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Abstract. Motivated by the problem of protecting endangered animals,
there has been a surge of interests in optimizing patrol planning for con-
servation area protection. Previous efforts in these domains have mostly
focused on optimizing patrol routes against a specific boundedly rational
poacher behavior model that describes poachers’ choices of areas to at-
tack. However, these planning algorithms do not apply to other poaching
prediction models, particularly, those complex machine learning models
which are recently shown to provide better prediction than traditional
bounded-rationality-based models. Moreover, previous patrol planning
algorithms do not handle the important concern whereby poachers in-
fer the patrol routes by partially monitoring the rangers’ movements. In
this paper, we propose OPERA, a general patrol planning framework
that: (1) generates optimal implementable patrolling routes against a
black-box attacker which can represent a wide range of poaching predic-
tion models; (2) incorporates entropy maximization to ensure that the
generated routes are more unpredictable and robust to poachers’ par-
tial monitoring. Our experiments on a real-world dataset from Uganda’s
Queen Elizabeth Protected Area (QEPA) show that OPERA results in
better defender utility, more efficient coverage of the area and more un-
predictability than benchmark algorithms and the past routes used by
rangers at QEPA.

1 Introduction

Worldwide, wildlife conservation agencies have established protected areas to
protect threatened species from dire levels of poaching. Unfortunately, even in
many protected areas, species’ populations are still in decline [3, 1]. These ar-
eas are protected by park rangers who conduct patrols to protect wildlife and
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deter poaching. Given that these areas are vast, however, agencies do not have
sufficient resources to ensure rangers can adequately protect the entire park.

At many protected areas, rangers collect observational data while on patrol,
and these observations on animals and illegal human activities (e.g., poaching,
trespassing) are commonly recorded into a park-wide database (e.g., SMART,
Cybertracker). Once enough patrols have been conducted, a patrol manager will
analyze the data and generate a new patrolling strategy to execute. However,
given the vast area and limited financial budgets of conservation agencies, im-
proving the efficiency of ranger patrols is an important goal in this domain.

Following the success of automated planning tools used in domains such as
fare enforcement and seaport protection [20, 15], novel planning tools have also
been proposed and applied to ranger patrol planning. Work in [11] developed a
new game-theoretic model that optimized against its proposed poacher behavior
model to generate randomized patrol strategies. However, they did not account
for spatial constraints (i.e., are two areas adjacent?) in their planning and thus
cannot guarantee the implementability of their proposed strategies. Moreover,
the planning in [11] is specific to one poacher behavior model and cannot be
applied to different predictive models. [1] demonstrated the potential for auto-
mated planning tools in the real world via a successful field test. However, the
planning process in [1] is deterministic and thus is predictable to poachers.

In this paper, we present OPERA (Optimal patrol Planning with Enhanced
RAndomness), a general patrol planning framework with the following key fea-
tures. First, OPERA optimally generates patrols against a black-box poaching
prediction model. Unlike other approaches in this domain that can only optimize
against their specified prediction model [11, 7], OPERA is capable of optimizing
against a wide range of prediction models. Second, OPERA optimizes directly
over the space of feasible patrol routes and guarantees implementability of any
generated patrol strategy. Lastly, OPERA incorporates entropy maximization in
its optimization process to ensure that the generated strategies are sufficiently
randomized and robust to partial information leakage – i.e., a frequently observed
phenomenon in practice whereby poachers try to infer the patroller’s patrolling
route by monitoring part of the patroller’s movements [13, 10, 18].

We evaluate OPERA on a real-world data set from Uganda’s Queen Elizabeth
Protected Area (QEPA). Our experiments show that, compared to benchmark
heuristic planning algorithms, OPERA results in significantly better defender
utility and more efficient coverage of the area. Moreover, the experiments also
show that the new entropy maximization procedure results in patrol routes that
are much more unpredictable than those routes generated by classical techniques.
This effectively mitigates the issue of partial information leakage. Finally, we
integrate OPERA with a predictive model of a bagging ensemble of decision
trees to generate patrolling routes for QEPA, and compare these routes with the
past routes used by rangers at QEPA. The experiments show that OPERA is
able to detect all the attacks that are found by past ranger patrolling and also
predicted by the predictive model. Moreover, OPERA results in better attack
detection and more efficient coverage of the area than the past ranger routes.



2 Related Work

Prior work in planning wildlife patrols has also generated patrol strategies based
on a predictive model [11]. In [11], poacher behavior was modeled via a two-
layered graphical model and a randomized patrolling strategy was planned in
a Stackelberg Security Game (SSG) framework. Similarly, SSGs have been ap-
plied to the problem of interdicting rhino poachers [7]. In [7], optimal interdiction
strategies were generated for rangers by solving an SSG. However, patrol strate-
gies generated in [11] were not guaranteed to be implementable in the form of
patrol routes that satisfy spatial constraints, while [7] optimized over a very
small set of patrols specified a priori. In contrast, our scalable approach opti-
mizes over the space of all feasible patrol routes and is guaranteed to generate
executable routes. Additionally, both the patrol strategy generation approaches
in [11] and [7] were constrained to each of their own adversary behavior models,
while our black-box approach can generate a patrol strategy for a wide range of
adversary frameworks and corresponding behavior models.

Green Security Games [19, 5] have been introduced to model the interaction
in domains such as wildlife protection, fishery protection, and forest protection.
In [5], a multi-stage game is used to model the repeated interactions in these
domains. In the case where the defender’s strategy in one stage can affect the
attackers’ behavior in future stages, look-ahead planning algorithms were pro-
posed [5] to compute a sequence of defender strategies against attackers that
follow a specific behavior model. OPERA can also handle multi-stage planning
to generate a sequence of strategies to use, but OPERA additionally introduces
a novel and scalable approach to handle black-box attackers.

Other work in this domain has resulted in the successful field testing of
planned patrols [1, 4]. [1] generates patrol strategy by reorganizing historical
patrol effort values such that areas of highest predicted activity would receive the
highest patrol effort. However, such reorganization leads to a deterministic patrol
strategy that can be easily exploited by poachers. [4] introduced a patrol planning
tool that incorporated spatial constraints to plan detailed patrol routes. However,
it relied on a specific type of attacker behavior model [12] while OPERA can
optimize against any black-box attacker model that can be approximated by a
piece-wise linear function of the patrolling effort.

3 Green Security Games with Black-Box Attackers

In this section, we provide an overview of Green Security Games (GSGs) and
how they can work with a black-box attacker model.

3.1 Green Security Games

GSGs are security games that specifically focus on the unique challenges present
in conservation domains (e.g., protecting wildlife, fisheries); GSGs focus on pro-
tecting threatened natural resources, with limited defender capacity, from re-
peated outside attacks. Like most of the previous work in GSGs [19, 5], we



consider a discrete setting where the conservation area is divided into N discrete
grid cells, each treated as a target. Let [N ] denote the set of all cells, among
which one cell is designated as the patrol post. Any patrol route must originate
from and return to the patrol post. W.l.o.g., we will treat cell 1 as the patrol
post throughout the paper. There is one patroller resource (e.g., ranger team)
who patrols [N ] cells each day. Due to real-world spatial constraints, from one
cell the patroller can only move to neighboring cells. We assume that traversing
each cell requires one unit of time, and we let T denote the upper bound of
the total units of time that the patroller can patrol each day. As a result, the
patroller can traverse at most T cells each day. These spatial constraints can be
captured by a time-unrolled graph G (e.g., Figure 1). Any node vt,i in G denotes
the cell i at time t. The edges in G, only connecting two consecutive time steps,
indicate feasible spatial traversals from one cell to another within a unit of time.
Recall that cell 1 is the patrol post, so a feasible patrol route will be a path in
G starting from v1,1 and ending at vT,1 (e.g., the dotted path in Figure 1).
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Fig. 1. An Example of the Time-Unrolled Graph

3.2 Black-Box Attackers

Unlike previous security game models which explicitly assume an attacker be-
havior model (rational or boundedly rational), we assume that for each cell i
there is a black-box function gi, which takes as input certain measure of the
defender’s patrolling effort l1i , l

0
i at the current and previous period respectively,

and outputs a prediction of attacks at cell i. Note that the dependence of the
prediction on static features (e.g., animal density, distance & terrain features)
is integrated into the function form of gi and thus will not be an explicit input
into gi. This is motivated by the recent surge of research efforts in using machine
learning models to predict attacks in conservation areas [19, 8, 9]. Each of these
models can be treated as a black-box function of the attacker’s behavior, though
we note that the function gi can also capture perfectly rational or other mod-
els of boundedly rational attackers. In this paper, we assume that the function
gi outputs the predicted number of detected attacks at cell i (i.e., attacks that
happen and are also detected by the patroller) since the real-world data and



corresponding machine learning model we use fit this task. However, we remark
that our framework and algorithms are also applicable to other forms of gi.

We wish to optimize the design of patrol routes against such black-box at-
tackers. Of course, one cannot hope to develop a general, efficient algorithm that
works for an arbitrary function gi. We thus make the following assumption: gi
depends discretely on the patrolling effort at cell i. More specifically, we assume
that there are m + 1 levels of patrolling effort at any time period, ranging in-
creasingly from 0 to m, and gi : {0, 1, ...,m}2 → R takes level l1i , l

0
i as input. We

remark that this discretization is a natural choice since it can be viewed as a
piecewise constant approximation for a continuous attacker behavior model. It’s
worth noting that some machine learning models in this domain indeed use dis-
crete patrolling levels as input features [9]. The output of gi can be any number
(e.g., 0–1 for classifiers, a real number for regression).

3.3 Patrolling Effort and its Implementation

Recall that each patrol route is an s − d path in G for s = v1,1 and d = vT,1.
Equivalently, and crucially, a patrol route can also be viewed as a one unit integer
flow from s to d (e.g., the path in Figure 1 is also a one-unit s−d flow). We allow
the defender to randomize her choice of patrol routes, which is called a defender
mixed strategy and corresponds to a fractional s− d flow. With any period, the
patrolling effort xi at each cell i is the expected total amount of time units spent
at cell i during T time steps. For example, using the path in Figure 1, the effort
x2 equals 2 since the path visits cell 2 twice and the efforts x5 = 1, x7 = 0, etc.
When a mixed strategy is used, the effort will be the expected time units. Let
x = (x1, ..., xN ) denote the patrolling effort vector, or effort vector for short.
One important property of the patrolling effort quantity is that it is additive
across different time steps. Such additivity allows us to characterize feasible
effort vectors using a flow-based formulation. An effort vector is implementable
if there exists a mixed strategy that results in the effort vector.

Lemma 1. The effort vector (x1, ..., xN ) ∈ RN+ within any period is imple-
mentable if and only if there exists a flow f in G such that

xi =
∑T
t=1

[∑
e∈σ+(vt,i)

f(e)
]
, for i = 1, ..., N.

f is a feasible 1-unit s− d flow in G
(1)

where σ+(vt,i) is the set of all edges entering node vt,i.

Proof. This simply follows from the observation that any mixed strategy is a
1-unit fractional s− d flow and the definition that xi is the aggregated effort at
cell i from all the T time steps. ut

Let α0 < α1... < αm < αm+1 be m+ 2 threshold constants which determine
the patrol level of any patrolling effort. By default, we always set α0 = 0 and
αm+1 = +∞. The patrolling effort xi has level l ∈ {0, 1, ...,m} if xi ∈ [αl, αl+1).
In most applications, these thresholds are usually given together with the func-
tion gi(l

1
i , l

0
i ).



4 Patrolling Route Design to Maximize Attack Detection

Recall that the black-box function gi in our setting predicts the number of de-
tected attacks at cell i. In this section, we look to design the optimal (possibly
randomized) patrol route so that the induced patrol effort maximizes the total
number of detected attacks

∑
i∈[N ] gi(l

1
i , l

0
i ). For simplicity, we first restrict our

attention to the planning of the patrol routes at only current period without
looking into the future periods. We illustrate at the end of this section that how
our techniques can be generalized to the planning with look-ahead.

When designing the current patrol routes, the patrolling level l0i at the previ-
ous period has already happened, thus is fixed. Therefore, only the input l1i for gi
is under our control. To that end, for notational convenience, we will simply view
gi as a function of l1i . In fact, we further omit the superscript “1”, and use li as
the variable of function gi for simplicity. We start by proving the NP-hardness of
the problem. The underlying intuition is that patrolling a cell at different levels
will result in different “values” (i.e., the number of detected attacks). Given a
fixed budget of patrolling resources, the designer needs to determine which cell
has what patrolling level so that it maximizes the total “value”. This turns out
to encode a Knapsack problem.

Theorem 1. It is NP-hard to compute the optimal patrolling strategy.

The proof of Theorem 1 precisely tracks the intuition above, and is omitted
here due to space limit.7 Because of the NP-hardness, the problem of patrolling
optimization to maximize attack detection (with inputs: a time-unrolled graph
G with N × T nodes, {gi(j)}i∈[N ],j∈[m], {αl}l∈[m]) is unlikely to have an effi-
cient polynomial time algorithm. Next, we propose a novel mixed integer linear
program (MILP) to solve the problem. We start by observing that the following
abstractly described Mathematical Program (MP), with integer variables {li}Ni=1

and real variables {xi}Ni=1, encodes the problem.

maximize
∑N
i=1 gi(li)

subject to αli ≤ xi ≤ αli+1, for i ∈ [N ].
li ∈ {0, 1, ...,m}, for i = 1, ..., N.
(x1, ..., xN ) is an implementable effort vector

(2)

We remark that in MP (2), the constraint αli ≤ xi < αli+1 is relaxed to
αli ≤ xi ≤ αli+1. This is without loss of generality since, in practice, if xi = αli+1

for some cell i, we can decrease xi by a negligible amount of effort and put it
anywhere feasible. This will not violate the feasibility constraint but makes xi
strictly less than αli+1.

Though MP (2) has complicated terms like gi(li) and αli which are non-
linear in the variable li, we show that it can nevertheless be reformulated as a

7 All missing proofs in this paper can be found in an online appendix.



compactly represented MILP. The main challenge here is to eliminate these non-
linear terms. To do so, we introduce m new binary variables {zji }mj=1, for each i,
to encode the integer variable li and linearize the objective and constraints of MP
(2) using the new variables. By properly constraining the new variables {zji }i,j ,
we obtain the following novel MILP (3), which we show is equivalent to MP (2).
MILP (3) has binary variables {zji }i∈[N ],j∈{1,...,m} (thus mN binary variables),
continuous effort value variables {xi}i∈[N ] and flow variables {f(e)}e∈E . Note
however, gi(j)’s are constants given by the black-box attacker model. By con-
ventions, σ+(v) (σ−(v)) denotes the set of edges that enter into (exit from) any
node v.

maximize
∑N
i=1

(
gi(0) +

∑m
j=1 z

j
i · [gi(j)− gi(j − 1)]

)
subject to xi ≥

∑m
j=1 z

j
i · [αj − αj−1], for i = 1, ..., N.

xi ≤ α1 +
∑m
j=1 z

j
i · [αj+1 − αj ], for i = 1, ..., N.

z1i ≥ z2i ... ≥ zmi , for i = 1, ..., N.

zji ∈ {0, 1}, for i = 1, ..., N, j = 1, ...,m.

xi =
∑T
t=1

[∑
e∈σ+(vt,i)

f(e)
]
, for i = 1, ..., N.∑

e∈σ+(vt,i)
f(e) =

∑
e∈σ−(vt,i) f(e), for i = 1, ..., N ; t = 2, ..., T − 1.∑

e∈σ+(vT,1)
f(e) =

∑
e∈σ−(v1,1) f(e) = 1

0 ≤ xi ≤ 1, 0 ≤ f(e) ≤ 1, for i = 1, ..., N ; e ∈ E.
(3)

Theorem 2. MILP (3) is equivalent to the Mathematical Program (2).

Proof. By Lemma 1 and noticing that variable f(e) for all e ∈ E represents
a one-unit flow on graph G, it is easy to verify that the last four sets of con-
straints in MILP (3) are precisely a mathematical formulation for the constraint
“(x1, ..., xN ) is an implementable effort vector”. We therefore only prove that the
first four sets of constraints in MILP (3) encode the first two constraints of MP
(2). Moreover, the objective functions in MILP (3) and MP (2) are equivalent.

We start by examining the constraints. Since z1i ≥ z2i ... ≥ zmi and zji ∈ {0, 1},
we know that any feasible {zji }mj=1 corresponds to a li ∈ {0, 1, ...,m} such that

zji = 1 for all j ≤ li and zji = 0 for all j > li (li = 0 means zji = 0 for all

j). Conversely, given any li ∈ {0, 1, ...,m}, we can define zji = 1 for all j ≤ li
and zji = 0 for all j > li as a feasible choice of {zji }mj=1. That is, there is a

one-to-one mapping from feasible {zji }mj=1 to feasible li for any cell i. Utilizing
this one-to-one mapping, we have

m∑
j=1

zli · [αj − αj−1] =

li∑
j=1

[αj − αj−1] = αli .

m∑
j=1

zji · [αj+1 − αj ] + α1 = α1 +

li∑
j=1

[αj+1 − αj ] = αli+1.



This shows that any feasible {zji }mj=1 encodes an li ∈ {0, 1, ...,m} and the first
two constraints in MILP (3) are equivalent to xi ≥ αli and xi ≤ αli+1, re-
spectively. The argument for the objective function is similar. In particular,
gi(0) +

∑m
j=1 z

j
i · [gi(j) − gi(j − 1)] = gi(0) +

∑li
j=1[gi(j) − gi(j − 1)] = gi(li).

This proves that MILP (3) is equivalent to MP (2), as desired. ut

Generalizations. The techniques above can be easily generalized to handle
more general tasks and models. First, it works for any defender objective that is
linear in gi’s, not necessarily the particular one in MP (2). For example, if the
attacks at different cells have different impacts, we can generalize the objective to
be a weighted sum of gi’s. Second, the assumption that gi depends discretely on
the patrol level is equivalent to assume that gi is a piece-wise constant function
of xi. This can be further generalized. Particularly, when gi is a piece-wise linear
function of xi, we can still use a similar MILP to solve the problem with a
slightly more involved formulation of the objective (e.g., [17]). Finally, when gi
is a continuous function in xi, its piece-wise linear approximation usually serves
as a good estimation of gi.

Generalization to Route Design with Look-Ahead

We now illustrate how the previous techniques can be generalized to patrol de-
sign with look-ahead. The designer will plan for multiple periods and need to
take into account the effect of current patrolling on the next period’s prediction.
For simplicity, we focus on planning for two periods: the current period 1 and the
next period 2. The approach presented here can be generalized to planning for
any small number of periods. Moreover, in the real-world domain we focus on,
there is usually no need for a long-term patrol plan because patrolling resources
and environments are dynamic – new plans will need to be frequently designed.
The optimal planning for two periods can be formulated as the following math-
ematical program (MP). Note that here we bring back the omitted superscripts
for li’s to indicate different time periods. Moreover, we use g1, g2 to denote the
prediction function at period 1, 2 respectively.

maximize
∑N
i=1 g

2
i (l2i , l

1
i ) +

∑N
i=1 g

1
i (l1i , l

0
i )

subject to αl2i ≤ x
2
i ≤ αl2i+1, for i = 1, ..., N.

αl1i ≤ x
1
i ≤ αl1i+1, for i = 1, ..., N.

l2i ∈ {0, 1, ...,m}, for i = 1, ..., N.
l1i ∈ {0, 1, ...,m}, for i = 1, ..., N.
x2,x1 are both implementable effort vectors.

(4)

MP (4) can also be reformulated as an MILP by employing the techniques
above. More precisely, we can introduce binary variables {zji }mj=1 and {tji}mj=1 to

encode l2i and l1i respectively. The additional challenge is to represent g2i (l2i , l
1
i )

as a linear function. To do so, we can equivalently view g2i as a function of
li = (m + 1)l2i + l1i ∈ {0, 1, ...,m2 + 2m}, and introduce m2 + 2m additional



binary variables c1i , ..., c
m2+2m
i for each i, such that 1 ≥ c1i ≥ ... ≥ cm

2+2m
i ≥ 0

and
∑m2+2m
j=1 cji = li = (m+ 1)

∑m
j=1 z

j
i +

∑m
j=1 t

j
i . This guarantees that cji = 1

for all j ≤ li and cji = 0 otherwise. Thus g2i (l2i , l
1
i ) = g2i (li) = g2i (0)+

∑m2+2m
j=1 cji ·

[g2i (j) − g2i (j − 1)]. So the objective and all the constraints are linear in these
variables. Note that this approach introduces N(m2 + 4m) binary variables.

5 Increasing Unpredictability via Entropy Maximization

The algorithms in Section 4 output only a flow {fe}e∈E together with the cor-
responding effort vector. To implement this effort vector in the real world, one
needs to decompose the flow to an executable mixed strategy, i.e., a distribution
over deterministic patrolling routes. The classical approach is to use a standard
flow decomposition algorithm. Unfortunately, these algorithms often output a
decomposition with very small number of route choices. For example, in one
real-world patrol post we tested, the resulted optimal mixed strategy essentially
randomizes over only two patrol routes, as depicted in Figure 2. Despite its op-
timality, such a mixed strategy is problematic due to its lack of randomness and
unpredictability. First, since there are only two routes, the poacher can quickly
learn these patrolling routes. Then, knowing these two routes, a poacher can eas-
ily figure out where the patroller will be at any time during the day by simply
looking at whether their initial move is to the northeast or southwest since this
initial move uniquely indicates which route the patroller takes.

Fig. 2. Visualization of Two Patrol Routes.

To overcome this issue, we seek to compute a mixed strategy that implements
the (same) optimal effort vector but is the “most random” in the sense that it
has the maximum possible (Shannon) entropy. The underlying intuition is that
the increased randomness will make patrolling more unpredictable even when
poachers can observe part of the patroller’s movement. A thorough experimental
justification of the max-entropy approach is done in Section 8.

We start by formulating the problem of computing the mixed strategy that
implements the effort vector while maximizing entropy. Let set P denote the set



of all s−d paths. Our goal is to implement {xi}i∈[N ] as a distribution over P with
the maximum entropy, a task which we term the max-entropy decomposition of
{xi}i∈[N ]. We will view any P ∈ P as a set of nodes in G that specifies the
ranger’s position at each time step (these nodes uniquely determine the s − d
path). Let Pi = {vt,i : ∃t, s.t. vt,i ∈ P} denote those nodes corresponding to cell
i, so path P patrols cell i with |Pi| units of effort, where |Pi| is the cardinality of
Pi. The max-entropy decomposition can be formulated as the following program
with variable θP representing the probability of picking path P .

maximize −
∑
P∈P θP log θP

subject to
∑
P∈P |Pi|θP = xi, for i ∈ E.∑
P∈P θP = 1

θP ≥ 0, for P ∈ P.

(5)

Observe that program (5) is a convex program (CP) since entropy is a concave
function. However, the major challenge of solving CP (5) is that the size of P
(i.e., the total number of s−d paths in G) is exponential in T and therefore so is
the total number of variables in CP (5). Indeed, though T = 12 in our real-world
setting, this results in about 1010 variables in CP (5). Such a convex program
cannot be efficiently solved by any state-of-the-art optimization software.

To overcome this challenge, we instead examine the Lagrangian dual of CP
(5) and utilize a well-known characterization of the optimal solution to CP (5) in
terms of the optimal solution of its Lagrangian dual – an unconstrained convex
program with variables {yi}i∈[N ], as follows:

Dual of CP (5): min H(y) =

N∑
i=1

xi · yi + ln

[ ∑
P∈P

exp(−
N∑
i=1

|Pi|yi)
]

(6)

Note that H(y) is a convex function. The following well-known lemma charac-
terizes the optimal solution of CP (5) in terms of the optimal solution of CP (6).

Lemma 2 (Adapted from [16]). Let {y∗i }i∈[N ] be the optimal solution to CP
(6). Then the optimal solution to CP (5) is given by:

θ∗P =
exp(−

∑N
i=1 |Pi|y∗i )∑

P ′∈P exp(−
∑N
i=1 |P ′i |y∗i )

, ∀P ∈ P (7)

Despite of Lemma 2, two challenges remain in computing the maximum
entropy decomposition. The first is to obtain the optimal solution to CP (6).
Though CP (6) is a convex program, it is unclear that its objective function

can be even evaluated efficiently since
∑
P∈P exp(−

∑N
i=1 |Pi|yi) is a summa-

tion of exponentially many terms. To overcome this challenge, we design an
efficient dynamic program (DP) to compute the term

∑
P∈P exp(−

∑N
i=1 |Pi|yi)

for any given input {yi}i∈[N ]. The second challenge is that we cannot explicitly
output the optimal solution {θ∗P }P∈P since it takes exponential time to even



write down these many variables. We therefore instead develop a sampling al-
gorithm and prove that it samples a path P ∈ P with the desired probability
θ∗P in poly(N,T ) time. Next, we elaborate our algorithms while omitting formal
proofs due to space limit (formal proofs can be found in the online appendix).

For notational convenience, let C(y) denote the term
∑
P∈P exp(−

∑N
i=1 |Pi|yi).

To compute C(y), we utilize the natural chronological order along the tempo-
ral dimension for nodes in graph G and build a dynamic programming table
DP (t, i), for t ∈ [T ] and i ∈ [N ], such thatDP (t, i) =

∑
P∈P(t,i) exp(−

∑N
i=1 |Pi|yi)

where P(t, i) is the set of paths from s to the node vt,i. We initialize DP (1, 1) =
y1 (recall s = v1,1) and DP (1, i) = 0 for all i > 1, and then use the following
update rule to return DP (T, 1) (recall d = vT,1):

DP (t, i) =
∑

e:e=(vt−1,i′ ,vt,i)

DP (t− 1, i′) · exp(−yi).

Correctness of the algorithm follows a textbook argument. Utilizing this DP,
one can efficiently evaluate the objective value of CP (6), and solve the uncon-
strained optimization problem via any black-box optimization tool (e.g., fmincon
in MATLAB).

Next, we take {y∗i }i∈[N ] as input and efficiently samples an s−d path P ∈ P
with probability θ∗P , as defined in Equation (7). The algorithm starts from the
node d (=vT,1) and at any time t and location loc, samples its predecessor node

vt−1,i with probability pe =
exp(−y∗loc)·DP (t−1,i)

DP (t,loc) where e = (vt−1,i, vt,loc). Full

details are in Algorithm 1. The following theorem summarizes its correctness.

Theorem 3. Algorithm 1 correctly samples P with probability θ∗P for any P ∈ P
and runs in poly(N,T ) time, where {θ∗P }P∈P is the optimal solution to CP (5).

Algorithm 1 Max-Entropy Implementation of the Effort Vector

Input: : Effort values at each cell {xi}i∈[N ].
Output: : a random path P ∈ P which implements {xi} and maximizes entropy.

1: Compute the optimal solution {y∗i }i∈[N ] to CP (6) by utilizing the DP.
2: Build the DP table DP (t, i) with {y∗i }i∈[N ];
3: Initialize: P = {vT,1}, Define loc = 1;
4: for t = T to 2 do
5: Sample an edge e = (vt−1,i, vt,loc) for all such edges that exist, with prob-

ability

pe =
exp(−y∗loc) ·DP (t− 1, i)

DP (t, loc)
;

6: Let e = (vt−1,i∗ , vt,loc) be the sampled edge above, and add vt−1,i∗ to P .
7: Update loc = i∗.
8: end for
9: return P .



6 Real-world Dataset

Our analysis focuses on a real-world wildlife crime dataset from Uganda’s Queen
Elizabeth Protected Area (QEPA). QEPA spans approximately 2,520 square
kilometers and is patrolled by wildlife park rangers. While on patrol, they collect
data on animal sightings and signs of illegal human activity (e.g., poaching,
trespassing). In addition to this observational data, the dataset contains terrain
information (e.g., slope, vegetation), distance data (e.g., nearest patrol post),
animal density, and the kilometers walked by rangers in an area (i.e., effort).

We divide QEPA into 1 square kilometer grid cells and compute several fea-
tures based on the dataset’s contents (e.g., observations, terrain, effort). Addi-
tionally, we group the observations and effort values (i.e., the values that change
over time) into a series of month-long time steps. Finally, we compute two ef-
fort features, previous effort and current effort, that represent the amount of
patrolling effort expended by rangers in the previous time step and current time
step, respectively. Because effort is a continuous value (0 to ∞), we discretize
the effort values into m effort groups (e.g., m = 2: high and low).

7 Predictive Model Analysis

In this section, we analyze an example attack prediction model that can predict
poaching activity for the real-world dataset described in Sect. 6 using an ensem-
ble of decision trees [6]. This model can provide the black-box attack function
gi(li) for OPERA and will be used to evaluate OPERA in Sect. 8.

The goal of the analysis is two-fold. First, we analyze the performance of the
prediction model to verify that it is a realistic model that can provide gi(li).
Second, we analyze how the prediction model’s predictions change as a func-
tion of ranger effort, which can provide intuition on why planning patrols using
OPERA can help increase the efficiency of patrols.

Note that although the hybrid model proposed in [6] is currently the best
performing predictive model in this domain, conducting such an analysis on this
model may be confounded by its complexity. For instance, the hybrid model’s
reaction to a change in effort may be due to the underlying bagging ensemble’s
reaction or it may be due to a reaction in the Markov Random Field that boosts
predictions under specific conditions. For scientific rigor, we instead focus on the
analysis of a single model’s reactivity – the bagging ensemble (which outperforms
the previously most accurate model in [9]).

7.1 Ensemble Model

Bagging (Bootstrap aggregation technique) is an ensemble method (in this case
applied to decision trees) where each tree is trained on a bootstrapped subset
of the whole dataset. The subsets are generated by randomly choosing, with
replacement, M observations where M is the dataset size. Once all trees in the
ensemble are trained, the ensemble’s predictions are generated by averaging the



predictions from each tree. We trained a bagging ensemble using the fitcensemble
function in MATLAB 2017a. For this model, the best training period consists
of 5 years of data (based on repeated analyses for different train/test splits).
Described in Sect. 6, the 11 input features consist of terrain and geospatial
features, and two patrol effort features (one for previous time step’s effort and
one for current effort). Each data point’s label corresponds to whether an attack
was detected at that cell. For the training set, a label will be 1 if at any point
in the training period an attack was detected (0 otherwise). For the test set, a
label will be 1 if an attack was detected during the current time step.

We present results for a bagging ensemble on a three-month time scale where
the ensemble is trained on 5 years of data (effort values are in three-month
chunks) and is used to predict detections for a test period of three months. The
test set corresponds to September through November 2016, and the training set
contains data for 2,129 patrolled cells from September 2012 to August 2016.

In Table 1, we present prediction performance results as verification that sub-
sequent analyses are done on a realistic model. We also present baseline results
from common boosting models – AdaBoost and RUSBoost [14]. Additionally, we
present a baseline, TrainBaseline, where if an attack was detected at a cell in the
training data, the baseline will predict a detected attack for the test data (for
cells that were not patrolled in the training data, and thus there is no training
sample for that cell, a uniform random binary prediction is made). Due to the
large class imbalance present in the dataset (many more negative labels than
positives), we compute the area under a Precision-Recall curve (PR-AUC8) in-
stead of the standard ROC curve (which is not as informative for such a dataset)
[2]. We also present F1, Precision, and Recall scores.

Model F1 Precision Recall PR-AUC
TrainBaseline 0.4 0.25 0.96 -
RUSBoost 0.21 0.12 0.96 0.28
AdaBoost 0.49 0.35 0.82 0.50
Bagging 0.65 0.52 0.86 0.79

Table 1. Model Performances

As can be seen, the Bagging model outperforms all other models in terms of
F1, Precision, and PR-AUC. While Bagging does not always score the highest
in recall, its precision score greatly outperforms the other models’ precision. In
practical terms, this means that the Bagging model will predict far less false
positives and can thus better ensure that the patrol generation algorithm is not
needlessly sending rangers to areas where they won’t detect attacks.

8 Because TrainBaseline makes binary predictions and thus does not have continuous
prediction values, PR-AUC is not computed for TrainBaseline.



7.2 Effort Function Analysis

The goal of the patrol generation algorithm is to allocate effort such that rangers’
detections of attack (poaching activity) are maximized. For the following analy-
sis, we examine how the bagging ensemble’s predictions change as a function of
ranger effort. For example, if we increase effort in an area over a period of three
months, will rangers detect an attack in that area in any of the three months?

For this analysis, we present the changes in (1) the model’s detected attack
predictions gi(li) and (2) the model’s detected attack prediction probabilities
when the effort in the current time step is changed. Both values are outputted
by MATLAB’s predict function for our learned ensemble. We refer to effort group
0 as low and group 1 as high; an increase in allocated effort, for example, would
result in li changing from low to high. Results for changes in predictions and
prediction probabilities are shown in Tables 2 and 3 respectively.

Effort Change Neg to Pos Pos to Neg No Change (Pos) No Change (Neg)
Low to High 119 30 172 1693
High to Low 2 110 122 274

Table 2. Prediction Changes as Function of Current Effort

In Table 2, for each type of change in effort (low to high or high to low),
there are three possible outcomes for a prediction change: a negative prediction
(no detection) can change to a positive prediction (detected attack), referred
to as Neg to Pos, positive can change to negative (Pos to Neg), and there
can be no change in the prediction (for either the positive or negative predic-
tion cases). Given these outcomes, we make the following observations. First,
there are a substantial number of cells whose corresponding detection predic-
tions do not change as a result of changes in effort. In the case of the unchanged
positive predictions, these are predicted to be high-risk cells where rangers will
find poaching activity even if they allocate relatively low effort values to it. For
unchanged negative predictions, these correspond to low-risk cells that are essen-
tially predicted to not be attacked at all. Second, while there are substantially
more instances of predicted detections increasing as a result of increasing effort,
there are still some instances of predicted detections decreasing as a result of
increasing effort. However, because there is not a rational explanation for this
trend, these rare instances are likely due to noise in the model. Finally, we make
the same observation regarding the case where detections mostly decrease as a
result of decreasing effort while detections increase at only two cells.

As for the prediction probability changes in Table 3, we examine changes in
the prediction probability with increases and decreases referred to as Inc and
Dec respectively (i.e., any increase or decrease), the mean changes in prediction
probability for the increase and decrease cases (referred to as Mean Inc and
Mean Dec respectively), and also in the instances where there was no change in
the probability for both the positive (i.e., probability ≥ 0.50) and negative (i.e.,



Effort Change Inc Mean Inc Dec Mean Dec No Change(Pos) No Change(Neg)
Low to High 1546 0.16 423 0.09 4 41
High to Low 142 0.09 358 0.22 0 8

Table 3. Prediction Probability Changes as Function of Current Effort

probability < 0.50) cases. First, when effort is increased, many more cells are
predicted to have a substantial increased prediction probability (mean change
of 16%). While there are a non-trivial number of cells with a decrease in their
prediction probability, the mean decrease is approximately half that of the mean
increase, with the difference being statistically significant (α < 0.01), and is thus
interpreted as noise. Second, when effort is decreased, there are many more cells
with a decrease in prediction probability than increase. Additionally, the mean
decrease in prediction probability is more than twice that of the mean increase
(22% vs 9%) and is also statistically significant (α < 0.01). Finally, as with the
prediction changes in Table 2, a few cells are low-risk and increasing effort will
not result in a corresponding increase in predicted detection probability. While
changes in predicted probability do not necessarily correspond to changes in
actual predictions (0/1), the shifts in probability do provide a concrete indication
of the actual impacts that coverage has on the model’s predictions.

8 Experimental Evaluations

8.1 Evaluation of the Patrol Optimization Algorithm

We start by experimentally testing OPERA using the aforementioned real-world
data and bagging ensemble predictive model. Particularly, the inputs to all the
tested algorithms are specified as follows: graph G is constructed according to the
real-world terrain in QEPA; the function gi’s, together with the corresponding
{αi}mi=1, are precisely the predictive model described in Section 7 for the test
period September through November 2016; T = 12 as suggested by domain
experts. Since we are not aware of any previous patrol generation algorithm
that deals with attackers described by a black-box machine learning model9,
we instead compare our patrol optimization algorithms with the following two
heuristic planning algorithms. Note that we will also compare OPERA with
its preliminary version without entropy maximization, i.e., the Optimal patrol
Planning by flow Decomposition (OPD).

GREED: a heuristic patrol planning algorithm that, at any cell i, greedily
picks the next cell j that satisfies: 1. it is feasible to go from i to j; 2. patrolling
cell j at high is more beneficial, (results in more predicted attacks than patrolling
j at low). If there are multiple such cells, pick one uniformly at random; if there

9 Most previous algorithms either require knowledge of the patroller’s and poacher’s
payoffs [7, 5] which are not available in our setting or generates patrolling strategies
that are not guaranteed to be implementable [11].



are no such cells, then pick any neighbor cell uniformly at random. To guarantee
that the patrol path starts and ends at the patrol post, this procedure continues
until time dT/2e and then the patroller returns via its outgoing route.

RAND: a heuristic patrol planning algorithm that is similar to GREED ex-
cept that at any cell i, it chooses a neighbor cell j to go uniformly at random
without considering the prediction model.

There are 39 patrol posts at QEPA. We test the algorithms on the real
data/model at patrol post 11, 19 and 24, which are the three posts that have the
most attacks in the three months of our testing. In our data, all posts have less
than 100 cells/targets reachable from the post by a route of maximum duration
T=12 (equivalently, a 12-cells long route) and all the algorithms scale very well
to this size (the MILP takes at most 2 seconds in any tested instance). We thus
focus on comparing these algorithms’ ability in detecting attacks under multiple
criteria, as follows:

– #Detection: total number of detected attacks under the prediction model.
Since the prediction model we adopt is a 0-1 classification algorithm, in this
case #Detection also equals the number of cells at which the corresponding
patrolling levels result in detected attacks. However, here we exclude those
cells for which high or low patrol effort results in the same prediction because
patrolling levels at these cells do not make a difference to the criterion.

– #Cover: total number of cells that are patrolled with high. Note that due
to limited resources, not every cell – in fact, only a small fraction of the cells
– can be covered with high.

– #Routes: the number of different patrol routes in 90-day route samples (
corresponding to a 3-month patrolling period).

– Entropy: The entropy of the empirical distribution of the 90 samples.

Note that the last two criteria are used particularly to test the unpredictabil-
ity of these algorithms in an environment with partial observations by the at-
tacker. A higher value of #Routes means that the patroller has more choices of
patrol routes, thus less explorable by the poacher. Entropy is a natural measure
to quantify uncertainty. The experimental results for patrol post 11 and 19 are
shown in Table 4 and 5, respectively. The results for post 24 are similar to that
for post 19, thus are omitted here to avoid repetition. For the #Detection cri-
terion, a/b means that out of the b cells for which low or high makes a prediction
difference, a of them are “hit” correctly – i.e., patrolled at the right level that
results in predicted attack detection – by the patrolling algorithm. For example,
in Table 4, the “15/19” comes from the follows: there are 19 cells at the post
for which patrol level high or low makes a difference in attack detection; The
patrol levels by OPERA result in positive attack detections in 15 out of these 19
cells. For the #Cover criterion, a/b means that out of b cells in total, a cells are
patrolled with high. From the analysis in Section 7 we know that compared to
the low patrol level, the high patrol level is more likely to, though not always,
result in attack detections. Therefore, a larger #Cover value will be preferred
in our comparisons.



#Detection #Cover #Routes Entropy
OPERA 15/19 20/47 61 4.0

OPD 15/19 20/47 10 2.0
GREED 5/19 4/47 84 4.4
RAND 4/19 6/47 89 4.5

Table 4. Comparisons of Different Criteria for Patrol Post 11

#Detection #Cover #Routes Entropy
OPERA 6/6 24/72 22 2.6

OPD 6/6 24/72 6 1.3
GREED 2/6 2/72 1 0
RAND 2/6 6/72 90 4.5

Table 5. Comparisons of Different Criteria for Patrol Post 19

As we can see from both tables, OPERA and OPD10 result in significantly
more detected attacks and cells with high coverage than the GREED and RAND
heuristics. GREED results in slightly more detected attacks than RAND, but
RAND covers more cells with high. This is because GREED biases towards
cells that need more patrolling, thus easily gets concentrated on these cells.
For the #Routes and Entropy criteria, RAND is the most unpredictable (as
expected). GREED is unstable. Particularly, at patrol post 19, GREED always
chooses the same path. This is because it reaches a cell for which high is better
and gets stuck at the same cell always due to its greedy choice. This is a critical
drawback of GREED. In fact, the same phenomenon is also observed at post 24.
Clearly, OPERA exhibits more unpredictability than OPD, and is more stable
than GREED. This shows that among these tested algorithms, OPERA provides
the best balance among unpredictability, stability and the ability in detecting
attacks and covering more cells.

8.2 Comparisons With the Past Patrol Routes

We now compare the patrol routes generated by OPERA with the past patrol
routes used by rangers at QEPA. We still adopt the measures in the above Section
8.1. Since there is no ground truth to compare with (for the past patrolling,
we do not know what happened at those cells that are not patrolled), as an
approximation we will treat the bagging ensemble predictive model described
in Section 7 as the ground truth. This is a reasonable choice since [6] recently

10 Note: they always have the same #Detection and #Cover since they are both
optimal.



shows that this model outperforms all previous poaching prediction models and
provides relatively accurate predictions on the QEPA dataset.

Criteria
Post 11 Post 19 Post 24

OPERA Past OPERA Past OPERA Past
#Detections 15/19 4/19 6/6 5/6 4/4 3/4

#Cover 20/47 6/47 24/72 11/72 20/59 14/59

#Routes 61 4 22 33 34 5

#Entropy 4.0 1.2 2.6 3 2.8 1.4

Table 6. Comparisons of Different Criteria at different Patrol Posts

The results are jointly presented in Table 6. As we can see, the patrol routes
generated by OPERA clearly outperform past patrolling in terms of the #De-
tections and #Cover criteria. Particularly, the routes we generate can detect
attacks on most (if not all) cells by properly choosing their patrolling levels and
also result in more cells covered with high. In terms of unpredictability, the past
patrolling does not have a stable performance. Particularly, it follows only a
few routes at post 11 and 24 with low unpredictability but takes many different
routes at post 19 with high unpredictability. This is a consequence of various
factors at different posts, like patroller’s preferences, location of the patrol post
(e.g., inside or at the boundary of the area), terrain features, etc. On the other
hand, OPERA always comes with good unpredictability guarantee. This shows
the advantage of OPERA over the past patrolling.

9 Conclusion

In this paper, we presented a general patrol planning framework OPERA. It
can optimize against a wide range of prediction models and generate imple-
mentable patrol strategies. In addition, OPERA maximizes the randomness of
generated strategies and increases robustness against partial information leakage
(i.e., poachers may infer the patroller’s patrolling route by monitoring part of
the patroller’s movements). Experimental results on a real-world data set from
Uganda’s Queen Elizabeth Protected Area (QEPA) show that OPERA results
in better defender strategies than heuristic planning algorithms and the past real
patrol routes used by rangers at QEPA in terms of defender utility, coverage of
the area and unpredictability.
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Online Appendix

Proof of Theorem 1

We prove by reducing the Knapsack problem to the design of the optimal pa-
trolling strategy. A Knapsack instance is described as follows: there are m items;
item i has weight wi ∈ (0, 1) and value vi. With a knapsack of weight capacity
1, the goal is to pick items to maximize the total value subject to the knapsack’s
capacity. We assume, w.l.o.g., w1 < w2.. < wm. We reduce this problem to the
computation of the optimal patrolling strategy for the following constructed in-
stance. There are three time steps (T = 3) and N = m+ 1 cells. For notational
convenience, and only in this proof, let cell m + 1 be the patrol post; v1,m+1

connects to v2,i which then connects to v3,m+1 for any i = 1, ...,m. That is, the
patrol post can reach any cell i ∈ {1, ...,m} which then reaches the patrol post.
Each cell can be patrolled at level 1, ...,m. Define the effort threshold αl = wl for
l = 1, ...,m. For any cell i = 1, ...,m, define gi(l) = 0 for all l 6= i and gi(i) = vi.
Let gm+1(l) == 0 for any l = 0, 1, ..,m. That is, patrolling the patrol post never
results in any detection of attacks.

By construction, the defender can detect attacks at cell i only when it is
patrolled at level l = i, which results in detection of gi(i) = vi attacks and takes
patrolling effort xi ∈ [αi, αi+1) where αi = wi and αi+1 = wi+1. Note that, in
the constructed instance above, there is no benefit to patrol a cell more than wi
if the targeted patrolling level is i. As a result, to maximize the total number of
detected attacks, the defender needs to select a subset of cells S so that any cell
i ∈ S is patrolled with level i (i.e., has patrolling effort wi), the total patrolling
effort is upper bounded by 1, and the total number of detected attacks

∑
i∈S vi

is maximized. This is precisely the Knapsack problem.

Proof of Theorem 3

It is easy to see that each step of Algorithm 1 runs in poly(N,T ) time. We only
mention that in Step 1, evaluating the function objective in polynomial time via
the dynamic program allows us to solve the optimization problem in polynomial
time. Moreover, for any t, loc, we have

∑
e:e=(vt−1,i,vt,loc)

pe =
∑

e:e=(vt−1,i,vt,loc)

exp(−y∗loc) ·DP (t− 1, i)

DP (t, loc)
= 1,

since DP (t, loc) =
∑
e:e=(vt−1,i,vt,loc)

exp(−y∗loc)·DP (t−1, i) according to the DP
updating rule. Therefore, pe’s for all edges that reach vt,loc do form a probability
distribution. We now show that each path P is sampled with the desired proba-
bility θ∗P . Observe that any sampled path will be from s = v1,1 to d = vT,1. This
is because D(1, i) = 0 for all i 6= 1 and thus only v1,1 will be in P . Moreover, the
node vT,1 is always in P according to the definition of Algorithm1 (specifically,
Step 3).



Let P = {v1,1, v2,i2 , ...vT−1,iT−1
, vT,1} be any sampled s − d path. For nota-

tional convenience, we use et to denote the edge (vt−1,it−1
, vt,it). We have

Pr(P ) =

T∏
t=2

Pr[sample the edge et]

=

T∏
t=2

exp(−y∗it) ·DP (t− 1, it−1)

DP (t, it)

=

[ T∏
t=2

exp(−y∗it)
]
×
[ T∏
t=2

DP (t− 1, it−1)

DP (t, it)

]

=

T∏
t=2

exp(−y∗it) ·
D(1, 1)

D(T, 1)

=

T∏
t=2

exp(−y∗it) ·
exp(−y∗1)

D(T, 1)
= θ∗P .

This concludes the proof.
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