, Somani
et. al. [22] present the DESPOT algorithm, that improves the worst
case performance of POMCP. Our initial experiments with POMCP
and DESPOT showed that they run out of memory on even our
small sized networks. A recent paper [27] introduced PSINET-W,
a MC sampling based online POMDP planner. We have discussed
PSINET’s shortcomings in Section 1 and how we remedy them. In
particular, as we show later, HEALER scales up whereas PSINET
fails to do so. HEALER’s algorithmic approach also offers signifi-
cant novelties in comparison with PSINET (see Section 6.1).

3. HEALER’S DESIGN
We now explain the high-level design of HEALER. It consists

of two major components: (i) a Facebook application for gathering
information about social networks; and (ii) a DIME Solver, which
solves the DIME problem (introduced in Section 5). We first ex-
plain HEALER’s components and then explain HEALER’s design.

Facebook Application: HEALER gathers information about so-
cial ties in the homeless youth social network by interacting with
youth via a Facebook application. We choose Facebook for gath-
ering information as Young et. al. [29] show that ∼80% of home-
less youth are active on Facebook. Once a fixed number of home-
less youth register in the Facebook application, HEALER parses
the Facebook contact lists of all the registered homeless youth and
generates the social network between these youth. HEALER adds a
link between two people, if and only if both people are (i) friends on
Facebook; and (ii) are registered in its Facebook application. Un-
fortunately, there is uncertainty in the generated network as friend-
ship links between people who are only friends in real-life (and not
on Facebook) are not captured by HEALER.

Previously, homeless shelters gathered this social network infor-
mation via tedious face-to-face interviews with homeless youth,
a process which cost thousands of dollars and many months of
time. HEALER’s Facebook application allows homeless shelters
to quickly generate a (partial) homeless youth social network at
low cost. This Facebook application has been tested by our collab-
orating homeless shelter with positive feedback.

DIME Solver: The DIME Solver then takes the approximate
social network (generated by HEALER’s Facebook application) as
input and solves the DIME problem (formally defined in Section 5)
using our new algorithm (explained in Section 6.1). HEALER pro-



Figure 2: HEALER’s Design

vides the solution of this DIME problem as a series of recommen-
dations (of intervention participants) to homeless shelter officials.

HEALER Design: HEALER’s design (shown in Figure 2), be-
gins with the Facebook application constructing an uncertain net-
work (as explained above). HEALER has a sense-reason-act cycle;
where it repeats the following process for T interventions.

It reasons about different long-term plans to solve the DIME
problem, it acts by providing DIME’s solution as a recommen-
dation (of intervention participants) to homeless shelter officials.
The officials may choose to not use HEALER’s recommendation
in selecting their intervention’s participants. Upon the interven-
tion’s completion, HEALER senses feedback about the conducted
intervention from the officials. This feedback includes new obser-
vations about the network, e.g., uncertainties in some links may be
resolved as intervention participants are interviewed by the shelter
officials (explained more in Section 5). HEALER uses this feed-
back to update and improve its future recommendations.

4. NETWORK GENERATION
First, we explain our model for influence spread in uncertain so-

cial networks. Then, we describe how HEALER generates a social
network using its’ Facebook application.

4.1 Background
We represent social networks as directed graphs (consisting of

nodes and directed edges) where each node represents a person in
the social network and a directed edge between two nodesA andB
(say) represents that nodeA considers nodeB as his/her friend. We
assume directed-ness of edges as sometimes homeless shelters as-
sess that the influence in a friendship is very much uni-directional;
and to account for uni-directional follower links on Facebook. Oth-
erwise friendships are encoded as two uni-directional links.

Uncertain Network: The uncertain network is a directed graph
G = (V,E) with |V | = N nodes and |E| = M edges. The
edge set E consists of two disjoint subsets of edges: Ec (the set
of certain edges, i.e., friendships which we are certain about) and
Eu (the set of uncertain edges, i.e., friendships which we are un-
certain about). Note that uncertainties about friendships exist be-
cause HEALER’s Facebook application misses out on some links
between people who are friends in real life, but not on Facebook.

To model the uncertainty about missing edges, every uncertain
edge e ∈ Eu has an existence probability u(e) associated with
it, which represents the likelihood of “existence" of that uncertain
edge. For example, if there is an uncertain edge (A,B) (i.e., we are
unsure whether node B is node A’s friend), then u(A,B) = 0.75
implies that B is A’s friend with a 0.75 chance. In addition, each
edge e ∈ E (both certain and uncertain) has a propagation proba-
bility p(e) associated with it. A propagation probability of 0.5 on
directed edge (A,B) denotes that if node A is influenced (i.e., has
information about HIV prevention), it influences nodeB (i.e., gives
information to node B) with a 0.5 probability in each subsequent
time step (our full influence model is defined below). This graphG

with all relevant p(e) and u(e) values represents an uncertain net-
work and serves as an input to the DIME problem. Figure 3 shows
an uncertain network on 6 nodes (A to F) and 7 edges. The dashed
and solid edges represent uncertain (edge numbers 1, 4, 5 and 7)
and certain (edge numbers 2, 3 and 6) edges, respectively. Next,
we explain the influence diffusion model that we use in HEALER.

Figure 3: Uncertain
Network

Influence Model We use a variant
of the independent cascade model [28].
In the standard independent cascade
model, all nodes that get influenced at
round t get a single chance to influ-
ence their un-influenced neighbors at
time t + 1. If they fail to spread influ-
ence in this single chance, they don’t
spread influence to their neighbors in
future rounds. Our model is different in
that we assume that nodes get multiple chances to influence their
un-influenced neighbors. If they succeed in influencing a neighbor
at a given time step t′, they stop influencing that neighbor for all
future time steps. Otherwise, if they fail in step t′, they try to influ-
ence again in the next round. This variant of independent cascade
has been shown to empirically provide a better approximation to
real influence spread than the standard independent cascade model
[4, 28]. Further, we assume that nodes that get influenced at a cer-
tain time step remain influenced for all future time steps. We now
explain how HEALER generates an uncertain social network.

4.2 HEALER’s Facebook application
HEALER generates an uncertain network by (i) using its Face-

book application to generate a network with no uncertain edges; (ii)
using well known link prediction techniques such as KronEM [10]
to infer existence probabilities u(e) for all possible missing edges
that are not present in the network; (iii) deciding on a threshold
probability τ (in consultation with homeless shelter officials), so
that we only add a missing edge as an uncertain edge if its inferred
existence probability u(e) > τ ; and (iv) asking homeless shelter
officials to provide p(e) estimates for network edges.

Choosing τ : Rice et. al [16] show that real-world homeless
youth networks are relatively sparse. Thus, shelter officials choose
the threshold probability value τ such that the number of uncertain
edges that get added because of τ does not make our input uncertain
network overly dense. Next, we introduce the DIME problem.

5. DIME PROBLEM
We now provide some background information that helps us de-

fine a precise problem statement for DIME. After that, we will
show some hardness results about this problem statement.

Given the uncertain network as input, HEALER runs for T
rounds (corresponding to the number of interventions organized by
the homeless shelter). In each round, HEALER chooses K nodes
(youth) as intervention participants. These participants are assumed
to be influenced post-intervention with certainty. Upon influencing
the chosen nodes, HEALER ‘observes’ the true state of the uncer-
tain edges (friendships) out-going from the selected nodes. This
translates to asking intervention participants about their 1-hop so-
cial circles, which is within the homeless shelter’s capabilities [16].

After each round, influence spreads in the network according to
our influence model for L time steps, before we begin the next
round. This L represents the time duration in between two succes-
sive intervention camps. In between rounds, HEALER does not ob-
serve the nodes that get influenced during L time steps. HEALER
only knows that explicitly chosen nodes (our intervention partici-
pants in all past rounds) are influenced. Informally then, given an



uncertain network G0 = (V,E) and integers T , K, and L (as de-
fined above), HEALER finds an online policy for choosing exactly
K nodes for T successive rounds (interventions) which maximizes
influence spread in the network at the end of T rounds.

We now provide notation for defining HEALER’s policy for-
mally. Let A = {A ⊂ V s.t. |A| = K} denote the set of K
sized subsets of V , which represents the set of possible choices
that HEALER can make at every time step t ∈ [1, T ]. Let Ai ∈
A ∀i ∈ [1, T ] denote HEALER’s choice in the ith time step. Upon
making choice Ai, HEALER ‘observes’ uncertain edges adjacent
to nodes inAi, which updates its understanding of the network. Let
Gi ∀ i ∈ [1, T ] denote the uncertain network resulting from Gi−1

with observed (additional edge) information from Ai. Formally,
we define a history Hi ∀ i ∈ [1, T ] of length i as a tuple of past
choices and observations Hi = 〈G0, A1, G1, A2, .., Ai−1, Gi〉.
Denote by Hi = {Hk s.t. k 6 i} the set of all possible histories
of length less than or equal to i. Finally, we define an i-step policy
Πi : Hi → A as a function that takes in histories of length less
than or equal to i and outputs a K node choice for the current time
step. We now provide an explicit problem statement for DIME.

PROBLEM 1. DIME Problem Given as input an uncertain net-
work G0 = (V,E) and integers T , K, and L (as defined above).
Denote by R(HT , AT ) the expected total number of influenced
nodes at the end of round T , given the T -length history of previ-
ous observations and actions HT , along with AT , the action cho-
sen at time T . Let EHT ,AT∼ΠT [R(HT , AT )] denote the expec-
tation over the random variables HT = 〈G0, A1, .., AT−1, GT 〉
and AT , where Ai are chosen according to ΠT (Hi) ∀ i ∈
[1, T ], and Gi are drawn according to the distribution over
uncertain edges of Gi−1 that are revealed by Ai. The ob-
jective of DIME is to find an optimal T -step policy Π∗

T =
argmaxΠT

EHT ,AT∼ΠT [R(HT , AT )].

Next, we show hardness results about the DIME problem. First,
we analyze the value of having complete information in DIME.
Then, we characterize the computational hardness of DIME. Due
to lack of space, most proofs are in the appendix1 or in the extended
version [26].

The Value of Information. We characterize the impact of in-
sufficient information (about the uncertain edges) on the achieved
solution value. We show that no algorithm for DIME is able to pro-
vide a good approximation to the full-information solution value
(i.e., the best solution achieved w.r.t. the underlying ground-truth
network), even with infinite computational power.

THEOREM 5.1. Given an uncertain network with n nodes, for
any ε > 0, there is no algorithm for the DIME problem which
can guarantee a n−1+ε approximation to OPTfull, the full-
information solution value.

Computational Hardness. We now analyze the hardness of
computation in the DIME problem in the next two theorems.

THEOREM 5.2. The DIME problem is NP-Hard.

PROOF SKETCH. Consider the case where Eu = Φ, L = 1,
T = 1 and p(e) = 1∀e ∈ E. This degenerates to the classical
influence maximization problem which is known to be NP-hard.
Thus, the DIME problem is also NP-hard.

Some NP-Hard problems exhibit nice properties that enable ap-
proximation guarantees for them. Golovin et. al. [7] introduced
1http://teamcore.usc.edu/people/amulya/dime-sup.pdf

adaptive submodularity, an analog of submodularity for adaptive
settings. Presence of adaptive submodularity ensures that a simply
greedy algorithm provides a (1 − 1/e) approximation guarantee
w.r.t. the optimal solution defined on the uncertain network. How-
ever, as we show next, while DIME can be cast into the adaptive
stochastic optimization framework of [7], our influence function is
not adaptive submodular, because of which their Greedy algorithm
does not have a (1− 1/e) approximation guarantee.

THEOREM 5.3. The influence function of DIME is not adaptive
submodular.

6. HEAL: DIME PROBLEM SOLVER
The above theorems show that DIME is a hard problem as it is

difficult to even obtain any reasonable approximations. We model
DIME as a POMDP [14] because of two reasons. First, POMDPs
are a good fit for DIME as (i) we conduct several interventions
sequentially, similar to sequential POMDP actions; and (ii) we
have partial observability (similar to POMDPs) due to uncertain-
ties in network structure and influence status of nodes. Second,
POMDP solvers have recently shown great promise in generating
near-optimal policies efficiently [21]. We now explain how we map
DIME onto a POMDP.

States. A POMDP state in our problem is a pair of binary
tuples s = 〈W,F 〉 where W and F are of lengths |V | and |EU |,
respectively. Intuitively, W denotes the influence status of network
nodes, whereWi = 1 denotes that node i is influenced andWi = 0
otherwise. Moreover, F denotes the existence of uncertain edges,
where Fi = 1 denotes that the ith uncertain edge exists in reality,
and Fi = 0 otherwise.

Actions. Every choice of a subset of K nodes is a POMDP
action. More formally, A = {a ⊂ V s.t.|a| = K}. For example,
in Figure 3, one possible action is {A,B} (when K = 2).

Observations. Upon taking a POMDP action, we “observe" the
ground reality of the uncertain edges outgoing from the nodes cho-
sen in that action. Consider Θ(a) = {e | e = (x,y) s.t. x ∈ a ∧ e ∈
Eu} ∀a ∈ A, which represents the (ordered) set of uncertain edges
that are observed when we take action a. Then, our POMDP obser-
vation upon taking action a is defined as o(a) = {Fe|e ∈ Θ(a)},
i.e., the F-values of the observed uncertain edges. For example, by
taking action {B,C} in Figure 3, the values of F4 and F5 (i.e., the
F-values of uncertain edges in the 1-hop social circle of nodes B
and C) would be observed.

Rewards. The reward R(s, a, s′) of taking action a in state s
and reaching state s′ is the number of newly influenced nodes in
s′. More formally, R(s, a, s′) = (‖s′‖ − ‖s‖), where ‖s′‖ is the
number of influenced nodes in s′.

Initial Belief State. The initial belief state is a distribution
β0 over all states s ∈ S. The support of β0 consists of all states
s = 〈W,F 〉 s.t. Wi = 0 ∀ i ∈ [1, |V |], i.e., all states in which
all network nodes are un-influenced (as we assume that all nodes
are un-influenced to begin with). Inside its support, each Fi is dis-
tributed independently according to P (Fi = 1) = u(e).

Transition And Observation Probabilities. Computation
of exact transition probabilities T (s′|s, a) requires considering all
possible paths in a graph through which influence could spread,
which isO(N !) (N is number of nodes in the network) in the worst
case. Moreover, for large social networks, the size of the transition
and observation probability matrix is prohibitively large (due to ex-
ponential sizes of state and action space).

Therefore, instead of storing huge transition/observation ma-
trices in memory, we follow the paradigm of large-scale online
POMDP solvers [21, 6] by using a generative model Λ(s, a) ∼



Figure 4: Hierarchical decomposition in HEAL

(s′, o, r) of the transition and observation probabilities. This gen-
erative model allows us to generate on-the-fly samples from the
exact distributions T (s′|s, a) and Ω(o|a, s′) at very low computa-
tional costs. Given an initial state s and an action a to be taken,
our generative model Λ simulates the random process of influence
spread to generate a random new state s′, an observation o and
the obtained reward r. Simulation of the random process of in-
fluence spread is done by “playing" out propagation probabilities
(i.e., flipping weighted coins with probability p(e)) according to
our influence model to generate sample s′. The observation sam-
ple o is then determined from s′ and a. Finally, the reward sample
r = (‖s′‖ − ‖s‖) (as defined above). This simple design of the
generative model allows significant scale and speed up (as seen in
previous work [21] and also in our experimental results section).

We solve this POMDP using a novel algorithm (described in Sec-
tion 6.1) to find the optimal policy Π∗

T for the DIME problem.

6.1 HEALER’s DIME Solver
Initial experiments with the POMCP solver [21] showed that it

ran out of memory on 30 node graphs. Similarly, PSINET-W [27]
was simply unable to scale up to real world demands (as shown
in our experiments). Hence, we propose HEAL, a new heuris-
tic based online POMDP planner (for solving the DIME problem)
which scales up to our collaborating shelter’s real world demands.

6.1.1 HEAL
HEAL solves the original POMDP using a novel hierarchi-

cal ensembling heuristic: it creates ensembles of imperfect (and
smaller) POMDPs at two different layers, in a hierarchical manner
(see Figure 4). HEAL’s top layer creates an ensemble of smaller
sized intermediate POMDPs by subdividing the original uncer-
tain network into several smaller sized partitioned networks by us-
ing graph partitioning techniques [12]. Each of these partitioned
networks is then mapped onto a POMDP, and these intermediate
POMDPs form our top layer ensemble of POMDP solvers.

In the bottom layer, each intermediate POMDP is solved us-
ing TASP (Tree Aggregation for Sequential Planning), our novel
POMDP planner, which subdivides the POMDP into another en-
semble of smaller sized sampled POMDPs. Each member of this
bottom layer ensemble is created by randomly sampling uncertain
edges of the partitioned network to get a sampled network having
no uncertain edges, and this sampled network is then mapped onto
a sampled POMDP. Finally, the solutions of POMDPs in both the
bottom and top layer ensembles are aggregated using novel tech-
niques to get the solution for HEAL’s original POMDP.

Algorithm 1: TASP Solver
Input: Uncertain network G, Parameters K, T , L
Output: Best K node action κ

1 Create ensemble of ∆ different POMDPs;
2 for δ ∈ ∆ do
3 αδ = Evaluate(δ);
4 r = Expectation(α);
5 κ = argmaxj rj ;
6 return κ;

HEAL uses several novel heuristics. First, it uses a novel two-
layered hierarchical ensembling heuristic. Second, it uses graph
partitioning techniques to partition the uncertain network, which
generates partitions that minimize the edges going across parti-
tions (while ensuring that partitions have similar sizes). Since these
partitions are “almost" disconnected, we solve each partition sep-
arately. Third, it solves the intermediate POMDP for each par-
tition by creating smaller-sized sampled POMDPs (via sampling
uncertain edges), each of which is solved using a novel tree search
algorithm, which avoids the exponential branching factor seen in
PSINET [27]. Fourth, it uses novel aggregation techniques to com-
bine solutions to these smaller POMDPs rather than simple plural-
ity voting techniques seen in previous ensemble techniques [27].

These heuristics enable scale up to real-world sizes (at the ex-
pense of sacrificing performance guarantees), as instead of solving
one huge problem, we now solve several smaller problems. How-
ever, these heuristics perform very well in practice. Our simulations
show that even on smaller settings, HEAL achieves a 100X speed
up over PSINET, while providing a 70% improvement in solution
quality; and on larger problems, where PSINET is unable to run
at all, HEAL continues to provide high solution quality. Now, we
elaborate on these heuristics by first explaining the TASP solver.

6.1.2 Bottom layer: TASP
We now explain TASP, our new POMDP solver that solves each

intermediate POMDP in HEAL’s bottom layer. Given an interme-
diate POMDP and the uncertain network it is defined on, as input,
TASP goes through four steps (see Algorithm 1).

First, Step 1 makes our intermediate POMDP more tractable by
creating an ensemble of smaller sized sampled POMDPs. Each
member of this ensemble is created by sampling uncertain edges of
the input network to get an instantiated network. Each uncertain
edge in the input network is randomly kept with probability u(e),
or removed with probability 1 − u(e), to get an instantiated net-
work with no uncertain edges. We repeat this sampling process to
get ∆ (a variable parameter) different instantiated networks. These
∆ different instantiated networks are then mapped onto to ∆ dif-
ferent POMDPs, which form our ensemble of sampled POMDPs.
Each sampled POMDP shares the same action space (defined on
the input partitioned network) as the different POMDPs only differ
in the sampling of uncertain edges. Note that each member of our
ensemble is a POMDP as even though sampling uncertain edges re-
moves uncertainty in the F portion of POMDP states, there is still
partial observability in the W portion of POMDP state.

In Step 3 (called the Evaluate Step), for each instantiated net-
work δ ∈ [1,∆], we generate an αδ list of rewards. The ith ele-
ment of αδ gives the long term reward achieved by taking the ith

action in instantiated network δ. In Step 4, we find the expected
reward ri of taking the ith action, by taking a reward expectation
across the αδ lists (for each δ ∈ [1,∆]) generated in the previous
step. For e.g., if αδ11 = 10 and αδ21 = 20, i.e., the rewards of taking



Algorithm 2: Evaluate Step
Input: Instantiated network δ, Number of simulations NSim
Output: Ranked Ordering of actions αδ

1 tree = Initialize_K_Level_Tree();
2 counter = 0;
3 while counter + + < NSim do
4 K_Node_Act = FindStep(tree);
5 LT_Reward = SimulateStep(K_Node_Act);
6 UpdateStep(tree, LT_Reward,K_Node_Act);

7 αδ = Get_All_Leaf_V alues(tree);
8 return αδ;

the 1st action in instantiated networks δ1 and δ2 (which occurs with
probabilities P (δ1) and P (δ2)) are 10 and 20 respectively, then the
expected reward r1 = P (δ1)× 10 +P (δ2)× 20. Note that P (δ1)
and P (δ2) are found by multiplying existence probabilities u(e)
(or 1− u(e)) for uncertain edges that were kept (or removed) in δ1
and δ2. Finally, in Step 5, the action κ = argmaxj rj is returned
by TASP. Next, we discuss the Evaluate Step (Step 3).

Evaluate Step Algorithm 2 generates the αδ list for a single in-
stantiated network δ ∈ [1,∆]. This algorithm works similarly for
all instantiated networks. For each instantiated network, the Eval-
uate Step uses NSim (we use 210) number of MC simulations to
evaluate the long term reward achieved by taking actions in that
network. Due to the combinatorial action space, the Evaluate Step
uses a UCT [11] driven approach to strategically choose the ac-
tions whose long term rewards should be calculated. UCT has been
used to solve POMDPs in [21, 27], but these algorithms suffer from
a
(
N
K

)
branching factor (where K is number of nodes picked per

round, N is number of network nodes). We exploit the structure of
our domain by creating a K-level UCT tree which has a branching
factor of justN (explained below). ThisK-level tree allows storing
reward values for smaller sized node subsets as well (instead of just
K sized subsets), which helps in guiding the UCT search better.

Algorithm 2 takes an instantiated network and creates the afore-
mentioned K-level tree for that network. The first level of the tree
has N branches (one for each network node). For each branch i
in the first level, there are N − 1 branches in the second tree level
(one for each network node, except for node i, which was covered
in the first level). Similarly, for every branch j in the mth level
(m ∈ [2,K − 1]), there are N − m branches in the (m + 1)th

level. Theoretically, this tree grows exponentially with K, how-
ever, the values of K are usually small in practice (e.g., 4).

In this K level tree, each leaf node represents a particular
POMDP action of K network nodes. Similarly, every non-leaf
tree node v represents a subset Sv of network nodes. Each tree
node v maintains a value Rv , which represents the average long
term reward achieved by taking our POMDP’s actions (of size
K) which contain Sv as a subset. For example, in Figure 3, if
K = 5, and for tree node v, Sv = {A,B,C,D}, then Rv rep-
resents the average long term reward achieved by taking POMDP
actions A1 = {A,B,C,D,E} and A2 = {A,B,C,D, F}, since
both A1 and A2 contain Sv = {A,B,C,D} as a subset. To begin
with, all nodes v in the tree are initialized with Rv = 0 (Step 1).
By running NSim number of MC simulations, we generate good
estimates of Rv values for each tree node v.

Each node in this K-level tree runs a UCB1 [11] implementa-
tion of a multi-armed bandit. The arms of the multi-armed bandit
running at tree node v correspond to the child branches of node v
in the K-level tree. Recall that each child branch corresponds to
a network node. The overall goal of all the multi-armed bandits
running in the tree is to construct a POMDP action of size K (by

Algorithm 3: FindStep
Input: K level deep tree - tree
Output: Action set of size K nodes - Act

1 Act = Φ;
2 tree_node = tree.Root;
3 while is_Leaf(tree_node) == false do
4 MABnode = Get_UCB_at_Node(node);
5 next_node = Ask_UCB(MABnode);
6 Act = Act ∪ next_node;
7 tree_node = tree_node.branch(next_node);
8 return Act;

traversing a path from the root to a leaf), whose reward is then cal-
culated in that MC simulation (explained in Algorithm 3). Every
MC simulation consists of three steps: Find Step (Step 4), Simulate
Step (Step 5) and Update Step (Step 6).

Find Step: The Find Step takes aK-level tree for an instantiated
network and finds a K node action, which is used in the Simulate
Step. Algorithm 3 details the process of finding thisK node action,
which is found by traversing a path from the root node to a leaf
node, one edge/arm at a time. Initially, we begin at the root node
with an empty action set of size 0 (Steps 1 and 2). For each node
that we visit on our way from the root to a leaf, we use its multi-
armed bandit (denoted by MABnode in Step 4) to choose which
tree node do we visit next (or, which network node do we add to
our action set). We get a K node action upon reaching a leaf.

Simulate Step: The Simulate Step takes a K node action from
the Find Step, to evaluate the long term reward of taking that ac-
tion (called Act) in the instantiated network. Assuming that T0

interventions remain (i.e., we have already conducted T −T0 inter-
ventions), the Simulate Step first uses action Act in the generative
model Λ to generate a reward r0. For all remaining (T0 − 1) in-
terventions, Simulate Step uses a rollout policy to randomly select
K node actions, which are then used in the generative model Λ to
generate future rewards ri ∀ i ∈ [1, T0− 1] . Finally, the long term
reward returned by Simulate Step is r0 + r1 + ...+ rT0−1.

Update Step: The Update Step uses the long term reward re-
turned by Simulate Step to update relevantRv values in theK-level
tree. It updates the Rv values of all nodes v that were traversed in
order to find the K node action in the Find Step. First, we get the
tree’s leaf node corresponding to the K node action that was re-
turned by the Find Step. Then, we go and update Rv values for all
ancestors (including the root) of that leaf node.

After running the Find, Simulate and Evaluate for NSim sim-
ulations, we return the Rv values of all leaf nodes as the αδ list.
Recall that we then find the expected reward ri of taking the ith

action, by taking an expectation of rewards across the αδ lists. Fi-
nally, TASP returns the action κ = argmaxj rj .

6.1.3 Top layer: Using Graph Partitioning
We now explain HEAL’s top layer, in which we use METIS

[12], a state-of-the-art graph partitioning technique, to subdivide
our original uncertain network into different partitioned networks.
These partitioned networks form the ensemble of intermediate
POMDPs (in Figure 4) in HEAL. Then, TASP is invoked on each
intermediate POMDP independently, and their solutions are aggre-
gated to get the final DIME solution. We try two different partition-
ing/aggregation techniques, which leads to two variants of HEAL:

K Partition Variant (HEAL): Given the uncertain network G
and the parameters K, L and T as input, we first partition the un-
certain network into K partitions. In each round from 1 to T , we
invoke the bottom layer TASP algorithm to select 1 node from each
of the K clusters. These singly selected nodes from the K clus-



ters give us an action of K nodes, which is given to shelter offi-
cials to execute. Based on the observation (about uncertain edges)
that officials get while executing the action, we update the partition
networks (which are input to the intermediate POMDPs) by either
replacing the observed uncertain edges with certain edges (if the
edge was observed to exist in reality) or removing the uncertain
edge altogether (if the edge was observed to not exist in reality).
The list of K node actions that Algorithm 4 generates serves as an
online policy for use by the homeless shelter.

T Partition Variant (HEAL-T): Given the uncertain network
G and the parameters K, L and T as input, we first partition the
uncertain network into T partitions and TASP picks K nodes from
the ith partition (i ∈ [1, T ]) in the ith round.

7. EXPERIMENTAL RESULTS
In this section, we analyze HEAL and HEAL-T’s performance

in a variety of settings. All our experiments are run on a 2.33 GHz
12-core Intel machine having 48 GB of RAM. All experiments are
averaged over 100 runs. We use a metric of “Indirect Influence"
throughout this section, which is number of nodes “indirectly" in-
fluenced by intervention participants. For example, on a 30 node
network, by selecting 2 nodes each for 10 interventions (horizon),
20 nodes (a lower bound for any strategy) are influenced with cer-
tainty. However, the total number of influenced nodes might be 26
(say) and thus, the Indirect Influence is 26 − 20 = 6. In all ex-
periments, the propagation and existence probability values on all
network edges were uniformly set to 0.1 and 0.6, respectively. This
was done based on findings in Kelly et. al.[8]. However, we relax
these parameter settings later in the section. All experiments are
statistically significant under bootstrap-t (α = 0.05).

Baselines: We use two algorithms as baselines. We use
PSINET-W as a benchmark as it is the most relevant previous al-
gorithm, which was shown to outperform heuristics used in prac-
tice; however, we also need a point of comparison when PSINET-
W does not scale. No previous algorithm in the influence maxi-
mization literature accounts for uncertain edges and uncertain net-
work state in solving the problem of sequential selection of nodes;
in-fact we show that even the standard Greedy algorithm [9, 7]
has no approximation guarantees as our problem is not adaptive
submodular. Thus, we modify Greedy by replacing our uncertain
network with a certain network (in which each uncertain edge e
is replaced with a certain edge e0 having propagation probability
p(e0) = p(e) × u(e)), and then run the Greedy algorithm on this
certain network. We use the Greedy algorithm as a baseline as it
is the best known algorithm known for influence maximization and
has been analyzed in many previous papers [3, 1, 23, 9, 13, 7].

Datasets: We use four real world social networks of homeless
youth, provided to us by our collaborators. All four networks are
friendship based social networks of homeless youth living in dif-
ferent areas of a big city in USA (name withheld for anonymity).
The first and second networks are of homeless youth living in two
large areas (denoted by VE and HD to preserve anonymity), respec-
tively. These two networks (each having∼150-170 nodes, 400-450
edges) were created through surveys and interviews of homeless
youth (conducted by our collaborators) living in these areas. The
third and fourth networks are relatively small-sized online social
networks of these youth created from their Facebook (34 nodes,
120 edges) and MySpace (107 nodes, 803 edges) contact lists, re-
spectively. When HEALER is deployed, we anticipate even larger
networks, (e.g., 250-300 nodes) than the ones we have in hand and
we also show run-time results on artificial networks of these sizes.

Solution Quality/Runtime Comparison. We compare Indirect
Influence and run-times of HEAL, HEAL-T and PSINET-W on

(a) Solution Quality (b) Runtime

Figure 5: Solution Quality and Runtime on Real World Networks

(a) VE Network (b) HD Network

Figure 6: Scale up in number of nodes picked per round

all four real-world networks. We set T = 5 and K = 2 (since
PSINET-W fails to scale up beyond K = 2 as shown later). Fig-
ure 5a shows the Indirect Influence of the different algorithms on
the four networks. The X-axis shows the four networks and the
Y-axis shows the Indirect Influence achieved by the different algo-
rithms. This figure shows that (i) HEAL outperforms all other algo-
rithms on every network; (ii) it achieves ∼70% improvement over
PSINET-W in VE and HD networks; (iii) it achieves ∼25% im-
provement over HEAL-T. The difference between HEAL and other
algorithms is not significant in the Facebook (FB) and MySpace
(MYS) networks, as HEAL is already influencing almost all nodes
in these two relatively small networks. Thus, in experiments to
come, we focus more on the VE and HD networks.

Figure 5b shows the run-time of all algorithms on the four net-
works. The X-axis shows the four networks and the Y-axis (in log
scale) shows the run-time (in seconds). This figure shows that (i)
HEAL achieves a 100X speed-up over PSINET-W; (ii) PSINET-W’s
run-time increases exponentially with increasing network sizes;
(iii) HEAL runs 3X slower than HEAL-T but achieves 25% more
Indirect Influence. Hence, HEAL is our algorithm of choice.

Next, we check if PSINET-W’s run-times become worse on
larger networks. Because of lack of larger real-world datasets, we
create relatively large artificial Watts-Strogatz networks (model pa-
rameters p = 0.1, k = 7). Figure 9a shows the run-time of all
algorithms on Watts-Strogatz networks. The X-axis shows the size
of networks and the Y-axis (in log scale) shows the run-time (in
seconds). This figure shows that PSINET-W fails to scale beyond
180 nodes, whereas HEAL runs within 5 minutes. Thus, PSINET-
W fails to scale-up to network sizes that are of importance to us.

Scale Up Results. Not only does PSINET-W fail in scaling
up to larger network sizes, it even fails to scale-up with increasing
number of nodes picked per round (or K), on our real-world net-
works. Figures 6a and 6b show the Indirect Influence achieved by
HEAL, HEAL-T, Greedy and PSINET-W on the VE and HD net-
works respectively (T = 5), as we scale up K values. The X-axis
shows increasingK values, and the Y-axis shows the Indirect Influ-
ence. These figures show that (i) PSINET-W and HEAL-T fail to
scale up – they cannot handle more thanK = 2 andK = 3 respec-
tively (thereby not fulfilling real world demands); (ii) HEAL out-
performs all other algorithms, and the difference between HEAL
and Greedy increases linearly with increasing K values. Also, in
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Figure 7: Horizon Scale up & Maximum Gain on HD Network

(a) Deviation Tolerance

p(e)
u(e) 0.1 0.2 0.3

0.7 45.62 44.37 30.85
0.6 48.95 24.56 30
0.5 29.5 55.18 28.21

(b) % Increase over Greedy

Figure 8: Deviation Tolerance & HEAL vs Greedy

the case of K = 6, HEAL runs in less than 40.12 seconds on the
HD network and 34.4 seconds on the VE network.

Thus, Figures 5a, 5b, 6a and 6b show that PSINET-W (the best
performing algorithm from previous work) fails to scale up with
increasing network nodes, and with increasing K values. Even for
K = 2 and moderate sized networks, it runs very slowly. More-
over, HEAL is the best performing algorithm that runs quickly,
provides high-quality solutions, and can scale-up to real-world de-
mands. Since only HEAL and Greedy scale up to K = 6, we now
analyze their performance in detail.

Scaling up Horizon. Figure 7a shows HEAL and Greedy’s In-
direct Influence in the HD network, with varying horizons (see ap-
pendix for VE network results). The X-axis shows increasing hori-
zon values and the Y-axis shows the Indirect Influence (K = 2).
This figure shows that the relative difference between HEAL and
Greedy increases significantly with increasing T values.

Next, we scale up K values with increased horizon settings to
find the maximum attainable solution quality difference between
HEAL and Greedy. Figure 7b shows the Indirect Influence achieved
by HEAL and Greedy (withK = 4 and T = 10) on the VE and HD
networks. The X-axis shows the two networks and the Y-axis shows
the Indirect Influence. This figure shows that with these settings,
HEAL achieves ∼110% more Indirect Influence than Greedy (i.e.,
more than a 2-fold improvement) in the two real-world networks.

HEAL vs Greedy. Figure 8b shows the percentage increase (in
Indirect Influence) achieved by HEAL over Greedy with varying
u(e)/p(e) values. The columns and rows of Figure 8b show vary-
ing u(e) and p(e) values respectively. The values inside the table
cells show the percentage increase (in Indirect Influence) achieved
by HEAL over Greedy when both algorithms plan using the same
u(e)/p(e) values. For example, with p(e) = 0.7 and u(e) = 0.1,
HEAL achieves 45.62% more Indirect Influence than Greedy. This
figure shows that HEAL continues to outperform Greedy across
varying u(e)/p(e) values. Thus, on a variety of settings, HEAL
dominates Greedy in terms of both Indirect Influence and run-time.

Deviation Tolerance. We show HEAL’s tolerance to deviation
by replacing a fixed number of actions recommended by HEAL
with randomly selected actions. Figure 8a shows the variation in
Indirect Influence achieved by HEAL (K = 4,T = 10) with in-
creasing number of random deviations from the recommended ac-
tions. The X-axis shows increasing number of deviations and the
Y-axis shows the Indirect Influence. For example, when there were

(a) Artificial Networks

p(e)
u(e)

0.1 0.2 0.3

0.7 24.42 21.02 16.85
0.6 0.0 18.26 12.46
0.5 11.58 10.53 8.11

(b) % Loss in HEAL Solution

Figure 9: Artificial Networks And Sensitivity Analysis

2 random deviations (i.e., two recommended actions were replaced
with random actions), HEAL achieves 100.23 Indirect Influence.
This figure shows that HEAL is highly deviation-tolerant.

Sensitivity Analysis. Finally, we test the robustness of HEAL’s
solutions in the HD network (see appendix for VE network results),
by allowing for error in HEAL’s understanding of u(e)/p(e) values.
We consider the case that u(e) = 0.1 and p(e) = 0.6 values that
HEAL plans on, are wrong. Thus, HEAL plans its solutions using
u(e) = 0.1 and p(e) = 0.6, but those solutions are evaluated
on different (correct) u(e)/p(e) values to get estimated solutions.
These estimated solutions are compared to true solutions achieved
by HEAL if it planned on the correct u(e)/p(e) values. Figure 9b
shows the percentage difference (in Indirect Influence) between the
true and estimated solutions, with varying u(e) and p(e) values.
For example, when HEAL plans its solutions with wrong u(e) =
0.1/p(e) = 0.6 values (instead of correct u(e) = 0.3/p(e) = 0.5
values), it suffers a 8.11% loss. This figure shows that HEAL is
relatively robust to errors in its understanding of u(e)/p(e) values,
as it only suffers an average-case loss of ∼ 15%.

8. CONCLUSION
This paper focuses on the important problem of selecting par-

ticipants of sequentially deployed interventions, which are orga-
nized by homeless shelters to spread awareness about HIV preven-
tion practices among homeless youth. This is an extremely impor-
tant problem as homeless youth are at high-risk to HIV (∼10% of
homeless youth are HIV positive). While previous work tries to
solve this problem, it simply fails to scale up to real world sizes
and demands. It runs out of memory on large networks, with in-
creased number of intervention participants, and runs very slowly
on moderate sized networks. In this paper, we develop HEALER, a
new software agent for solving this problem which scales up to real
world demands. HEALER casts the problem as a POMDP and uses
a completely novel suite of algorithms (HEAL, TASP and Evaluate)
to achieve a 100X speedup over state-of-the-art algorithms while
outperforming them by 70% in terms of solution quality. More
than that, it runs when previous algorithms can’t scale up. Also,
HEALER saves homeless shelters’ thousands of dollars and many
months of time by generating uncertain networks at low cost using
its Facebook application. Finally, we show some novel theoretical
hardness results about the problem that HEALER solves. HEALER
is fully ready to be deployed in the real world, in collaboration with
a homeless shelter. The shelter officials have tested HEALER’s
components and their feedback has been positive. HEALER’s de-
ployment is expected to commence in early Spring 2016.
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