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Abstract

This thesis considers the following question: in systems with self-interested agents (a.k.a.,

games), how does information — i.e., what each agent knows about their environment and other

agents’ preferences — affect their decision making? The study of the role of information in

games has a rich history, and in fact forms the celebrated field of information economics. How-

ever, different from previous descriptive study, this thesis takes a prescriptive approach and ex-

amines computational questions pertaining to the role of information. In particular, it illustrates

the double-edged role of information through two threads of research: (1) how to utilize infor-

mation to one’s own advantage in strategic interactions; (2) how to mitigate losses resulting from

information leakage to an adversary. In each part, we study the algorithmic foundation of basic

models, and also develop efficient solutions to real-world problems arising from physical security

domains. Besides pushing the research frontier, the work of this thesis is also directly impacting

several real-world applications, resulting in delivered software for improving the scheduling of

US federal air marshals and the design of patrolling routes for wildlife conservation.

More concretely, the first part of this thesis studies an intrinsic phenomenon in human en-

deavors termed persuasion — i.e., the act of exploiting an informational advantage in order to

influence the decisions of others. We start with two real-world motivating examples, illustrating

how security agencies can utilize an informational advantage to influence adversaries’ decisions

and deter potential attacks. Afterwards, we provide a systematic algorithmic study for the foun-

dational economic models underlying these examples. Our analysis not only fully resolves the

computational complexity of these models, but also leads to new economic insights. We then

leverage the insights and algorithmic ideas from our theoretical analysis to develop new models

and solutions for concrete real-world security problems.

The second part of this thesis studies the other side of the double-edged sword, namely, how

to deal with disadvantages due to information leakage. We also start with real-world motivating

examples to illustrate how classified information about security measures may leak to the adver-

sary and cause significant loss to security agencies. We then propose different models to capture

information leakage based on how much the security agency is aware of the leakage situation,

and provide thorough algorithmic analysis for these models. Finally, we return to the real-world

problems and design computationally efficient algorithms tailored to each security domain.

xi
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Background and Overview
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Chapter 1

Overview

1.1 Introduction

This thesis considers a basic question in multi-agent systems: How does information — i.e., what

each agent knows about their environment and other agents’ preferences — affect their decision

making in systems with self-interested actors (i.e., games)? It is well-known from the economic

literature that information can have a profound effect on the equilibrium outcome of games; in

fact, the study of the role of information in games forms the celebrated field of information

economics. However, previous study in economics is mostly descriptive while the prescriptive

counterpart of these questions has remained largely unexplored. This thesis aims to fill this gap

by taking a prescriptive approach, and examines computational questions pertaining to the role

of information in games. In particular, we view information as an endogenous variable of a game

and look to design the information structure that induces the most desirable equilibrium. Such

problems are intrinsically algorithmic, and are particularly relevant in this digital age given the

unprecedented convenience today to generate and communicate information. Our computational

study not only results in implementable algorithms that enable automated applications, but also

leads to new economic insights regarding the role of information in games.

The primary motivating domain of this thesis is the strategic interaction between a defender

and an adversary in physical security, a.k.a., security games (see Figure 1.1 for a few real-world

application domains of this thesis). In a security game, the defender must allocate a limited num-

ber of security resources, possibly under constraints, to protect a set of targets, while the adver-

sary will strategically choose targets to attack. This important framework has been extensively

studied in the past decade, and led to deployed systems in real-world use by security agencies

such as the Federal Air Marshal Service (FAMS), the US Coast Guard (USCG) and the Wildlife

Conservation Society (WCS) (Tambe, 2011).

Almost all the previous work on security games has focused on optimizing the scheduling

of limited security resources to make them unpredictable to a strategic adversary. This thesis,

2



(a) Scheduling of federal air marshals (b) Patrol planning for wildlife conservation

(c) Preventing fare evasion in honor-based
metro systems

(d) Flying UAVs to deter poaching in
wildlife conservation

Figure 1.1: Concrete security domains which motivate, and are also directly impacted by, the
research of this thesis.

however, departs from previous study by taking a completely different perspective and focuses on

studying the effects of information on security games. Obviously, information is playing a more

and more important role in security domains today. In fact, at a high level, what the defender

does in a security game is essentially to hide information from the adversary by randomization;

while the adversary looks to extract information from the defender by conducting surveillance.

Additionally, the striking amount of information distilled from today’s numerous data sources

serves as another key motivating force. For example, defenders and attackers may use sensors,

surveillance tools and even infiltration techniques to collect information. Consequently, it is

becoming increasingly important for us to understand how information affects such strategic

interactions.

1.2 Summary of Contributions

This thesis considers both the positive and negative effects of information on games, illustrating

its double-edged role. In particular, we study questions along the following two angles: (1)

how to utilize information to one’s own advantage in strategic interactions; (2) how to mitigate

3



losses resulting from information leakage to an adversary. Each part begins with real-world

motivating examples arising from physical security domains, followed by a systematic study of

the fundamental theoretical questions underlying these real-world problems. We then show how

our theoretical analyses shed light on practical solutions to the corresponding real-world problem.

This forms an organic loop between theory and application.

More concretely, the first part of this thesis studies how an agent can utilize informational

advantages in strategic interactions. We start with two motivating examples. The first example

illustrates how an unmanned aerial vehicle (UAV) can deter poaching activities by deceptively

signaling to poachers the presence of nearby rangers — the information known to the defender

but unknown to the poacher. The second example seeks to deter fare evasion in honor-based metro

systems1 via deceptive signaling. Despite the rich literature on security games, such an approach

of exploiting informational advantages to improve defense has not received much attention. To

study these problems, we start from the intrinsic phenomenon underlying all these examples,

which is termed persuasion. Specifically, persuasion is the act of exploiting an informational

advantage to influence the decisions of others; it has been the theme of a large body of work

in economics due to its wide presence in many human activities including security, advertising,

marketing, politics, negotiation and financial regulation. We provide a systematic algorithmic

study for the most foundational model in this space as well as its natural generalizations, and

fully resolve the computational complexity for these models by developing efficient algorithms

whose performance match the complexity lower bound. Our algorithmic analysis not only paves

the way for applications, but also leads to new economic insights about the problem. Finally,

we incorporate these basic models and algorithmic ideas to develop new security game models

that capture the aforementioned real-world problems and design practical algorithms to solve the

model. En route to these solutions, we overcome additional challenges arising due to particular

domain features.

The second part of this thesis considers the other side of the double-edged sword, namely,

how to mitigate harms due to information leakage. We also start with two motivating examples.

The first example is about the scheduling of US federal air marshals. Since the schedule for

each air marshal is usually a round trip, this necessarily creates correlation among the protection

statuses of the outbound and return flights. As a result, if the real-time protection status of some

outbound flight leaks out to the adversary, he can use this information to infer the protection status

of the return flight. This may cause significant loss to the defender if not addressed properly (see

Section 7.1 for a concrete example). A similar issue arises in the second motivating example, con-

cerning the design of randomized patrol routes for wildlife conservation. Despite its importance,
1For example, many metro stations in Los Angeles and the Caltrain stations in San Francisco area are honor-based

fare collection systems.
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such vulnerability due to information leakage has not been investigated in the previous work on

security games. We initiate the study by developing basic models to capture information leakage

and then provide a thorough algorithmic study of the computational complexity for computing

the optimal defender strategy. Surprisingly, even for the simplest possible security game model

which can be solved by a simple quadratic-time algorithm in the absence of leakage, we show

that the problem suddenly becomes computationally intractable when information leakage is con-

sidered in the model. This illustrates the intrinsic difficulty in handling leakage. To overcome

this complexity barrier, we develop solutions from both theoretical and practical perspectives. On

the theoretical side, we design efficient approximation algorithms with provable guarantees; on

the practical side, we propose a sampling-based framework which efficiently generates defender

mixed strategies with small correlation among targets and thus are robust to leakage. This frame-

work enjoys several practical advantages which make it very useful in the real world. Finally, we

use this sampling-framework to develop defender strategies that effectively mitigate the harms

arising in the aforementioned real-world problems due to information leakage. En route to these

solutions, we overcome specific computational challenges pertaining to each particular domain.

Besides pushing the research frontier, this thesis is also directly impacting several real-world

applications. For example, the software based on an algorithm from this thesis for improving

the scheduling of US federal air marshal has been delivered to the Federal Air Marsha Service

(FAMS) and is currently under pre-deployment evaluation. Another algorithm of this thesis for

designing randomized patrol routes has been integrated into PAWS, an anti-poaching software

system, and is currently being tested at several national parks in Africa.

1.3 Thesis Structure

The remainder of this thesis is structured as follows. In Chapter 2, we describe the background

and preliminaries. Chapter 3 surveys the related work. Afterwards, we move to the first main part

of this thesis and study how to utilize informational advantages in strategic interactions. Chapter

4 describes two real-world motiving examples. Chapter 5 provides a systematic algorithmic study

for the foundational economic models about the strategic use of information. Chapter 6 returns

to the real world, and develops new models and algorithms to improve defense by exploiting the

defender’s informational advantages at various security settings. Next, we move to the second

main part of this thesis and study how to mitigate harms due to information loss to an adversary.

We again start with two real-world motiving examples in Chapter 7. Chapter 8 proposes basic

models to capture information leakage, followed with rigorous algorithmic analysis for these

models. Chapter 9 returns to real world problems, and seeks to develop efficient and practical
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algorithms tailored to each concrete security setting. Finally, Chapter 10 concludes the thesis

with several open directions.
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Chapter 2

Background and Preliminaries

2.1 Information in Games

2.1.1 The Importance of Information in Games

The study of how information affects strategic interactions (i.e., games) dates back to the 1970s.

A classic example illustrating the importance of information in games is Akerlof’s market for

“lemons” (Akerlof, 1970). Akerlof considered the example of the market for used cars where

buyers and sellers have asymmetric information regarding car qualities. That is, the seller knows

the condition of her own car better than buyers. Akerlof observed that if car buyers cannot

distinguish between good cars and bad cars (which are also called “lemons”), and therefore are

only willing to pay an average price, this will drive the sellers with high-quality cars out of

the market. Knowing this, the buyer will further lower his price, which then drives the sellers

of average-quality cars out of the market. At its most extreme, the market would only be left

with “lemons”. Therefore, the information asymmetry among buyers and sellers has led to an

extremely inefficient market. To overcome such inefficiency, one way that has been suggested

is to let car sellers “signal” their car quality to buyers so that buyers can distinguish good cars

from “lemons”. Such signaling could be done, for example, by turning to a trusted third party for

quality certification, as most of us do today.

The previous example illustrates that more information may be beneficial to some or all play-

ers in a game. The opposite effect is observed in brand advertising. Here, advertisers usually

adopt a “semi-transparent” information revelation strategy by highlighting their products’ posi-

tive attributes while obscuring the defects. In fact, in most economic activities, players or system

designers tend to selectively reveal their private information in order to yield a more desirable

equilibrium outcome. Such phenomena have been observed and analyzed in numerous economic

realms, e.g., advertising (Anderson & Renault, 2006; Waldfogel & Chen, 2006; Johnson & My-

att, 2006; Chakraborty & Harbaugh, 2014), voting (Alonso & Camara, 2014), security (Brown,

7



Carlyle, Diehl, Kline, & Wood, 2005; Powell, 2007; Zhuang & Bier, 2010), medical research

(Kolotilin, 2015), and financial regulation (Gick & Pausch, 2012; Goldstein & Leitner, 2013).

As all these works make clear, the information structure of a game — i.e., who has what

information — can profoundly affect its equilibrium outcome. This raises a fundamental research

question: how should a player utilize her own information advantage to influence the information

structure of a game so that a desirable equilibrium outcome is attained? Unsurprisingly, this

basic question and its instantiations in concrete domains have been extensively studied in the

past. This line of work has led to many models which study how to influence the equilibrium

through the control of information in different applications. In the next section, we describe one

of the most foundational models in this space, namely the Bayesian persuasion model, which has

been a building block of many models and applications including some of the new security games

developed in this thesis.

2.1.2 Persuasion by Utilizing Informational Advantages

Persuasion, sometimes also known as signaling, is the act of exploiting an informational advan-

tage in order to influence the decisions of others. Persuasive communication is intrinsic in most

human activities and has been estimated to account for almost a third of all economic activity in

the US (Antioch, 2013). Such scenarios are increasingly common in the information economy.

It is therefore unsurprising that persuasion has been the subject of a large body of work in re-

cent years. In the rich literature of persuasion, perhaps no model is more basic and fundamental

than the Bayesian Persuasion model of (Kamenica & Gentzkow, 2011), generalizing an earlier

model from (Brocas & Carrillo, 2007). Here there are two players, who we call the sender and

the receiver. The receiver is faced with selecting one of a number of actions, each of which is

associated with an a-priori unknown payoff to both players. The state of nature, describing the

payoff to the sender and receiver from each action, is drawn from a prior distribution known to

both players. However, the sender possesses an informational advantage, namely access to the

realized state of nature prior to the receiver choosing his action. In order to persuade the receiver

to take a more favorable action for her, the sender can commit to a policy, often known as an infor-

mation structure or signaling scheme, of releasing information about the realized state of nature

to the receiver before the receiver makes his choice. This policy may be simple, say by always

announcing the payoffs of the various actions or always saying nothing, or it may be intricate,

involving partial information and added noise. Crucially, the receiver is aware of the sender’s

committed policy, and moreover is rational and Bayesian.
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An Example of Persuasion

To illustrate the intricacy of Bayesian Persuasion, (Kamenica & Gentzkow, 2011) use a simple

example in which the sender is a prosecutor, the receiver is a judge, and the state of nature is the

guilt or innocence of a defendant. The receiver (judge) has two actions, conviction and acquittal,

and wishes to maximize the probability of rendering the correct verdict. On the other hand, the

sender (prosecutor) is interested in maximizing the probability of conviction. As they show, it is

easy to construct examples in which the optimal signaling scheme for the sender releases noisy

partial information regarding the guilt or innocence of the defendant. For example, if the defen-

dant is guilty with probability 1
3 , the prosecutor’s best strategy is to claim “guilt” whenever the

defendant is guilty, and also claim “guilt” just under half the time when the defendant is innocent.

As a result, the defendant will be convicted whenever the prosecutor claims “guilt” (happening

with probability just under 2
3 ), assuming that the judge is fully aware of the prosecutor’s signaling

scheme. We note that it is not in the prosecutor’s interest to always claim “guilt”, since a rational

judge aware of such a policy would ascribe no meaning to such a signal, and render his verdict

based solely on his prior belief — in this case, this would always lead to acquittal.1

2.2 Security Games

2.2.1 The General Security Game Model

The security of critical infrastructures and resources is an important concern around the world,

especially given the increasing threats of terrorism. Limited security resources cannot provide

full security coverage at all places all the time, leaving potential attackers the chance to explore

patrolling patterns and attack the weakness. How can we make use of the limited resources to

build the most effective defense against strategic attackers? The past decade has seen an explosion

of research in an attempt to address this fundamental question, which has led to the development

of the well-known model of security games. The security game is a basic model for resource

allocation in adversarial environments, and naturally captures the strategic interaction between

security agencies and potential adversaries. Indeed, these models and their game-theoretic solu-

tions have led to real-world deployments in use today by major security agencies. For example,

they are used by LAX airport for checkpoint placement, the US Coast Guard for port patrolling

and the Federal Air Marshal Service for scheduling air marshals (Tambe, 2011). Recently, new

models and algorithms have been tested by the Transportation Security Administration for airport
1In other words, a signal is an abstract object with no intrinsic meaning, and is only imbued with meaning by virtue

of how it is used. In particular, a signal has no meaning beyond the posterior distribution on states of nature it induces.
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passenger screening (Brown, Sinha, Schlenker, & Tambe, 2016) and by non-governmental orga-

nizations in Malaysia for wildlife protection (Fang, Nguyen, Pickles, Lam, Clements, An, Singh,

Tambe, & Lemieux, 2016b).

Next, we give a formal description of security games.

Player Strategies

A security game is a two-player game played between a defender and an attacker. The defender

possesses multiple security resources and aims to allocate these resources to protect n targets

(e.g., physical facilities, critical locations, etc.) from the attacker’s attack. We use [n] to denote the

set of these targets. A defender pure strategy is a subset of targets that is protected (a.k.a., covered)

in a feasible allocation of these resources. For example, the defender may have k(< n) security

resources, each of which can be assigned to protect any target. In this simple example, any subset

of [n] with size at most k is a defender pure strategy. However, in practice, there are usually

resource allocation constraints; thus not all such subsets correspond to feasible allocations. We

will provide more examples in Section 2.2.3.

A more convenient representation of a pure strategy is a binary vector e ∈ {0, 1}n, in which

the entries of value 1 specify the covered targets. Let E ⊆ {0, 1}n denote the set of all defender

pure strategies. Notice that E also represents a set system. The size of E is very large, usually

exponential in the number of security resources. In the example mentioned above, |E| = Ω(nk)

which is exponential in k. Therefore, computational efficiency in security games means time

polynomial in n, not |E|. A defender mixed strategy is a distribution p over the elements in E .

The attacker chooses one target to attack2; thus an attacker pure strategy is a target i ∈ [n]. We

use y ∈ ∆n to denote an attacker mixed strategy where yi is the probability of attacking target i.

Payoff Structures

The payoff structure of the game is as follows: given that the attacker attacks target i, the defender

gets utility Udc (i) if target i is covered or utility Udu(i) if i is uncovered; while the attacker gets

utility Uac (i) if target i is covered or a reward Uau (i) if i is uncovered. Both players have utility

0 on the other n − 1 unattacked targets. A crucial structure of security games is summarized in

the following assumption: Udc (i) > Udu(i) and Uac (i) < Uau (i) for all i ∈ [n]. That is, covering a

target is strictly beneficial to the defender compared to not covering it; and the attacker prefers to
2There are generalizations of security games in which an attacker may attack multiple targets (see, e.g., (Korzhyk,

Conitzer, & Parr, 2011a)). However, in all the models considered in this thesis, the attacker attacks only a single target.
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attack a target when it is uncovered.3 The security game is zero-sum if Udc (i) + Uac (i) = 0 and

Udu(i) + Uau (i) = 0 for all i ∈ [n].

The defender’s utility, as a function of the defender pure strategy e and attacker pure strategy

i, can be formally expressed as

Ud(e, i) = Udc (i) · ei + Udu(i) · (1− ei),

where ei is the i’th entry of e. Given a defender mixed strategy p ∈ ∆|E| and attacker mixed strat-

egy y ∈ ∆n, we use Ud(p,y) to denote the defender’s expected utility, which can be expressed

as
Ud(p,y) =

∑
e∈E

∑n
i=1 peyiU

d(e, i)

=
∑

e∈E
∑n

i=1 peyi

(
Udc (i) · ei + Udu(i) · (1− ei)

)
=

∑n
i=1 yi

(
ri ·
∑

e∈E peei + ci · (1−
∑

e∈E peei)

)
=

∑n
i=1 yi

(
Udc (i) · xi + Udu(i) · [1− xi]

) (2.1)

where

xi =
∑
e∈E

peei ∈ [0, 1] (2.2)

is the marginal coverage probability of target i. Let x = (x1, . . . , xn)T denote the marginal

probability for all targets induced by the mixed strategy p. Notice that the marginal probability

induced by a pure strategy e is precisely e itself. Equation (2.1) shows that the defender’s ex-

pected utility is bilinear in x and y, where x is the marginal probability induced by the defender

mixed strategy.

The convex hull of E forms a polytope P = {x : x =
∑

e∈E pe · e, ∀p ∈ ∆|E|} which

consists of all the feasible (i.e., implementable by a defender mixed strategy) marginal proba-

bilities. Therefore, we will also interpret a point x ∈ P as a mixed strategy, and instead write

the defender’s utility as Ud(x,y). Similarly, the attacker’s expected utility can be compactly

represented in the following form. We note that Ua(x,y) is also bilinear in x and y.

Ua(x,y) =

n∑
i=1

yi

(
Uac (i) · [1− xi] + Uau (i) · xi

)
.

2.2.2 Equilibrium Concepts

Zero-Sum Settings and the Minimax Equilibrium

Many security games, including some deployed systems (An, Shieh, Tambe, Yang, Baldwin,

DiRenzo, Maule, & Meyer, 2012; Yin, Jiang, Tambe, Kiekintveld, Leyton-Brown, Sandholm,
3In practice, the attacker can also choose to not attack. This can be incorporated into the current model by adding

a dummy target. Therefore, we will not explicitly consider this.
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& Sullivan, 2012), are modeled as zero-sum games. That is, the defender’s reward [cost] is

the attacker’s cost [reward]. For example, in the deployed security system for patrolling proof-

of-payment metro systems (Yin et al., 2012), the defender aims to catch fare evaders at metro

stations. This game can be viewed as zero-sum due to the following reasons: the evader’s cost of

paying a fine is the defender’s reward of catching the evader, while the ticket price is the evader’s

reward and the defender’s cost if failing to catch the evader. In zero-sum games, all standard

equilibrium concepts are payoff-equivalent to the well-known minimax equilibrium.

General-Sum Settings and the Strong Stackelberg Equilibrium

When the game is not zero-sum, the main solution concept adopted in the literature of security

games is the strong Stackelberg equilibrium (SSE) (von Stackelberg, 1934; von Stengel & Za-

mir, 2004). In particular, the defender plays the role of the leader and can commit to a mixed

strategy before the attacker moves. The attacker observes the defender’s mixed strategy and best

responds. This is motivated by the consideration that the attacker usually does surveillance be-

fore committing an attack, and thus is able to observe the empirical distribution of the defender’s

patrolling strategy (Tambe, 2011). In this case, our goal is to compute the optimal mixed strat-

egy for the defender to commit to (the attacker’s best response problem is usually easy). The

adoption of SSE has another advantage — in contrast to the intractability of Nash equilibria in

normal-form games (Daskalakis, Goldberg, & Papadimitriou, 2006; Chen, Deng, & Teng, 2009),

SSE is typically tractable in both normal-form games (Conitzer & Sandholm, 2006) and security

games (Xu, 2016). Moreover, previous work shows that under minor technical assumptions, the

defender’s SSE strategy is always a Nash equilibrium strategy and all Nash equilibria in security

games are exchangeable, which alleviates the equilibrium selection issue (Korzhyk, Yin, Kiek-

intveld, Conitzer, & Tambe, 2011b). This serves as a theoretical justification for adopting SSE

in security games. Notice that the classic Stackelberg security game model always assumes that

the attacker is not able to observe, even partially, the defender’s real-time deployment (i.e., the

sampled pure strategy).

2.2.3 Three Concrete Examples

Section 2.2.1 gives an abstract description about the general security game model. The difference

among various concrete security games essentially lies in the structure of E , i.e., the structure of

pure strategies. Next, we will describe a few examples.

Airport Checkpoint Placement. In the problem of placing checkpoints at different entrances

of an airport to prevent potential attackers’ attack (Pita, Jain, Marecki, Ordóñez, Portway, Tambe,

Western, Paruchuri, & Kraus, 2008a), the defender can place limited security resources at any
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subset of airport entrances of a limited size. This can be modeled as a game where the defender

has k security resources, and each resource can be assigned to protect any one of n targets.

Therefore, any subset of [n] of size at most k is a defender pure strategy. The set system E is also

called a uniform matroid in this setting.

Scheduling of Federal Air Marshals. In the problem of scheduling air marshals to protect

flights (Jain, Kardes, Kiekintveld, Ordez, & Tambe, 2010), flights are targets to be protected and

air marshals are security resources. Since the schedule for each air marshal is usually a tour

consisting of multiple flights, each pure strategy in this case correspond to k feasible tours where

k is the number of air marshals. Here, tour feasibility means that the departure and arrival time

of all flights within the tour should be compatible.

Patrol Route Design for Wildlife Conservation. In the problem of designing randomized

patrol routes for wildlife conservation (Fang et al., 2016b), targets correspond to the areas to be

patrolled (usually discretized into cells), and rangers are security resources. Any defender pure

strategy consists of k feasible patrol routes, each for a ranger.
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Chapter 3

Related Work

3.1 Persuasion

To our knowledge, (Brocas & Carrillo, 2007) were the first to explicitly consider persuasion

through information control. They consider a sender with the ability to costlessly acquire infor-

mation regarding the payoffs of the receiver’s actions, with the stipulation that acquired infor-

mation is available to both players. This is technically equivalent to an informed sender who

commits to a signaling scheme. Brocas and Carrillo restrict attention to a particular setting with

two states of nature and three actions, and characterize optimal policies for the sender and their

associated payoffs. The Bayesian Persuasion model of (Kamenica & Gentzkow, 2011) naturally

generalizes (Brocas & Carrillo, 2007) to finite (or infinite yet compact) states of nature and action

spaces. They establish a number of properties of optimal information structures in this model;

most notably, they characterize settings in which signaling strictly benefits the sender in terms

of the convexity/concavity of the sender’s payoff as a function of the receiver’s posterior belief.

The Bayesian persuasion model is foundational for understanding the strategic use of informa-

tional advantage since it considers essentially the simplest possible scenario in this space — one

persuader (i.e., the sender) influences the action of one decision maker (i.e., the receiver).

Since (Brocas & Carrillo, 2007) and (Kamenica & Gentzkow, 2011), an explosion of interest

in persuasion problems followed. Generalizations and variants of the Bayesian persuasion model

have been considered: (Gentzkow & Kamenica, 2016) consider multiple senders, (Alonso &

Câmara, 2016) consider multiple receivers in a voting setting, (Gentzkow & Kamenica, 2014)

consider costly information acquisition, (Rayo & Segal, 2010) consider an outside option for the

receiver, and (Kolotilin, Mylovanov, Zapechelnyuk, & Li, 2017) considers a receiver with private

side information. The basic Bayesian persuasion model underlies, or is closely related to, recent

work in a number of different domains: price discrimination (Bergemann, Brooks, & Morris,

2015), advertising (Chakraborty & Harbaugh, 2014), security games (Rabinovich, Jiang, Jain, &

Xu, 2015), recommendation systems (Kremer, Mansour, & Perry, 2014; Mansour, Slivkins, &
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Syrgkanis, 2015), medical research (Kolotilin, 2015), and financial regulation (Gick & Pausch,

2012; Goldstein & Leitner, 2013).

A important generalization of the Bayesian persuasion model is one recently proposed by

(Arieli & Babichenko, 2016). Here the sender interacts with multiple receivers, each of whom is

restricted to a binary choice of actions. As mentioned in (Arieli & Babichenko, 2016; Babichenko

& Barman, 2017), settings like this arise when a manager seeks to persuade investors to invest

in a project, or when a principal persuades opinion leaders in a social network with the goal of

maximizing social influence. Each receiver’s utility depends only on his own action and the state

of nature, but crucially not on the actions of other receivers — the no externality assumption. The

sender’s utility, on the other hand, depends on the state of nature as well as the profile of receiver

actions. As in (Kamenica & Gentzkow, 2011), the state of nature is drawn from a common prior,

and the sender can commit to a policy of revealing information regarding the realization of the

state of nature. Since there are multiple receivers, this policy — the information structure — is

more intricate, since it can reveal different, and correlated, information to different receivers. As

made clear in (Arieli & Babichenko, 2016), such flexibility is crucial to the sender unless receivers

are homogeneous and the sender’s utility function highly structured (for example, additively sep-

arable across receivers). In particular, if restricted to a public communication channel, the sender

is limited in her ability to discriminate between receivers and correlate their actions, whereas a

private communication channel provides more flexibility. However, the extent to which a public

communication channel limits the sender’s powers of persuasion is a fundamental question which

has not been thoroughly explored.

Much of the earlier work on persuasion (a.k.a., signaling), in particular its computational as-

pects, focused on public signaling models. This includes work on signaling in auctions (Emek,

Feldman, Gamzu, Paes Leme, & Tennenholtz, 2012; Miltersen & Sheffet, 2012; Guo & Deligkas,

2013; Dughmi, Immorlica, & Roth, 2014), voting (Alonso & Camara, 2014), routing (Bhaskar,

Cheng, Ko, & Swamy, 2016), and abstract game models (Dughmi, 2014; Cheng, Cheung,

Dughmi, Emamjomeh-Zadeh, Han, & Teng, 2015; Bhaskar et al., 2016; Rubinstein, 2017). The

work of (Cheng et al., 2015) is relevant to our results in Section 5.3 in that they identify conditions

under which public persuasion problems are tractable to approximate, and prove impossibility re-

sults in some cases where those conditions are violated. Our hardness proof in Section 5.3 is in

part based on some of their ideas.

Private persuasion has been less thoroughly explored, particularly through the computational

lens. There is a recent line of work that explores private persuasion in the context of voting

(Wang, 2015; Chan, Gupta, Li, & Wang, 2016; Bardhi & Guo, 2016). Additionally, the space

of possible information structures and their induced equilibria is characterized in two-agent two-

action games by (Taneva, 2015).
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The models in (Kamenica & Gentzkow, 2011; Arieli & Babichenko, 2016) and other works

are crucially based on the assumption that the sender has the power of commitment to a signaling

scheme. The commitment assumption is not as unrealistic as it might first sound, and a number

of arguments to that effect are provided in (Rayo & Segal, 2010; Kamenica & Gentzkow, 2011;

Dughmi, 2017). We mention one of those arguments here: commitment arises organically at

equilibrium if the sender and receiver(s) interact repeatedly over a long horizon, in which case

commitment can be thought of as a proxy for “establishing credibility.”

Other Problems Related to Persuasion

Optimal persuasion is a special case of information structure design in games. The space of

(private channel) information structures is studied by (Bergemann & Morris, 2016), who observe

that these information structures and their associated equilibria form a generalization of correlated

equilibria, and term the generalization the Bayes Correlated Equilibrium (BCE). Recent work in

the CS community has also examined the design of information structures algorithmically. Work

by (Emek et al., 2012), (Miltersen & Sheffet, 2012), (Guo & Deligkas, 2013), and (Dughmi et al.,

2014), examine optimal signaling in a variety of auction settings, and presents polynomial-time

algorithms and hardness results. (Dughmi, 2014) exhibits hardness results for signaling in two-

player zero-sum games, and (Cheng et al., 2015) present an algorithmic framework and apply it

to a number of different signaling problems.

Also related to the Bayesian persuasion model is the extensive literature on cheap talk starting

with (Crawford & Sobel, 1982). Cheap talk can be viewed as the analogue of persuasion when

the sender cannot commit to an information revelation policy. Crawford and Sobel (1982) char-

acterize the set of Bayesian Nash equilibria of the cheap talk game and show that, under technical

assumptions, the sender’s equilibrium signaling scheme is more informative when her preference

is more aligned with the receiver. After (Crawford & Sobel, 1982), there has been extensive study

in the cheap talk model, and its variants and applications; we refer the reader to (Crawford, 1998)

for a survey. When the sender has the power to commit, the game becomes a Stackelberg game.

The commitment assumption in persuasion has been justified on the grounds that it arises organ-

ically in repeated cheap talk interactions with a long horizon — in particular when the sender

must balance his short term payoffs with long-term credibility. We refer the reader to the discus-

sion of this phenomenon in (Rayo & Segal, 2010). Also to this point, (Kamenica & Gentzkow,

2011) mention that an earlier model of repeated 2-player games with asymmetric information by

(Aumann, Maschler, & Stearns, 1995) is mathematically analogous to Bayesian persuasion.

Various recent models on selling information in (Babaioff, Kleinberg, & Paes Leme, 2012;

Bergemann & Bonatti, 2015; Bergemann, Bonatti, & Smolin, 2016) are quite similar to Bayesian
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persuasion, with the main difference being that the sender’s utility function is replaced with rev-

enue. Whereas (Babaioff et al., 2012) consider the algorithmic question of selling information

when states of nature are explicitly given as input, the analogous algorithmic questions to ours

have not been considered in their model. We speculate that some of our algorithmic techniques

might be applicable to models for selling information when the prior distribution on states of

nature is represented succinctly.

3.2 Information in Security Games

Secrecy, Deception, and Strategic Signaling in Security

Previous work on homeland security has realized the importance of information asymmetry be-

tween the defender and adversary (Brown et al., 2005; Powell, 2007; Zhuang & Bier, 2010). In

particular, they justify, via theoretical models, that it is important for the defender to hide private

information and remain unpredictable to the adversary. However, these works mainly focused on

studying how a defender can hide private information by secrecy and deception. For example,

(Powell, 2007) observes that more defense on a particular target may not always be beneficial,

since it may help the attacker to infer the importance of a target. These works inspire our explo-

ration of the role of information in Stackelberg security games (SSGs). However, their goals and

approaches differ from ours.

(Yin, An, Vorobeychik, & Zhuang, 2013) consider optimal allocation of deceptive resources

(e.g., hidden cameras) in the Stackelberg game model. This naturally introduces asymmetric

information regarding deployments of resources between the defender and attacker — i.e., the

defender has private information regarding the allocation of these security resources while the

attacker may not know. However, (Yin et al., 2013) did not consider the strategic use of such

informational advantage. Instead, they model the failure of deceptive resources by a probability

and feed it to a resource allocation formulation.

(Zhuang & Bier, 2011) study a question that is more relevant to ours. They develop a game-

theoretic model to analyze whether a defender should disclose correct information about her

resource allocation, incorrect information, or no information. However, their work is more about

comparing three natural strategies of information revelation while our work takes an optimization

approach to compute the optimal strategy of information revelation.

To the best of our knowledge, little is known in the prior literature about how to optimally

reveal a defender’s private information to improve the defense. Only very recently, concurrently

with this thesis work, have researchers started to investigate the strategic use of signaling or

deception to improve the defender’s utility in security games (Rabinovich et al., 2015; Talmor

& Agmon, 2017; Guo, An, Bosansky, & Kiekintveld, 2017). (Rabinovich et al., 2015) study
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how a defender can increase her utility by deceptively revealing her private information about

the vulnerability of different targets in order to mislead the attacker. (Rabinovich et al., 2015)

analyze the computational complexity of the problem and experimentally show that such strategic

use of an informational advantage may significantly increase the defender’s utility. (Talmor &

Agmon, 2017) compare the advantages and limitations of several different deceptive strategies to

manipulate the attacker’s belief in a multi-robot adversarial patrolling setting. (Guo et al., 2017)

examine the Stackelberg security game setting and analyze the benefit for a defender of disguising

her security resources.

Gathering Information via Sensors for Security

The security game model in Section 6.2 uses UAVs (more generally, mobile sensors) to collect

information about the poacher and deceptively signal the defender’s private information to deter

illegal poaching. This part relates to several threads of research on security. The first line of

research considers how to use UAVs to gather information or monitor targets (Stranders, De Cote,

Rogers, & Jennings, 2013; Mersheeva & Friedrich, 2015). The main research challenge there is to

optimize the patrolling path of UAVs so that it maximizes the defender’s objective. These works

are usually in non-strategic settings and only consider the planning of UAV paths. In contrast, our

work falls into a game-theoretic setting with an adversarial attacker. Moreover, we consider the

joint task of UAV path planing and deceptive signaling, and seek to compute the globally optimal

defending policy.

Another interesting line of research studies adversarial patrolling games with alarm systems

(Basilico, De Nittis, & Gatti, 2017b; Basilico, Celli, De Nittis, & Gatti, 2017a), which also utilizes

sensors (i.e., alarms) to assist patrollers. The sensors in all these works are static (staying at

fixed locations) and do not strategically signal. Sensors in our model, however, can strategically

signal and are mobile. Such mobility gives us the extra flexibility to optimize their (possibly

randomized) allocation.

Concerns of Information Leakage in Games

To our knowledge, (Alon, Emek, Feldman, & Tennenholtz, 2013) are the first to study games

with information leakage. They focused on two-player zero-sum normal-form games. (Alon

et al., 2013) consider a game with two players (player A and B) and assume that not only player

A’s mixed strategy but also some partial information about her realized pure strategy is known

to player B (a situation that is termed information leakage). The goal is to compute player A’s

optimal strategy to play under the leakage model. Even for simple normal-form zero-sum games,

they exhibit NP-hardness results for several model variants. The information leakage in our
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work has similar meaning to that of (Alon et al., 2013). However, our specific leakage models

are directly tied to the particular structure of security games and are different from the abstract

leakage models considered in (Alon et al., 2013). Therefore, their hardness results do not directly

apply to our settings.

Information leakage has not received much attention in the study of Stackelberg security

games. However, in the literature on adversarial patrolling games (APGs), the attacker’s real-

time surveillance of the defender’s pure strategy has been considered (Agmon, Sadov, Kaminka,

& Kraus, 2008; Basilico, Gatti, Rossi, Ceppi, & Amigoni, 2009b; Alpern, Morton, & Papadaki,

2011; Bošanský, Lisý, Jakob, & Pěchouček, 2011; Vorobeychik, An, & Tambe, 2012). All these

papers study settings of patrols carried out over space and time, i.e., the defender follows a sched-

ule of visits to multiple targets over time. In addition, they assume that an attack action is not

instantaneous and it takes time for the attacker to execute an attack, during which the defender

can interrupt the attacker by visiting the attacked target. Therefore, even if the attacker can fully

observe the current position of the defender (in essence, status of all targets), he may not have

enough time to complete an attack on a target before being interrupted by the defender. The main

challenge there is to create patrolling schedules with the smallest possible time between any two

target visits. In contrast, our work studies information leakage in Stackelberg security game

models, where the attack is instantaneous and cannot be interrupted by the defender’s resource

rescheduling. Furthermore, as may be more realistic in our settings, we assume that information

is leaked from a small subset of targets. As a result, our setting necessitates novel models and

techniques.

In some settings, a security game with information leakage can be viewed as an extensive-

form game (EFG). Though there has been significant progress in solving general-purpose large

EFGs recently (Letchford & Conitzer, 2010; Bošanský, Kiekintveld, Lisý, & Pěchouček, 2014;

Cermak, Bosansky, Durkota, Lisy, & Kiekintveld, 2016; Cermak, Bošanský, & Lisý, 2017), we

did not take this approach because the size of information sets in our game increases exponentially

in the number of security resources, time steps and possibly leaking targets. This very quickly

makes our problem intractable (see Section 9.1.2 for more details).
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Part II

Exploiting Informational Advantages
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Chapter 4

Real-World Motivation and Two Illustrative Examples

In this chapter, we will describe two concrete examples motivated from real-world domains that

illustrate how informational advantages can be utilized to improve security.

4.1 Motivating Example I: Deterrence of Fare Evasion

Our first example concerns the problem of deterring fare evasion in honor-based metro stations.

Such metro systems exist in many cities, e.g., many metro stations in Los Angeles (see Figure

4.1) and the Caltrain stations in San Francisco area are honor-based fare collection systems. One

problem of these systems is that some passengers get into the metro without purchasing a ticket.

For example, it was estimated that such fare evasion results in a loss of $5.6 million each year in

Los Angeles. To prevent such fare evasion, the Los Angeles Sheriff Department (LASD) allocate

ticket inspectors to these metro stations. However, the LASD has a very limited number of ticket

inspectors and can only inspect a few stations at a time. Naturally, they will allocate the inspectors

randomly with the goal of deterring as much fare evasion as possible.

To be concrete, let us consider the following example. The LASD, as the defender, aims to

schedule 10 ticket inspectors to protect 50 identical (w.r.t. importance) metro stations, namely

t1, · · · , t50. Each ticket inspector can cover one metro station. Therefore, the defender’s pure

strategies are simply arbitrary subsets of size at most 10 of the 50 stations. For each “potential”

Figure 4.1: An honor-based metro station in Los Angeles.
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fare evader, if he indeed does not purchase a ticket, the defender will get utility 2 for catching the

evader through inspection and get utility−2 for failing to catch the fare evader. For simplicity, we

assume that a fare evader will be caught for sure if the corresponding station is under inspection.

Using the security game notations from Section 2.2, this means Uud (ti) = −2 and U cd(ti) = 2, for

all i = 1, · · · , 50. On the other hand, the fare evader gets utility 2 if he is not caught and utility

−6 otherwise. That is, Uua (ti) = 2 and U ca(ti) = −6, for all i = 1, · · · , 50. The fare evader also

has the option of choosing to purchase a ticket. In that case, both players get utility 0. We note

that, these simple utility numbers are chosen for convenience, and the example is similarly valid

when these numbers are substituted by the realistic ones.

We view the problem as a two-player game played between the defender (i.e., the LASD) and

a potential fare evader. By symmetry, the optimal defender strategy is to protect each metro station

with probability 10
50 = 0.2. This results in an expected attacker utility 0.8×2+0.2× (−6) = 0.4,

which is greater than 0, the utility of not purchasing a ticket. Therefore, the fare evader will prefer

to not purchase a ticket, resulting in defender utility 0.8× (−2) + 0.2× 2 = −1.2.

We have computed the Strong Stackelberg Equilibrium (SSE) — traditionally we would be

done. However, one interesting question is whether −1.2 is the best possible utility that the

defender can achieve. Is there a way to achieve better defender utility? The answer turns out to

be “yes”. Our approach exploits the asymmetric knowledge of the defensive strategy between

the defender and the fare evader — the defender knows more. We show that, surprisingly, the

defender can significantly improve her utility by strategically revealing such information.

For any metro station ti, let Xc [Xu] denote the event that ti is under inspection [not under

inspection]. The defender’s mixed strategy results in P(Xc) = 0.2 and P(Xu) = 0.8. Consider a

fare evader at some station, w.l.o.g., say station t1. The fare evader only knows that t1 is protected

with probability 0.2 , while the defender knows precisely whether station t1 is protected or not.

We now design a policy for the defender to strategically reveal part of this information to the fare

evader. More concretely, we will sometimes put a warning sign (e.g., a sign like “inspection in

progress”) at the entrance of the station. Let σ+ [σ−] denote the situation that there is a warning

sign [no warning sign]. The policy for putting the sign is defined as follows (ε > 0 is a negligible

positive constant), and we assume that the defender commits to this policy:

P(σ+|Xc) = 1 P(σ−|Xc) = 0;

P(σ+|Xu) = 3/4− ε P(σ−|Xu) = 1/4 + ε.

In other words, if t1 is under inspection, the defender will always announce σ+; if t1 is not under

inspection, the defender will announce σ+ with probability 3/4−ε and σ− with probability 1/4+

ε. This is also called a signaling scheme and σ+, σ− are signals which carry noisy information

about the underlying true protection status of the station. We assume that this signaling scheme
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is publicly known (thus also known to the fare evader) since passengers may learn it from their

past observations.

We analyze the scheme from the fare evader’s perspective. If he receives signal σ+, occurring

with probability

P(σ+) = P(σ+|Xc)P(Xc) + P(σ+|Xu)P(Xu) = 0.8(1− ε),

the fare evader infers the following posterior belief via Bayes’ rule:

P(Xc|σ+) =
P(σ+|Xc)P(Xc)

P(σ+)
=

1

4(1− ε)

and similarly, P(Xu|σ+) = 3−4ε
4(1−ε) . Therefore, the fare evader’s expected utility for not purchas-

ing a ticket conditioned on σ+ is

1

4(1− ε) × (−6) +
3− 4ε

4(1− ε) × 2 =
−2ε

1− ε ,

which is strictly less than 0. Therefore, the fare evader will prefer to purchase a ticket, and both

players get utility 0 instead. On the other hand, if the attacker receives signal σ− (with probability

0.2 + 8ε), he infers that the station is not under inspection, and thus will not purchase a ticket.

In this situation, the defender’s utility is −2. As a result, overall the defender receives expected

utility (0.2 + 8ε)× (−2) = −0.4− 16ε at target t1, which is significantly larger than her original

utility −1.2 (for a small ε). Interestingly, the attacker’s expected utility is (0.2 + 8ε) × 2 =

0.4 + 16ε which essentially equals his SSE utility 0.4 (up to the negligible ε).

We remark that the signals σ+, σ− have no intrinsic meaning besides the posterior distribu-

tions inferred by the fare evader based on the signaling scheme and prior information. Intuitively,

by designing signals, the defender identifies a “part” of the prior distribution that is “bad” for

both players, i.e., the posterior distribution of σ+, and signals as much to the fare evader, so that

the two players can “cooperate” to avoid it. This is why the defender can do strictly better while

the attacker is not worse off.

4.2 Motivating Example II: Combating Poaching

Our second concrete example concerns the protection of conservation areas (Fang, Nguyen, Pick-

les, Lam, Clements, An, Singh, & Tambe, 2016a). Illegal poaching is a major threat to endangered

animals. For example, from 2010 to 2013, within just 2 years, about 20% of animals in Africa

were killed due to illegal poaching (Wittemyer, Northrup, Blanc, Douglas-Hamilton, Omondi,

& Burnham, 2014). Recently, there has been a rapidly growing trend of using UAVs, or more

generally, mobile sensors, to combat poaching (Figure 4.2). Next, we illustrate how a UAV can

utilize the defender’s informational advantage to deter illegal poaching.
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To be concrete, consider the problem where a defender needs to protect 8 conservation areas

whose underlying geographic structure is captured by a cycle graph depicted in Figure 4.3 (e.g.,

they are the border areas of the park): each vertex represents an area. Edges indicate the adjacency

relation among these areas. The defender has only one patroller. There is a poacher who seeks to

attack one area. For simplicity, assume that these 8 areas are of equal importance.

Figure 4.2: Flying UAVs for conservation Figure 4.3: Cycle graph.

If the poacher is caught by the patroller in any area, the defender [poacher] gets utility 1

[−1]; if the poacher successfully attacks an area, the defender [poacher] gets utility −5 [1.25].

The defender has only one patroller, who can protect any area in the graph. Since areas are

symmetric, it is easy to see that the optimal patrolling strategy here simply assigns the only

patroller to each area with equal probability 1/8. As a result, the poacher attacks an arbitrary

area, resulting in expected defender utility 1 · 1
8 + (−5) · 7

8 = −17/4.

Now consider that the defender is assisted by 4 UAVs (e.g., an NGO named Air Shepherd

[http://airshepherd.org/] provides such UAVs for conservation). Each UAV can be assigned to

patrol any area. When the poacher visits any area i, he will be caught right away if the patroller

is at i. If there is neither the patroller nor a UAV at area i, the poacher will successfully poach

animals at that target. If there is a UAV at i, since UAVs are usually visible by the poacher

from a distance, the poacher has a chance of choosing to continue the poaching or stop poaching

and run away, based on his rational judgment, upon seeing the UAV. If he chooses to continue

poaching, the attack will fail if the patroller is at any neighbor of area i, since the UAV can notify

the patroller to come and catch the poacher (e.g., this is how air Shepherd operates). Otherwise,

the poaching succeeds (despite the presence of the UAV). The poacher can also choose to stop

poaching and immediately run away, in which case both players get utility 0.

We are interested in the defender’s optimal strategy for allocating these resources. By sym-

metry of the problem, it is natural to consider the following randomized strategy. The defender

first chooses an area i uniformly at random to place the patroller, and then uses two UAVs to
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cover the left two neighbors of i and another two to cover the right two neighbors. The pattern

is also illustrated in Figure 4.3 where the thick dark vertex for placing the patroller is chosen

uniformly at random. Under such an allocation, each vertex is assigned the patroller with prob-

ability 1/8 and is assigned a UAV with probability 4/8. By symmetry, the poacher still chooses

an arbitrary area to visit. With probability 1/8, the poacher will be caught by the patroller right

away; with probability 3/8, the poacher encounters neither the patroller nor the UAVs, and thus

will successfully conduct an attack. With the remaining 4/8 probability, the poacher will see

a UAV and needs to make a choice of continuing or stopping poaching. Observe that condi-

tioned on a UAV showing up at an area, with probability 0.5, the patroller is at its neighbor-

ing area. This is because out of the four areas covered by UAVs, two are neighbors of the

patroller-covered area. Therefore, the rational poacher will update his expected utility of con-

tinuing poaching, as (−1) · 0.5 + 1.25 · 0.5 = 0.125 which is greater than the utility of stopping

poaching. So the poacher will prefer to continue poaching, resulting in expected defender utility

1 · 0.5 + (−5) · 0.5 = −2. Taking expectations over all possible situations, the defender derives

expected utility 1 · 1
8 + (−5) · 3

8 + (−2) · 4
8 = −11/4, which is an improvement over her previous

utility of −17/4.

A more interesting question is whether the defender can achieve utility that is even larger

than −11/4. The answer turns out to be “yes”. We show that the defender can further improve

her utility via strategic signaling, which is a natural functionality of UAVs. Such improvement is

possible when the poacher visits an area i covered by a UAV. In particular, let θs+ [θs−] denote

the random event that there is a patroller [no patroller] at some neighbor of area i. As mentioned

before, conditioned on seeing a UAV at i, the poacher infers P(θs+) = P(θs−) = 0.5. However,

the UAV will know the precise state of i through communications with the defender. The UAV

could strategically signal the state of area i to the poacher with the goal of deterring his poaching.

This may sound counter-intuitive at first, but it turns out that strategic signaling does help. In

particular, the following signaling scheme with two signals improves the defender’s utility:

P(alert|θs+) = 1 P(quiet|θs+) = 0;

P(alert|θs−) = 0.8 P(quiet|θs−) = 0.2.

That is, when there is a patroller near area i (state θs+), the UAV always sends an alert signal;

when there is no patroller near i (state θs−), 80% percent of the time the UAV still sends an alert

signal while it keeps quiet otherwise.

We assume that the poacher is aware of the signaling scheme and will best respond to

each signal. If he receives an alert signal, which occurs with probability: P(alert) =

P(alert|θs+)P(θs+) + P(alert|θs−)P(θs−) = 0.9, the poacher infers a posterior distribution

on the state by Bayes rule: P(θs+|alert) = P(alert|θs+)P(θs+)
P(alert) = 5

9 and P(θs−|alert) = 4
9 . This
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posterior results in expected poacher utility 5
9 · (−1) + 4

9 · 1.25 = 0, which is the same as the

utility from not attacking. We assume that the poacher breaks ties in favor of the defender (see

justifications later) and, in this case, chooses to stop poaching. This results in utility 0 for both

players. On the other hand, if the poacher receives a quiet signal, he knows for sure that there is

no patroller nearby; thus he chooses to continue poaching, resulting in defender utility −5. As a

result, the above signaling scheme (which occurs whenever a poacher encounters a UAV) results

in defender utility 0 · 0.9 + (−5) · 0.1 = −0.5. Overall, the defender’s expected utility is further

improved to 1 · 18 +(−5) · 38 +(−0.5) · 48 = −2, which is less than half of the original loss−17/4.

Remark. This example shows how a defender can utilize an informational advantage to deceive

the poacher and improve her utility. Note that a signal takes effect only through its underlying

posterior distribution over Θs. In the above example, the poaching would not have been deterred

if the UAV always sent an alert signal since in that case the poacher would ignore the signal and

act based on his prior belief. However, the signals could be deceptive in the sense that an alert

may be issued even when there is no patroller nearby. The poacher still prefers to stop poaching

even though he is aware of the potential deception!
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Chapter 5

Persuasion and Its Algorithmic Foundation

Though the two motivating examples in Chapter 4 are in security domains, the underlying phe-

nomenon they illustrate is more general and fundamental. Such act of exploiting an informational

advantage in order to influence the decisions of others is called persuasion. Indeed, persuasion is

intrinsic in most human activities — persuasive communication has been estimated to account for

almost a third of all economic activity in the US (Antioch, 2013). Such scenarios are increasingly

common in today’s information economy. It is therefore unsurprising that persuasion has been

the subject of a large body of work in recent years. In the rich literature of persuasion, perhaps no

model is more basic than the Bayesian Persuasion (BP) model of (Kamenica & Gentzkow, 2011).

It has been a building block of many models and applications.

In the next section, we will provide a formal description of the BP mode, referring back to

the poaching example in Section 4.2 to illustrate how the interaction there can be framed using

the BP model. The correspondence between the fare evasion example in Section 4.1 and the BP

model follows similarly.

5.1 The Bayesian Persuasion Model

In a Bayesian persuasion game, there are two players: a sender and a receiver. The receiver is

faced with selecting an action from [n] = {1, . . . , n}, with an a-priori-unknown payoff to each

of the sender and receiver. We assume that payoffs are a function of an unknown state of nature

θ, drawn from an abstract set Θ of potential realizations of nature. Specifically, the sender and

receiver’s payoffs are functions s, r : Θ×[n]→ R, respectively. We use r = r(θ) ∈ Rn to denote

the receiver’s payoff vector as a function of the state of nature, where ri(θ) is the receiver’s payoff

if he takes action i and the state of nature is θ. Similarly s = s(θ) ∈ Rn denotes the sender’s

payoff vector, and si(θ) is the sender’s payoff if the receiver takes action i and the state is θ.

Without loss of generality, we often conflate the abstract set Θ indexing states of nature with the

set of realizable payoff vector pairs (s, r) — i.e., we think of Θ as a subset of Rn × Rn.
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Correspondence to the example of Section 4.2: In the example, the defender is the sender and

the poacher is the receiver. After seeing the UAV, the poacher has two actions — either choose

to continue poaching or stop poaching and run away. The random state of nature θ describes

whether a ranger is nearby or not, so θ has two possible realizations. Naturally, θ affects both

the defender’s and poacher’s utilities.

In Bayesian persuasion, it is assumed that the state of nature is a-priori unknown to the re-

ceiver, and drawn from a common-knowledge prior distribution λ supported on Θ. The sender, on

the other hand, has access to the realization of θ, and can commit to a policy of partially revealing

information regarding its realization before the receiver selects his action. Specifically, the sender

commits to a signaling scheme ϕ, mapping (possibly randomly) states of nature Θ to a family of

signals Σ. For θ ∈ Θ, we use ϕ(θ) to denote the (possibly random) signal selected when the state

of nature is θ. Moreover, we use ϕ(θ, σ) to denote the probability of selecting the signal σ given

a state of nature θ. An algorithm implements a signaling scheme ϕ if it takes as input a state of

nature θ, and samples the random variable ϕ(θ).

Correspondence to the example of Section 4.2: In the example, the state of nature θ, i.e.,

whether a ranger is nearby or not, is known to the defender but unknown to the poacher. However,

the probability that a ranger is nearby is publicly known. The defender commits to a signaling

scheme to deceptively send the warning signal. The process can be randomized since when the

ranger is not nearby, the defender sometimes sends the warning signal and sometimes does not.

Given a signaling scheme ϕ with signals Σ, each signal σ ∈ Σ is realized with probabil-

ity ασ =
∑

θ∈Θ λθϕ(θ, σ). Conditioned on the signal σ, the expected payoffs to the receiver

of the various actions are summarized by the vector r(σ) = 1
ασ

∑
θ∈Θ λθϕ(θ, σ)r(θ). Sim-

ilarly, the sender’s payoffs as a function of the receiver’s action are summarized by s(σ) =
1
ασ

∑
θ∈Θ λθϕ(θ, σ)s(θ). On receiving a signal σ, the receiver performs a Bayesian update and

selects an action i∗(σ) ∈ argmaxi ri(σ) with expected receiver utility maxi ri(σ). This induces

utility si∗(σ)(σ) for the sender. In the event of ties when selecting i∗(σ), we assume those ties are

broken in favor of the sender.

Correspondence to the example of Section 4.2: When the poacher receives a warning signal,

he updates his belief about the probability of a ranger nearby and then best responds.

We will adopt the perspective of a sender looking to design ϕ to maximize her expected

utility
∑

σ ασsi∗(σ)(σ), in which case we say ϕ is optimal. When ϕ yields expected sender utility

within an additive [multiplicative] ε of the best possible, we say it is ε-optimal [ε-approximate]

in the additive [multiplicative] sense. A simple revelation-principle style argument (Kamenica

& Gentzkow, 2011) shows that an optimal signaling scheme need not use more than n signals,

with one recommending each action. Such a direct scheme ϕ has signals Σ = {σ1, . . . , σn}, and
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satisfies ri(σi) ≥ rj(σi) for all i, j ∈ [n]. We think of σi as a signal recommending action i, and

the requirement ri(σi) ≥ maxj rj(σi) as an persuasiveness constraint on the signaling scheme —

i.e., the recommended action is indeed the receiver’s favorite action.1 All the signaling schemes

considered in this thesis will be direct, unless explicitly stated otherwise.2

Correspondence to the example of Section 4.2: The optimal scheme we described in the exam-

ple uses two signals θ+, θ− since the poacher has only two actions. Moreover, θ+ [θ−] can be

thought of as a persuasive recommendation of stopping [continuing] poaching. So, the scheme

we describe is direct.

Next we mention a few remarks about the results in the next sections. For our results in

Section 5.2.4, we relax the persuasiveness constraints by assuming that the receiver follows the

recommendation so long as it approximately maximizes his utility — for a parameter ε > 0, we

relax our requirement to ri(σi) ≥ maxj rj(σi)− ε, which translates to the relaxed persuasiveness

constraints
∑

θ∈Θ λθϕ(θ, σi)ri(θ) ≥
∑

θ∈Θ λθϕ(θ, σi)(rj(θ) − ε) in LP (5.1). We call such

schemes ε-persuasive. We judge the suboptimality of an ε-persuasive scheme relative to the best

(absolutely) persuasive scheme; i.e., in a bi-criteria sense.

We note that expected utilities, persuasiveness, and optimality are properties not only of a

signaling scheme ϕ, but also of the distribution λ over its inputs. Therefore, we often say that a

signaling scheme ϕ is persuasive [ε-persuasive] for λ, or optimal [ε-optimal] for λ. We also use

us(ϕ, λ) to denote the expected sender utility
∑

θ∈Θ

∑n
i=1 λθϕ(θ, σi)si(θ).

The Commitment Assumption.

We conclude this section with a few justifications about the commitment assumption in the

persuasion model. The commitment to signaling schemes is justified on the grounds of repeated

games with a long horizon — in particular when the sender must balance his short-term payoffs

with long-term credibility. We refer the reader to the discussion of this phenomenon in (Rayo &

Segal, 2010). Also, (Kamenica & Gentzkow, 2011) mention that an earlier model of repeated 2-

player games with asymmetric information by (Aumann et al., 1995) is mathematically analogous

to Bayesian persuasion.

With respect to the concrete security applications we study, the commitment to signaling

schemes is usually natural and realistic. For example, in the poaching example of Section 4.2, the

signaling schemes need to be implemented as software in the UAVs. Once the code is finalized

and deployed, the defender is committed to using the signaling scheme prescribed by the code.

We will also assume that the receiver (i.e., attacker in security games) is aware of the signaling
1Persuasiveness has also been called incentive compatibility or obedience in prior work.
2One reason is that schemes for which it is tractable to compute the best receiver response (or the desired ε-best

response) are w.l.o.g direct. Therefore, indirect schemes are somewhat less useful to consider.
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scheme and will best respond to each signal. This is because by interacting with the system, the

attacker can gradually learn each signal’s posterior. This is particularly true in “green security”

domains which generally involve limited penalties for being caught (Carthy, Tambe, Kiekintveld,

Gore, & Killion, 2016; Fang et al., 2016a). Moreover, there is usually a community of attackers

who can learn these probabilities by sharing knowledge.

5.2 Algorithmic Foundation for Bayesian Persuasion

Naturally, the sender in the Bayesian persuasion model seeks to find the signaling scheme

that maximizes her expected utility subject to the receiver’s strategic response. Therefore, the

Bayesian persuasion problem is an optimization problem by nature. We now provide a thor-

ough algorithmic analysis for the model and pin down the complexity of the problem under

several natural input models. To the best of our knowledge, this is the first algorithmic study

for this foundational economic model. Our results not only pave the way to applications and

help to operationalize the model, but also provide structural insights into the problem. Moreover,

complexity-theoretic results often shed light on whether or not a model is realistic.

5.2.1 Explicit Input Model

We start with the simple case where the distribution for the state of nature θ is explicitly
given. That is, the probability for each state of nature is explicitly enumerated. In this case
the sender’s optimization problem can be formulated as a linear program (LP) with variables
{ϕ(θ, σi) : θ ∈ Θ, i ∈ [n]}.

maximize
∑
θ∈Θ

∑n
i=1 λθϕ(θ, σi)si(θ)

subject to
∑
θ∈Θ λθϕ(θ, σi)ri(θ) ≥

∑
θ∈Θ λθϕ(θ, σi)rj(θ), for i, j ∈ [n].∑n

i=1 ϕ(θ, σi) = 1, for θ ∈ Θ.

ϕ(θ, σi) ≥ 0, for θ ∈ Θ, i ∈ [n].

(5.1)

At a high level, the LP maximizes the sender’s expected utility subject to that the recom-

mendation of each signal is persuasive and the scheme is feasible. This shows that the optimal

persuasion problem can be solved in polynomial time for the explicit input model since linear

programs can be solved in polynomial time in the LP size.

5.2.2 Poly-Time Solvability for Persuasion with I.I.D Actions

In this section, we assume that the payoffs of different actions are independently and identically

distributed (i.i.d.) according to an explicitly-described marginal distribution. To better motivate

this setting, we start with an illustrative example.
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Example 1 (An Example of Persuasion with I.I.D. Actions). Our example is in the context of

wildlife conservation. The receiver is a poacher, actions correspond to visiting conservation ar-

eas for poaching, and the sender is a security agency or defender with access to statuses of con-

servation areas (e.g., animal populations, ranger locations, etc.) which are a priori unknown to

the poacher. The misaligned incentives between the defender and poacher give rise to a nontrivial

Bayesian persuasion problem. In fact, interesting examples exist when statuses of conservation

areas are independent from each other, or even i.i.d. Consider the following simple example

which fits into the i.i.d. model considered in this section: there are two conservation areas, each

of which is a priori equally likely to be in one of the following three states (independently): pro-

tected animals show up and rangers are patrolling the area (state A); protected animals show up

and rangers are not patrolling the area (state B); only regular animals — which are not protected

— show up (state C). We refer to A/B/C as the types of an area, and associate them with poacher

utilities of−1, 1, and ε, respectively. Suppose that the defender’s goal is to prevent the poacher to

attack an area with protected animals. Concretely, the defender receives utility −1 if the poacher

attacks an area of type A or B,3 and utility 0 if the poacher attacks an area of type C. The poacher

will always choose one of these two areas to attack. A simple calculation shows that providing

full information to the poacher results in an expected defender utility of −2
3 , as does providing

no information. An optimal signaling scheme, which guarantees that the poacher attacks an area

with type C whenever such an area exists, is the following: when exactly one of the areas has

type C “recommend” that area to the poacher, and otherwise “recommend” any area uniformly

at random. A simple calculation using Bayes’ rule shows that the poacher prefers to follow the

recommendations of this partially informative scheme, and it follows that the expected defender

utility is −4
9 .

More formally, in the Bayesian persuasion model with i.i.d. actions, each state of nature θ

is a vector in Θ = [m]n for a parameter m, where θi ∈ [m] is the type of action i. Associated

with each type j ∈ [m] is a pair (ξj , ρj) ∈ R2, where ξj [ρj] is the payoff to the sender [receiver]

when the receiver chooses an action with type j. We are given a marginal distribution over

types, described by a vector q = (q1, . . . , qm) ∈ ∆m. We assume each action’s type is drawn

independently according to q; specifically, the prior distribution λ on states of nature is given by

λ(θ) =
∏
i∈[n] qθi . For convenience, we let ξ = (ξ1, . . . , ξm) ∈ Rm and ρ = (ρ1, . . . , ρm) ∈ Rm

denote the type-indexed vectors of sender and receiver payoffs, respectively. We assume ξ, ρ, and

q — the parameters describing an i.i.d. persuasion instance — are given explicitly.
3The defender does not want the poacher to attack an area with protected animals even though there are patrollers

there (i.e., in state B). This is because the protected animals may have already be killed before the rangers catch the
poacher, and this is a huge loss to the defender.
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Mσi =
∑

θ λ(θ)ϕ(θ, σi)M
θ, for i = 1, . . . , n.∑n

i=1 ϕ(θ, σi) = 1, for θ ∈ Θ.
ϕ(θ, σi) ≥ 0, for θ ∈ Θ, i ∈ [n].

Figure 5.1: Realizable signatures P

max
∑n

i=1 ξ ·Mσi
i

s.t. ρ ·Mσi
i ≥ ρ ·Mσi

j , for i, j ∈ [n].

(Mσ1 , . . . ,Mσn) ∈ P
Figure 5.2: Persuasion in signature space

Note that the number of states of nature is mn, and therefore the natural representation of a

signaling scheme has nmn variables. As a result, the natural linear program for the persuasion

problem in Section 5.2.1 has an exponential in n number of both variables and constraints. Never-

theless, we will not need to explicitly write down the signaling scheme. Instead, as mentioned in

Section 5.1, we seek only to implement an optimal or near-optimal scheme ϕ as an oracle which

takes as input θ and samples a signal σ ∼ ϕ(θ). Our algorithms will run in time polynomial in n

and m, and will optimize over a space of succinct “reduced forms” for signaling schemes which

we term signatures, to be described next.

For a state of nature θ, define the matrix M θ ∈ {0, 1}n×m so that M θ
ij = 1 if and only if

action i has type j in θ (i.e. θi = j). Given an i.i.d prior λ and a signaling scheme ϕ with signals

Σ = {σ1, . . . , σn}, for each i ∈ [n] let αi =
∑

θ λ(θ)ϕ(θ, σi) denote the probability of sending

σi, and let Mσi =
∑

θ λ(θ)ϕ(θ, σi)M
θ. Note that Mσi

jk is the joint probability that action j

has type k and the scheme outputs σi. Also note that each row of Mσi sums to αi, and the jth

row represents the un-normalized posterior type distribution of action j given signal σi. We call

M = (Mσ1 , . . . ,Mσn) ∈ Rn×m×n the signature of ϕ. The sender’s objective and receiver’s

persuasiveness constraints can both be expressed in terms of the signature. In particular, using

Mj to denote the jth row of a matrix M , the persuasiveness constraints are ρ ·Mσi
i ≥ ρ ·Mσi

j

for all i, j ∈ [n], and the sender’s expected utility assuming the receiver follows the scheme’s

recommendations is
∑

i∈[n] ξ ·Mσi
i .

We sayM = (Mσ1 , . . . ,Mσn) ∈ Rn×m×n is realizable if there exists a signaling scheme

ϕ with M as its signature. Realizable signatures constitutes a polytope P ⊆ Rn×m×n, which

has an exponential-sized extended formulation as shown Figure 5.1. Given this characterization,

the sender’s optimization problem can be written as a linear program in the space of signatures,

shown in Figure 5.2:
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Symmetry of the Optimal Signaling Scheme

We now show that there always exists a “symmetric” optimal scheme when actions are i.i.d.

Given a signatureM = (Mσ1 , . . . ,Mσn), it will sometimes be convenient to think of it as the

set of pairs {(Mσi , σi)}i∈[n].

Definition 1. A signaling scheme ϕ with signature {(Mσi , σi)}i∈[n] is symmetric if there exist

x,y ∈ Rm such that Mσi
i = x for all i ∈ [n] and Mσi

j = y for all j 6= i. The pair (x,y) is the

s-signature of ϕ.

In other words, a symmetric signaling scheme sends each signal with equal probability ||x||1,

and induces only two different posterior type distributions for actions: x
||x||1 for the recommended

action, and y
||y||1 for the others. We call (x,y) realizable if there exists a signaling scheme with

(x,y) as its s-signature. The family of realizable s-signatures constitutes a polytope Ps, and

has an extended formulation by adding the variables x,y ∈ Rm and constraints Mσi
i = x and

Mσi
j = y for all i, j ∈ [n] with i 6= j to the extended formulation of (asymmetric) realizable

signatures from Figure 5.1.

We make two simple observations regarding realizable s-signatures. First, ||x||1 = ||y||1 =
1
n for each (x,y) ∈ Ps, and this is because both ||x||1 and ||y||1 equal the probability of each of

the n signals. Second, since the signature must be consistent with prior marginal distribution q,

we have x + (n − 1)y =
∑n

i=1M
σi
1 = q. We show that the restriction to symmetric signaling

schemes will not reduce the sender’s optimal utility.

Theorem 5.2.1. When the action payoffs are i.i.d., there exists an optimal and persuasive signal-

ing scheme which is symmetric.

Theorem 5.2.1 is proved in Appendix A.1.1. At a high level, we show that optimal signal-

ing schemes are closed with respect to two operations: convex combination and permutation.

Specifically, a convex combination of realizable signatures — viewed as vectors in Rn×m×n —

is realized by the corresponding “random mixture” of signaling schemes, and this operation pre-

serves optimality. The proof of this fact follows easily from the fact that linear program in Figure

5.2 has a convex family of optimal solutions. Moreover, given a permutation π ∈ SSn and an op-

timal signatureM = {(Mσi , σi)}i∈[n] realized by signaling scheme ϕ, the “permuted” signature

π(M) = {(πMσi , σπ(i))}i∈[n] — where premultiplication of a matrix by π denotes permuting

the rows of the matrix — is realized by the “permuted” scheme ϕπ(θ) = π(ϕ(π−1(θ))), which is

also optimal. The proof of this fact follows from the “symmetry” of the (i.i.d.) prior distribution

about the different actions. Theorem 5.2.1 is then proved constructively as follows: given a real-

izable optimal signatureM, the “symmetrized” signatureM = 1
n!

∑
π∈SSn π(M) is realizable,

optimal, and symmetric.
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Implementing the Optimal Signaling Scheme

We now exhibit a polynomial-time algorithm for persuasion in the i.i.d. model. Theorem 5.2.1

permits re-writing the optimization problem in Figure 5.2 as follows, with variables x,y ∈ Rm.

maximize nξ · x
subject to ρ · x ≥ ρ · y

(x,y) ∈ Ps
(5.2)

Problem (5.2) cannot be solved directly, since Ps is defined by an extended formulation with

exponentially many variables and constraints, as described previously. Nevertheless, we make use

of a connection between symmetric signaling schemes and single-item auctions with i.i.d. bidders

to solve (5.2) using the Ellipsoid method. Specifically, we show a one-to-one correspondence

between symmetric signatures and (a subset of) symmetric reduced forms of single-item auctions

with i.i.d. bidders, defined as follows.

Definition 2. (Border, 1991) Consider a single-item auction setting with n i.i.d. bidders and m

types for each bidder, where each bidder’s type is distributed according to q ∈ ∆m. An allocation

rule is a randomized function A mapping a type profile θ ∈ [m]n to a winner A(θ) ∈ [n] ∪ {∗},
where ∗ denotes not allocating the item. We say the allocation rule has symmetric reduced form

τ ∈ [0, 1]m if for each bidder i ∈ [n] and type j ∈ [m], τj is the conditional probability of i

receiving the item given that she has type j.

When q is clear from context, we say τ is realizable if there exists an allocation rule with τ as

its symmetric reduced form. We say an algorithm implements an allocation rule A if it takes as

input θ, and samples A(θ).

Theorem 5.2.2. Consider the Bayesian Persuasion problem with n i.i.d. actions and m types,

with parameters q ∈ ∆m, ξ ∈ Rm, and ρ ∈ Rm given explicitly. An optimal and persuasive

signaling scheme can be implemented in poly(m,n) time.

Theorem 5.2.2 is a consequence of the following set of lemmas.

Lemma 1. Let (x,y) ∈ [0, 1]m × [0, 1]m, and define τ = (x1q1 , . . . ,
xm
qm

). The pair (x,y) is

a realizable s-signature if and only if (a) ||x||1 = 1
n , (b) x + (n − 1)y = q, and (c) τ is a

realizable symmetric reduced form of an allocation rule with n i.i.d. bidders, m types, and type

distribution q. Moreover, assuming x and y satisfy (a), (b) and (c), and given black-box access to

an allocation rule A with symmetric reduced form τ , a signaling scheme with s-signature (x,y)

can be implemented in poly(n,m) time.

Lemma 2. An optimal realizable s-signature, as described by LP (5.2), is computable in

poly(n,m) time.
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Lemma 3. (See (Cai, Daskalakis, & Weinberg, 2012; Alaei, Fu, Haghpanah, Hartline, &

Malekian, 2012)) Consider a single-item auction setting with n i.i.d. bidders and m types for

each bidder, where each bidder’s type is distributed according to q ∈ ∆m. Given a realizable

symmetric reduced form τ ∈ [0, 1]m, an allocation rule with reduced form τ can be implemented

in poly(n,m) time.

The proofs of Lemmas 1 and 2 can be found in Appendix A.1.2. The proof of Lemma 1 builds

a correspondence between s-signatures of signaling schemes and certain reduced-form allocation

rules. Specifically, actions correspond to bidders, action types correspond to bidder types, and

signaling σi corresponds to assigning the item to bidder i. The expression of the reduced form

in terms of the s-signature then follows from Bayes’ rule. Lemma 2 follows from Lemma 1, the

ellipsoid method, and the fact that symmetric reduced forms admit an efficient separation oracle

(see (Border, 1991, 2007; Cai et al., 2012; Alaei et al., 2012)).

A “Simple” (1− 1
e )-Approximate Scheme

Our next result is a “simple” signaling scheme which obtains a (1− 1/e) multiplicative approx-

imation when payoffs are nonnegative. This algorithm has the distinctive property that it signals

independently for each action, and therefore implies that approximately optimal persuasion can

be parallelized among multiple colluding senders, each of whom only has access to the type of

one or more of the actions.

Recall that an s-signature (x,y) satisfies ||x||1 = ||y||1 = 1
n and x + (n − 1)y = q. Our

simple scheme, shown in Algorithm 1, works with the following explicit linear programming

relaxation of optimization problem (5.2).

maximize nξ · x
subject to ρ · x ≥ ρ · y

x+ (n− 1)y = q

||x||1 = 1
n

x,y ≥ 0

(5.3)

Algorithm 1 has a simple and instructive interpretation. It computes the optimal solution

(x∗,y∗) to the relaxed problem (5.3), and uses this solution as a guide for signaling independently

for each action. The algorithm selects, independently for each action i, a component signal

oi ∈ {HIGH,LOW}. Each oi is chosen so that Pr[oi = HIGH] = 1
n , and moreover the

events oi = HIGH and oi = LOW induce the posterior beliefs nx∗ and ny∗, respectively,

regarding the type of action i.
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Algorithm 1: Independent Signaling Scheme

Input: Sender payoff vector ξ, receiver payoff vector ρ, prior distribution q

Input: State of nature θ ∈ [m]n

Output: An n-dimensional binary signal σ ∈ {HIGH,LOW}n
1: Compute an optimal solution (x∗,y∗) from linear program (5.3).

2: For each action i independently, set component signal oi to HIGH with probability
x∗θi
qθi

and

to LOW otherwise, where θi is the type of action i in the input state θ.

3: Return σ = (o1, . . . , on).

The signaling scheme implemented by Algorithm 1 approximately matches the optimal value

of (5.3), as shown in Theorem 5.2.3, assuming the receiver is rational and therefore selects an ac-

tion with a HIGH component signal if one exists. We note that the scheme of Algorithm 1, while

not a direct scheme as described, can easily be converted into one; specifically, by recommend-

ing an action whose component signal is HIGH when one exists (breaking ties arbitrarily), and

recommending an arbitrary action otherwise. Theorem 5.2.3 follows from the fact that (x∗,y∗)

is an optimal solution to LP (5.3), the fact that the posterior type distribution of an action i is nx∗

when oi = HIGH and ny∗ when oi = LOW, and the fact that each component signal is high

independently with probability 1
n . We defer the formal proof to Appendix A.1.3.

Theorem 5.2.3. Algorithm 1 runs in poly(m,n) time, and serves as a (1− 1
e )-approximate signal-

ing scheme for the Bayesian Persuasion problem with n i.i.d. actions, m types, and nonnegative

payoffs.

Remark 5.2.4. Algorithm 1 signals independently for each action. This conveys an interesting

conceptual message. That is, even though the optimal signaling scheme might induce posterior

beliefs which correlate different actions, it is nevertheless true that signaling for each action in-

dependently yields an approximately optimal signaling scheme. As a consequence, collaborative

persuasion by multiple parties (the senders), each of whom observes the payoff of one or more ac-

tions, is a task that can be parallelized, requiring no coordination when actions are identical and

independent and only an approximate solution is sought. We leave open the question of whether

this is possible when action payoffs are independently but not identically distributed.

5.2.3 Complexity Barriers to Persuasion with Independent Actions

In this section, we consider optimal persuasion with independent action payoffs as in Section

5.2.2, albeit with action-specific marginal distributions given explicitly. Specifically, for each

action i we are given a distribution qi ∈ ∆mi on mi types, and each type j ∈ [mi] of action i

is associated with a sender payoff ξij ∈ R and a receiver payoff ρij ∈ R. The positive results
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of Section 5.2.2 draw a connection between optimal persuasion in the special case of identi-

cally distributed actions and Border’s characterization of reduced-form single-item auctions with

i.i.d. bidders. One might expect this connection to generalize to the independent non-identical

persuasion setting, since Border’s theorem extends to single-item auctions with independent non-

identical bidders. Surprisingly, we show that this analogy to Border’s characterization fails to

generalize. We prove the following theorem.

Theorem 5.2.5. Consider the Bayesian Persuasion problem with independent actions, with

action-specific payoff distributions given explicitly. It is #P -hard to compute the optimal ex-

pected sender utility.

Invoking the framework of (Gopalan, Nisan, & Roughgarden, 2015), this rules out a gener-

alized Border’s theorem for our setting, in the sense defined by (Gopalan et al., 2015), unless the

polynomial hierarchy collapses to PNP . We view this result as illustrating some of the important

differences between persuasion and mechanism design.

The proof of Theorem 5.2.5 is rather involved. We defer the full proof to Appendix A.2, and

only present a sketch here. Our proof starts from the ideas of (Gopalan et al., 2015), who show

the #P-hardness for revenue or welfare maximization in several mechanism design problems. In

one case, (Gopalan et al., 2015) reduce from the #P -hard problem of computing the Khintchine

constant of a vector. Our reduction also starts from this problem, but is much more involved:4

First, we exhibit a polytope which we term the Khintchine polytope, and show that computing

the Khintchine constant reduces to linear optimization over the Khintchine polytope. Second, we

present a reduction from the membership problem for the Khintchine polytope to the computation

of optimal sender utility in a particularly-crafted instance of persuasion with independent actions.

Invoking the polynomial-time equivalence between membership checking and optimization (see,

e.g., (Grötschel, Lovász, & Schrijver, 1988)), we conclude the #P-hardness of our problem. The

main technical challenge we overcome is in the second step of our proof: given a vector x which

may or may not be in the Khintchine polytope K, we construct a persuasion instance and a

threshold T so that points in K encode signaling schemes, and the optimal sender utility is at

least T if and only if x ∈ K and the scheme corresponding to x results in sender utility T .

Proof Sketch of Theorem 5.2.5

The Khintchine problem, shown to be #P-hard in (Gopalan et al., 2015), is to compute the Khint-

chine constant K(a) of a given vector a ∈ Rn, defined as K(a) = Eθ∼{±1}n [|θ · a|] where θ

4In (Gopalan et al., 2015), Myerson’s characterization is used to show that optimal mechanism design in a public
project setting directly encodes computation of the Khintchine constant. No analogous direct connection seems to
hold here.
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is drawn uniformly at random from {±1}n. To relate the Khintchine problem to Bayesian per-

suasion, we begin with a persuasion instance with n i.i.d. actions and two action types, which

we refer to as type -1 and type +1. The state of nature is a uniform random draw from the set

{±1}n, with the ith entry specifying the type of action i. We call this instance the Khintchine-

like persuasion setting. As in Section 5.2.2, we still use the signature to capture the payoff-

relevant features of a signaling scheme, but we pay special attention to signaling schemes which

use only two signals, in which case we represent them using a two-signal signature of the form

(M1,M2) ∈ Rn×2×Rn×2. The Khintchine polytopeK(n) is then defined as the (convex) family

of all realizable two-signal signatures for the Khintchine-like persuasion problem with an addi-

tional constraint: each signal is sent with probability exactly 1
2 . We first prove that general linear

optimization over K(n) is #P-hard by encoding computation of the Khintchine constant as linear

optimization over K(n). In this reduction, the optimal solution in K(n) is the signature of the

two-signal scheme ϕ(θ) = sign(θ · a), which signals + and − each with probability 1
2 .

To reduce the membership problem for the Khintchine polytope to optimal Bayesian per-

suasion, the main challenges come from our restrictions on K(n), namely to schemes with two

signals which are equally probable. Our reduction incorporates three key ideas. The first is to

design a persuasion instance in which the optimal signaling scheme uses only two signals. The

instance we define will have n + 1 actions. Action 0 is special – it deterministically results in

sender utility ε > 0 (small enough) and receiver utility 0. The other n actions are regular. Action

i > 0 independently results in sender utility −ai and receiver utility ai with probability 1
2 (call

this type 1i), or sender utility −bi and receiver utility bi with probability 1
2 (call this type 2i), for

ai and bi to be set later. Note that the sender and receiver utilities are zero-sum for both types.

Since the special action is deterministic and the probability of its (only) type is 1 in any signal,

we can interpret any (M1,M2) ∈ K(n) as a two-signal signature for our persuasion instance

(the row corresponding to the special action 0 is implied). We show that restricting to two-signal

schemes is without loss of generality in this persuasion instance. The proof tracks the following

intuition: due to the zero-sum nature of regular actions, any additional information regarding

regular actions would benefit the receiver and harm the sender. Consequently, the sender does

not reveal any information which distinguishes between different regular actions. Formally, we

prove that there always exists an optimal signaling scheme with only two signals: one signal

recommends the special action, and the other recommends some regular action.

We denote the signal that recommends the special action 0 by σ+ (indicating that the sender

derives positive utility ε), and denote the other signal by σ− (indicating that the sender derives

negative utility, as we show). The second key idea concerns choosing appropriate values for

{ai}ni=1, {bi}ni=1 for a given two-signature (M1,M2) to be tested. We choose these values to sat-

isfy the following two properties: (1) For all regular actions, the signaling scheme implementing
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(M1,M2) (if it exists) results in the same sender utility −1 (thus receiver utility 1) conditioned

on σ− and the same sender utility 0 conditioned on σ+; (2) the maximum possible expected

sender utility from σ−, i.e., the sender utility conditioned on σ− multiplied by the probability of

σ−, is −1
2 . As a result of Property (1), if (M1,M2) ∈ K(n) then the corresponding signaling

scheme ϕ is persuasive and results in expected sender utility T = 1
2ε − 1

2 (since each signal is

sent with probability 1
2 ). Property (2) implies that ϕ results in the maximum possible expected

sender utility from σ−.

We now run into a challenge: the existence of a signaling scheme with expected sender utility

T = 1
2ε − 1

2 does not necessarily imply that (M1,M2) ∈ K(n) if ε is large. Our third key

idea is to set ε > 0 “sufficiently small” so that any optimal signaling scheme must result in the

maximum possible expected sender utility −1
2 from signal σ− (see Property (2) above). In other

words, we must make ε so small that the sender prefers to not sacrifice any of her payoff from σ−

in order to gain utility from the special action recommended by σ+. We show that such an ε exists

with polynomially many bits. We prove its existence by arguing that the polytope of persuasive

two-signal signatures has polynomial bit complexity, and therefore an ε > 0 that is smaller than

the “bit complexity” of the vertices would suffice.

As a result of this choice of ε, if the optimal sender utility is precisely T = 1
2ε − 1

2 then we

know that signal σ+ must be sent with probability 1
2 since the expected sender utility from signal

σ− must be−1
2 . We show that this, together with the specifically constructed {ai}ni=1, {bi}ni=1, is

sufficient to guarantee that the optimal signaling scheme must implement the given two-signature

(M1,M2), i.e., (M1,M2) ∈ K(n). When the optimal optimal sender utility is strictly greater

than 1
2ε − 1

2 , the optimal signaling scheme does not implement (M1,M2), but we show that it

can be post-processed into one that does.

5.2.4 An FPTAS for the General Persuasion Problem

We now turn our attention to the Bayesian Persuasion problem when the payoffs of different ac-

tions are arbitrarily correlated, and the joint distribution λ is presented as a black-box sampling

oracle. We assume that payoffs are normalized to lie in the bounded interval, and prove essen-

tially matching positive and negative results. Our positive result is a fully polynomial-time ap-

proximation scheme for optimal persuasion with a bi-criteria guarantee; specifically, we achieve

approximate optimality and approximate persuasiveness in the additive sense described in Sec-

tion 5.1. Our negative results show that such a bi-criteria loss is inevitable in the black box model

for information-theoretic reasons.
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A Bicriteria FPTAS

Theorem 5.2.6. Consider the Bayesian Persuasion problem in the black-box oracle model with

n actions and payoffs in [−1, 1], and let ε > 0 be a parameter. An ε-optimal and ε-persuasive

signaling scheme can be implemented in poly(n, 1
ε ) time.

To prove Theorem 5.2.6, we show that a simple Monte-Carlo algorithm implements an ap-

proximately optimal and approximately persuasive scheme ϕ. Notably, our algorithm does not

compute a representation of the entire signaling scheme ϕ as in Section 5.2.2, but rather merely

samples its output ϕ(θ) on a given input θ. At a high level, when given as input a state of na-

ture θ, our algorithm first takes K = poly(n, 1
ε ) samples from the prior distribution λ which,

intuitively, serve to place the true state of nature θ in context. Then the algorithm uses a linear

program to compute the optimal ε-persuasive scheme ϕ̃ for the empirical distribution of samples

augmented with the input θ. Finally, the algorithm signals as suggested by ϕ̃ for θ. Details are in

Algorithm 2, which we instantiate with ε > 0 and K = d256n2

ε4
log(4n

ε )e.
We note that relaxing persuasiveness is necessary for convergence to the optimal sender utility

— we prove this formally in Section 5.2.4. This is why LP (5.4) features relaxed persuasiveness

constraints. Instantiating Algorithm 2 with ε = 0 results in an exactly persuasive scheme which

could be far from the optimal sender utility for any finite number of samples K, as reflected in

Lemma 6.

Algorithm 2: Signaling Scheme for a Black Box Distribution

Parameter: ε ≥ 0

Parameter: Integer K ≥ 0

Input: Prior distribution λ supported on [−1, 1]2n, given by a sampling oracle

Input: State of nature θ ∈ [−1, 1]2n

Output: Signal σ ∈ Σ, where Σ = {σ1, . . . , σn}.
1: Draw integer ` uniformly at random from {1, . . . ,K}, and denote θ` = θ.

2: Sample θ1, . . . , θ`−1, θ`+1 . . . , θK independently from λ, and let the multiset

λ̃ = {θ1, . . . , θK} denote the empirical distribution augmented with the input state θ = θ`.5

3: Solve linear program (5.4) to obtain the signaling scheme ϕ̃ : λ̃→ ∆(Σ).

4: Output a sample from ϕ̃(θ) = ϕ̃(θ`).

5It is not essential for the algorithm to pick a uniformly random ` to set θl = θ. That is, the algorithm also works if
we always set θ1 = θ. We choose l uniformly at random because this makes θ uniformly distributed in λ̃, conditioned
on the samples. This simplifies our proof of Theorem 5.2.6.
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maximize
∑K

k=1

∑n
i=1

1
K ϕ̃(θk, σi)si(θk)

subject to
∑n

i=1 ϕ̃(θk, σi) = 1, for k ∈ [K].∑K
k=1

1
K ϕ̃(θk, σi)ri(θk) ≥

∑K
k=1

1
K ϕ̃(θk, σi)(rj(θk)− ε), for i, j ∈ [n].

ϕ̃(θk, σi) ≥ 0, for k ∈ [K], i ∈ [n].
(5.4)

Relaxed Empirical Optimal Signaling Problem
Theorem 5.2.6 follows from three lemmas pertaining to the scheme ϕ implemented by Algo-

rithm 2.6 Approximate persuasiveness for λ (Lemma 4) follows from the principle of deferred

decisions, linearity of expectations, and the fact that ϕ̃ is approximately persuasive for the aug-

mented empirical distribution λ̃. A similar argument, also based on the principal of deferred

decisions and linearity of expectations, shows that the expected sender utility from our scheme

when θ ∼ λ equals the expected optimal value of linear program (5.4), as stated in Lemma 5.

Finally, we show in Lemma 6 that the optimal value of LP (5.4) is close to the optimal sender

utility for λ with high probability, and hence also in expectation, whenK = poly(n, 1
ε ) is chosen

appropriately; the proof of this fact invokes standard tail bounds as well as structural properties of

linear program (5.4), and exploits the fact that LP (5.4) relaxes the persuasiveness constraint. We

prove all three lemmas in Appendix A.3.1. Even though our proof of Lemma 6 is self-contained,

we note that it can be shown to follow from (Weinberg, 2014, Theorem 6) with some additional

work.

Lemma 4. Algorithm 2 implements an ε-persuasive signaling scheme for prior distribution λ.

Lemma 5. Assume θ ∼ λ, and assume the receiver follows the recommendations of Algorithm 2.

The expected sender utility equals the expected optimal value of the linear program (5.4) solved

in Step 3. Both expectations are taken over the random input θ as well as internal randomness

and Monte-Carlo sampling performed by the algorithm.

Lemma 6. Let OPT denote the expected sender utility induced by the optimal persuasive sig-

naling scheme for distribution λ. When Algorithm 2 is instantiated with K ≥ 256n2

ε4
log(4n

ε ) and

its input θ is drawn from λ, the expected optimal value of the linear program (5.4) solved in Step

3 is at least OPT − ε. The expectation is over the random input θ as well as the Monte-Carlo

sampling performed by the algorithm.

Information-Theoretic Barriers

We now show that our bi-criteria FPTAS is close to the best we can hope for: there is no

bounded-sample signaling scheme in the black box model which guarantees persuasiveness and
6Note that the overall scheme ϕ implemented by Algorithm 2 should be distinguished from the particular ϕ̃ for

empirical distribution λ̃, which is used to construct ϕ(θ) for the particular input θ.
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c-optimality for any constant c < 1, nor is there such an algorithm which guarantees optimality

and c-persuasiveness for any c < 1
4 . Formally, we consider algorithms which implement direct

signaling schemes. Such an algorithm takes as input a black-box distribution λ supported on

[−1, 1]2n and a state of nature θ ∈ [−1, 1]2n, where n is the number of actions, and outputs a

signal σ ∈ {σ1, . . . , σn} recommending an action. We say such an algorithm is ε-persuasive

[ε-optimal] if for every distribution λ the signaling scheme A(λ) is ε-persuasive [ε-optimal] for

λ. We define the sample complexity SCA(λ, θ) as the expected number of queries made by A to

the blackbox given inputs λ and θ, where the expectation is taken over the randomness inherent

in the Monte-Carlo sampling from λ as well as any other internal coins of A. We show that

the worst-case sample complexity is not bounded by any function of n and the approximation

parameters unless we allow bi-criteria loss in both optimality and persuasiveness. More so, we

show a stronger negative result for exactly persuasive algorithms: the average sample complexity

over θ ∼ λ is also not bounded by a function of n and the suboptimality parameter. Whereas

our results imply that we should give up on exact persuasiveness, we leave open the question

of whether an optimal and ε-persuasive algorithm exists with poly(n, 1
ε ) average case (but un-

bounded worst-case) sample complexity.

Theorem 5.2.7. The following hold for every algorithm A for Bayesian Persuasion in the black-

box model:

(a) If A is persuasive and c-optimal for c < 1, then for every integer K there is a distribution

λ = λ(K) on 2 actions and 2 states of nature such that Eθ∼λ[SCA(λ, θ)] > K.

(b) If A is optimal and c-persuasive for c < 1
4 , then for every integer K there is a distribu-

tion λ = λ(K) on 3 actions and 3 states of nature, and θ in the support of λ, such that

SCA(λ, θ) > K.

Our proof of each part of this theorem involves constructing a pair of distributions λ and λ′

which are arbitrarily close in statistical distance, but with the property that any algorithm with the

postulated guarantees must distinguish between λ and λ′. We defer the proof to Appendix A.3.2.

5.3 Persuading Multiple Receivers

The Bayesian persuasion model examined in Section 5.1 and 5.2 consider the interaction be-

tween one sender and one receiver. In this section, we consider a natural generalization in which

the sender persuades multiple receivers. We focus on a basic model, first studied in (Arieli &

Babichenko, 2016), with binary receiver actions and no externalities. This model generalizes

and restricts aspects of the Bayesian persuasion model, and is a fundamental special case for

multi-agent persuasion.
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5.3.1 A Fundamental Setting: Binary Actions and No Externalities

We adopt the perspective of a sender facing n receivers. Each receiver has two actions, which

we denote by 0 and 1. The receiver’s payoff depends only on his own action and a random

state of nature θ supported on Θ. In particular, we use ui(θ, 1) and ui(θ, 0) to denote receiver

i’s utility for action 1 and action 0, respectively, at the state of nature θ; as shorthand, we use

ui(θ) = ui(θ, 1) − ui(θ, 0) to denote how much receiver i prefers action 1 over action 0 given

the state of nature θ.7 Note that ui(θ) may be negative. The sender’s utility (our objective) is

a function of all the receivers’ actions and the state of nature θ. We use fθ(S) to denote the

sender’s utility when the state of nature is θ and S is the set of receivers who choose action 1. We

assume throughout this section that fθ is a monotone non-decreasing set function for every θ. For

convenience in stating our approximation guarantees, we assume without loss of generality that

fθ is normalized so that fθ(∅) = 0 and fθ(S) ∈ [0, 1] for all θ ∈ Θ and S ⊆ [n].

Like in the Bayesian persuasion (BP) model, θ is drawn from a common prior distribution

λ. The sender has access to the realized state of nature and can publicly commit to a signaling

scheme that reveals to each receiver noisy partial information regarding the state of nature. The

main difference from the BP model is that upon observing the realized state θ, the sender will

draw a profile of signals (σ1, . . . , σn) ∼ ϕ(θ) and send signal σi to each receiver i.

Private vs. Public Signaling

A general signaling scheme permits sending different signals to different receivers through a

private communication channel — we term these private signaling schemes to emphasize this

generality. We also study the special case of public signaling schemes — these are restricted to

a public communication channel, and hence send the same signal to all receivers. We formally

define these two signaling models in Sections 5.3.3 and 5.3.5, including the equilibrium concept

and the induced sender optimization problem for each. In both cases, we are primarily interested

in the optimization problem faced by the sender in step (1), the goal of which is to maximize the

sender’s expected utility. Whenϕ yields expected sender utility within an additive [multiplicative]

ε of the best possible, we say it is ε-optimal [ε-approximate] in the additive [multiplicative] sense.

Input Models

We distinguish two input models for describing persuasion instances. The first is the explicit

model, in which the prior distribution λ is given explicitly as a probability vector. The second

is the sample oracle model, where Θ and λ are provided implicitly through sample access to λ.

In both models, we assume that given a state of nature θ, we can efficiently evaluate ui(θ) for

7An equivalent presentation is to, w.l.o.g., assume ui(θ, 0) = 0.
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each i ∈ [n] and fθ(S) for each S ⊆ [n]. Our analysis will primarily focus on the explicit input

model, though we will mention in the context how our results generalize to the implicit input

model using techniques from Section 5.2.4.

5.3.2 Technical Preliminaries: Set Functions and Submodularity

Given a finite ground set X , a set function is a map f : 2X → R. Such a function is nonnegative

if f(S) ≥ 0 for all S ⊆ X , monotone non-decreasing (or monotone for short) if f(S) ≤ f(T )

for all S ⊆ T . Most importantly, f is submodular if for any S, T ⊆ X , we have f(S ∪ T ) +

f(S ∩ T ) ≤ f(S) + f(T ). Submodular functions are widely used to model utilities for a set of

items.

We also consider continuous functions G from the solid hypercube [0, 1]X to the real num-

bers. Such a function is nonnegative if G(x) ≥ 0 for all x ∈ [0, 1]X , monotone non-decreasing

(or monotone for short) if G(x) ≤ G(y) whenever x � y (coordinate wise), and smooth submod-

ular (in the sense of (Calinescu, Chekuri, Pál, & Vondrák, 2011)) if its second partial derivatives

exist and are non-positive everywhere.

The Multilinear Extension of a Set Function. Given any set function f : 2X → R, the multi-

linear extension of f is the continuous function F : [0, 1]X → R defined as follows:

F (x) =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
i 6∈S

(1− xi), (5.5)

Notice that F (x) can be viewed as the expectation of f(S) when the random set S independently

includes each element i with probability xi. In particular, let pIx denote the independent distribu-

tion with marginals x, defined by pIx(S) =
∏
i∈S xi

∏
i 6∈S(1−xi). Then F (x) = ES∼pIx f(S). If

f is nonnegative/monotone then so is F . Moreover, if f is submodular then F is smooth submod-

ular. For our results, we will need to maximize F (x) subject to a set of linear constraints on x.

This problem is NP-hard in general, yet can be approximated by the continuous greedy process

of (Calinescu et al., 2011) for fairly general families of constraints. Note that though we cannot

exactly evaluate F (x) in polynomial time, it is sufficient to approximate F (x) within a good pre-

cision in order to apply the continuous greedy process. By an additive FPTAS evaluation oracle

for F , we mean an algorithm that evaluates F (x) within additive error ε in poly(n, 1
ε ) time.

Theorem 5.3.1 (Adapted form (Calinescu et al., 2011)). Let F : [0, 1]n → [0, 1] be a non-

negative, monotone, smooth submodular function. Let P ⊆ [0, 1]n be a down-monotone poly-

tope8, specified explicitly by its linear constraints. Given an additive FPTAS evaluation oracle

8A polytope P ⊆ Rn+ is called down-monotone if for all x, y ∈ Rn+, if y ∈ P and x � y (coordinate-wise) then
x ∈ P .
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for F , there is a poly(n, 1
ε ) time algorithm that outputs x ∈ P such that F (x) ≥ (1− 1

e )OPT−ε,
where OPT = maxx∈P F (x).

Correlation Gap. A general definition of the correlation gap can be found in (Agrawal, Ding,

Saberi, & Ye, 2010). For our results, the following simple definition will suffice. Specifically, for

any x ∈ [0, 1]X , let D(x) be the set of all distributions p over 2X with fixed marginal probability

PrS∼p(i ∈ S) = xi for all i. Let pIx, as defined above, be the independent distribution with

marginal probabilities x. Note that pIx ∈ D(x). For any set function f(S), the correlation gap κ

is defined as follows:

κ = max
x∈[0,1]X

max
p∈D(x)

ES∼p f(S)

ES∼pIx f(S)
. (5.6)

Loosely speaking, the correlation gap upper bounds the “loss” of the expected function value over

a random set by ignoring the correlation in the randomness.

Theorem 5.3.2. (Agrawal et al., 2010) The correlation gap κ is upper bounded by e
e−1 for any

non-negative monotone non-decreasing submodular function.

5.3.3 Optimal Private Persuasion and Its Complexity Characterization

A private signaling scheme ϕ is a randomized map from the set of states of nature Θ to a set of

signal profiles Σ = Σ1 ×Σ2 × · · ·Σn, where Σi is the signal set of receiver i. We use ϕ(θ, σ) to

denote the probability of selecting the signal profile σ = (σ1, . . . , σn) ∈ Σ given a state of nature

θ. Therefore,
∑

σ∈Σ ϕ(θ, σ) = 1 for every θ. With some abuse of notation, we use ϕ(θ) to denote

the random signal profile selected by the scheme ϕ given the state θ. Moreover, for each θ ∈ Θ,

i ∈ [n], and σi ∈ Σi, we use ϕi(θ, σi) = Pr[ϕi(θ) = σi] to denote the marginal probability that

receiver i receives signal σi in state θ. An algorithm implements a signaling scheme ϕ if it takes

as input a state of nature θ, and samples the random variable ϕ(θ).

Given a signaling scheme ϕ, each signal σi ∈ Σi for receiver i is realized with probability

Pr(σi) =
∑

θ∈Θ λ(θ)ϕi(θ, σi). Upon receiving σi, receiver i — like the receiver in the BP

model — performs a Bayesian update and infers a posterior belief over the state of nature, as

follows: the realized state is θ with posterior probability λ(θ)ϕi(θ, σi)/Pr(σi). Receiver i then

takes the action maximizing his posterior expected utility. In case of indifference, we assume ties

are broken in favor of the sender (i.e., in favor of action 1). Therefore, receiver i chooses action

1 if
1

Pr(σi)

∑
θ∈Θ

λ(θ)ϕi(θ, σi)ui(θ, 1) ≥ 1

Pr(σi)

∑
θ∈Θ

λ(θ)ϕi(θ, σi)ui(θ, 0),

or equivalently ∑
θ∈Θ

λ(θ)ϕi(θ, σi)ui(θ) ≥ 0,
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where ui(θ) = ui(θ, 1)− ui(θ, 0).

Like in the BP model, a revelation-principle style argument shows that there exist an optimal

private signaling scheme which is direct and persuasive (Kamenica & Gentzkow, 2011; Arieli

& Babichenko, 2016). By direct we mean that signals correspond to actions — in our setting

Σi = {0, 1} for each receiver i — and can be interpreted as action recommendations. A di-

rect scheme is persuasive if the strategy profile where all receivers follow their recommendations

forms an equilibrium of the resulting Bayesian game. Due to the absence of inter-receiver exter-

nalities in our setting, such an equilibrium will necessarily also satisfy the stronger property of

being a dominant-strategy equilibrium — i.e., each receiver i maximizes his posterior expected

utility by following the recommendation, regardless of whether other receivers follow their rec-

ommendations.

When designing private signaling schemes, we restrict attention (without loss) to direct and

persuasive schemes. Here, a signal profile can be equivalently viewed as a set S ⊆ [n] of re-

ceivers — namely, the set of receivers who are recommended action 1. Using this alternative

representation, a scheme can be specified by variables ϕ(θ, S) for all θ ∈ Θ, S ⊆ [n]. We can

now encode the sender’s optimization problem of computing the optimal scheme using the fol-

lowing exponentially large linear program; note the use of auxiliary variables xθ,i to denote the

marginal probability of recommending action 1 to receiver i in state θ.

maximize
∑

θ∈Θ λ(θ)
∑

S⊆[n] ϕ(θ, S)fθ(S)

subject to
∑

S:i∈S ϕ(θ, S) = xθ,i, for i ∈ [n], θ ∈ Θ.∑
θ∈Θ λ(θ)xθ,iui(θ) ≥ 0, for i = 1, . . . , n.∑
S⊆[n] ϕ(θ, S) = 1, for θ ∈ Θ.

ϕ(θ, S) ≥ 0, for θ ∈ Θ;S ⊆ [n].

(5.7)

The second set of constraints in LP (5.7) are persuasiveness constraints, and state that each

receiver i should maximize his utility by taking action 1 whenever action 1 is recommended.

Note that the persuasiveness constraints for action 0, which can be written as
∑

θ∈Θ λ(θ)(1 −
xθ,i)ui(θ) ≤ 0 for each i ∈ [n], are intentionally omitted from this LP. This omission is without

loss when fθ is a non-decreasing set function for each θ: any solution to the LP in which a receiver

prefers action 1 when recommended action 0 can be improved by always recommending action 1

to that receiver.

Since the size of LP (5.7) is exponential in the input size of the problem, it is not clear

whether we can solve the problem in time polynomial in the input size. Next, we study the

complexity of optimal private persuasion. In particular, we relate the computational complexity

of private persuasion to the complexity of maximizing the sender’s objective function, and show

that the optimal private signaling scheme can be computed efficiently for a broad class of sender
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objectives. Let F denote any collection of monotone set functions. We use I(F) to denote the

class of all persuasion instances in our model in which the sender utility function fθ is in F for

all states of nature θ. We restrict attention to the explicit input model for most of this discussion,

though discuss how to extend our results to the sample oracle model, modulo an arbitrarily small

additive loss in both the sender’s objective and the persuasiveness constraints, at the end of this

section.

The following theorem establishes the polynomial-time equivalence between computing the

optimal private signaling scheme and the problem of maximizing the objective function plus an

additive function. Note that although the number of variables in LP (5.7) is exponential in the

number of receivers, a vertex optimal solution of this LP is supported on O(n|Θ|) variables.

Theorem 5.3.3. Let F be any collection of monotone set functions. There is a polynomial-time

algorithm which computes the optimal private signaling scheme given any instance in I(F) if and

only if there is a polynomial time algorithm for maximizing f(S) +
∑

i∈S wi given any f ∈ F
and any set of weights wi ∈ R.

Proof. We first reduce optimal private signaling to maximizing the objective function plus an

additive function, via linear programming duality. Consider the following dual program of LP

(5.7) with variables wθ,i, αi, yθ.

minimize
∑

θ∈Θ yθ

subject to
∑

i∈S wθ,i + yθ ≥ λ(θ)fθ(S), for S ⊆ [n], θ ∈ Θ.

wθ,i + αiλ(θ)ui(θ) = 0, for i = 1, . . . , n.

αi ≥ 0, for i ∈ [n].

(5.8)

We can obtain a separation oracle for LP (5.8) given an algorithm for maximizing fθ(S) plus

an additive function. Given any variables wθ,i, αi, yθ, separation over the first set of constraints

reduces to maximizing the set function gθ(S) = fθ(S) − 1
λ(θ)

∑
i∈S wθ,i for each θ ∈ Θ. The

other constraints can be checked directly in linear time. Given the resulting separation oracle, we

can use the Ellipsoid method to obtain a vertex optimal solution to both LP (5.8) and its dual LP

(5.7) in polynomial time (Grötschel et al., 1988).

We now prove the converse. Namely, we construct a polynomial-time Turing reduction from

the problem of maximizing f plus an additive function to a private signaling problem in I(F).

At a high level, we first reduce the set function maximization problem to a certain linear program,

and then prove that solving the dual of the LP reduces to optimal private signaling for a set of

particularly constructed instances in I(F).
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Given f ∈ F and weights w, our reduction concerns the following linear program, parame-

terized by a = (a1, . . . , an) and b, with variables z = (z1, . . . , zn) and v.

minimize
∑

i∈[n] aizi + bv

subject to
∑

i∈S zi + v ≥ f(S), for S ⊆ [n].
(5.9)

Let P denote the feasible region of LP (5.9). As the first step of our reduction, we reduce

maximizing the set function gw(S) = f(S) +
∑

i∈S wi to the separation problem for P . Let

zi = −wi for each i. Notice that (z, v) is feasible (i.e., in P) if and only if v ≥ maxS⊆[n] f(S)−∑
i∈S zi. Therefore, we can binary search for a value ṽ such that (z, ṽ) is almost feasible, but not

quite. More precisely, let B denote the bit complexity of the f(S)’s and the wi’s. Then binary

search returns the exact optimal value of the set function maximization problem afterO(B) steps.

We then set ṽ to equal that value minus 2−B . Feeding (z, ṽ) to the separation oracle, we obtain a

violated constraint which must correspond to the maximizer of f(S) +
∑

i∈S wi.

As the second step of our reduction, we reduce the separation problem for P to solving LP

(5.9) for every choice of objective coefficients a and b. This polynomial-time Turing reduction

follows from the equivalence of separation and optimization (Grötschel et al., 1988).

Third, we reduce solving LP (5.9) for arbitrary a and b to the special case where a ∈ [0, 1]n

and b = 1. The reduction involves a case analysis. (a) If any of the objective coefficients are

negative, then the fact that P is upwards closed implies that LP (5.9) is unbounded. (b) If b = 0

and ai > 0 for some i, then the LP is unbounded since we can make v arbitrarily small and zi
arbitrarily large. Normalizing by dividing by b, we have reduced the problem to the case when

b = 1 and a � 0 (coordinate-wise). (c) Now suppose that ai > 1 = b for some i; the LP is

unbounded by making zi arbitrarily small and v arbitrarily large. This analysis leaves the case of

b = 1 and a ∈ [0, 1]n.

Fourth, we reduce LP (5.9) with parameters a ∈ [0, 1]n and b = 1 to its dual shown below,

with variables pS for S ⊆ [n].

maximize
∑

S⊆[n] pSf(S)

subject to
∑

S:i∈S pS ≤ ai, for i ∈ [n].∑
S⊆[n] pS = 1

pS ≥ 0, for S ⊆ [n].

(5.10)

We note that LP (5.10) is not the standard dual of LP (5.9). In particular, the first set of constraints

are inequality rather than equality constraints. It is easy to see that LP (5.10) is equivalent to the

standard dual when f is monotone non-decreasing, and that an optimal solution to one of the two

duals can be easily converted to an optimal solution of the other.

The fifth and final step of our reduction reduces LP (5.10) to a private signaling problem in

I(F). There are n receivers and two states of nature θ0, θ1 with λ(θ0) = λ(θ1) = 1/2. Define
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ui(θ1) = 1 and ui(θ0) = − 1
ai

(−∞ if ai = 0) for all i. The sender’s utility function satisfies

fθ1 = fθ0 = f . Let ϕ∗ be an optimal signaling scheme, in particular an optimal solution to the

instantiation of LP (5.7) for our instance. Note that all receivers prefer action 1 in state θ1; there-

fore, ϕ∗ can be weakly improved, without violating the persuasiveness constraints, by modifying

it to always recommend action 1 to all receivers when in state θ1. After this modification, ϕ∗ is

an optimal solution to the following LP, which optimizes over all signaling schemes satisfying

ϕ(θ1, [n]) = 1.

maximize 1
2f([n]) + 1

2

∑
S⊆[n] ϕ(θ0, S)f(S)

subject to
∑

S:i∈S ϕ(θ0, S) = xθ0,i, for i ∈ [n].

xθ0,i ≤ ai, for i = 1, . . . , n.∑
S⊆[n] ϕ(θ0, S) = 1

ϕ(θ0, S) ≥ 0, for θ ∈ Θ;S ⊆ [n].

(5.11)

It is now easy to see that setting pS = ϕ∗(θ0, S) yields an optimal solution to LP (5.10)

As an immediate corollary of Theorem 5.3.3, the optimal private signaling scheme can be

computed efficiently when the sender’s objective function is supermodular or anonymous. Recall

that a set function f : 2[n] → R is anonymous if there exists a function g : Z → R such that

f(S) = g(|S|).

Corollary 1. There is a polynomial-time algorithm for computing the optimal private signaling

scheme when the sender objective functions are either supermodular or anonymous.

Proof. Since a supermodular function plus an additive function is still supermodular, and the

problem of unconstrained supermodular maximization can be solved in polynomial time , The-

orem 5.3.3 implies that the optimal private signaling scheme can also be computed in polyno-

mial time. As for anonymous objectives, there is a simple algorithm for maximizing an anony-

mous set function plus an additive function. In particular, consider the problem of maximizing

f(S) +
∑

i∈S wi where f(S) = g(|S|). Observe that fixing |S| = k, the optimal set Sk corre-

sponds to the k highest-weight elements in w. Enumerating all k and choosing the best Sk yields

the optimal set.

Finally, we make two remarks on Theorem 5.3.3, particularly on the reduction from opti-

mal private signaling to set function maximization. First, the assumption of monotonicity is

not necessary to the reduction from signaling to optimization. In other words, even without the

monotonicity assumption for the sender’s objective function, one can still efficiently compute the

optimal private signaling scheme for instances in I(F) given access to an oracle for maximizing

f(S) +
∑

i∈S wi for any f ∈ F and weight vector w. This can be verified by adding the persua-

siveness constraints for action 0 back to LP (5.7) and examining the corresponding dual, which
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has similar structure to LP (5.8). We omit the details here. Consequently, Corollary 1 applies to

non-monotone supermodular or anonymous functions as well.

Second, our reduction assumes that the prior distribution λ over the state of nature is explic-

itly given. This can be generalized to the sample oracle model. In particular, when our only

access to λ is through random sampling, we can implement an ε-optimal and ε-persuasive private

signaling scheme in poly(n, 1
ε ) time using the idea in Section 5.2.4. (assuming ui(θ) ∈ [−1, 1]).

The algorithm is as follows: given any input state θ, we first take poly(n, 1
ε ) samples from λ,

and then solve LP (5.7) on the empirical distribution of the samples plus θ, with relaxed (by ε)

persuasiveness constraints. Finally, we signal for θ as the solution to the LP suggests. The anal-

ysis of this algorithm is very similar to that in Section 5.2.4, and is omitted here. Moreover, the

bi-criteria loss is inevitable in this oracle model due to information theoretic reasons.

5.3.4 Private Persuasion with Submodular Objectives

Theorem 5.3.3 relates the exact computation of the optimal private signaling scheme to exact

maximization of (a variant of) the set function f(S). One natural question is what if exactly

maximizing the set function f(S) is intractable and we can only obtain an approximate solution

efficiently. An important case of such a scenario is when f(S) is submodular.

To answer this question, we consider optimal private signaling for submodular sender objec-

tives in this section, and show that there is a polynomial time (1 − 1
e )-approximation scheme,

modulo an additive loss of ε. This is almost the best possible: (Babichenko & Barman, 2017)

show that even in the special case of two states of nature, it is NP-hard to approximate the opti-

mal private signaling scheme within a factor better than (1− 1
e ) for monotone submodular sender

objectives.

Theorem 5.3.4. Consider private signaling with monotone submodular sender objectives. Let

OPT denote the optimal sender utility. For any ε > 0, a private signaling scheme achieving

expected sender utility at least (1− 1
e )OPT − ε can be implemented in poly(n, |Θ|, 1

ε ) time.

The main technical challenge in proving Theorem 5.3.4 is that a private signaling scheme

may have exponentially large support, as apparent from linear program (5.7). To overcome this

difficulty, we prove a structural characterization of (approximately) optimal persuasive private

schemes, i.e., solutions to LP (5.7). Roughly speaking, we show that LP (5.7) always has an ap-

proximately optimal solution with polynomial-sized support and nicely structured distributions.

This greatly narrows down the solution space we need to search over. Recall that for any θ, ϕ(θ)

is a random variable supported on 2[n]. We say ϕ(θ) is K-uniform if it follows a uniform dis-

tribution on a multiset of size K. The following lemma exhibits a structural property regarding
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(approximately) optimal solutions to LP (5.7). Notably, this property only depends on mono-

tonicity of the sender’s objective functions and does not depend on submodularity. Its proof is

postponed to the end of this section.

Lemma 7. Let fθ be monotone for each θ. For any ε > 0, there exists an ε-optimal persuasive

private signaling scheme ϕ such that ϕ(θ) is K-uniform for every θ, where K = 108n log(2n|Θ|)
ε3

.

By Lemma 7, we can, without much loss, restrict our design of ϕ(θ) to the special class of

K-uniform distributions. Note that a K-uniform distribution ϕ(θ) can be described by variables

xjθ,i ∈ {0, 1} for i ∈ [n], j ∈ [K], where xjθ,i denotes the recommended action to receiver i in the

j’th profile in the support of ϕ(θ). Relaxing our variables to lie in [0, 1], this leads to optimization

problem (5.12), where Fθ(x) =
∑

S⊆[n] fθ(S)
∏
i∈S xi

∏
i 6∈S(1−xi) is the multi-linear extension

of fθ.

maximize
∑

θ∈Θ
λ(θ)
K

∑K
j=1 Fθ(x

j
θ)

subject to
∑

θ∈Θ
λ(θ)
K

∑K
j=1 x

j
θ,iui(θ) ≥ 0, for i = 1, . . . , n.

0 ≤ xjθ,i ≤ 1, for i = 1, . . . , n; θ ∈ Θ.

(5.12)

At a high level, our algorithm first approximately solves Program (5.12) and then signals

according to its solution. Details are in Algorithm 3, which we instantiate with ε > 0 and

K = 108n log(2n|Θ|)
ε3

. Since Fθ(x) = ES∼pIx f(S) where pIx is the independent distribution over

2[n] with marginal probability x, the expected sender utility induced by the signaling scheme in

Algorithm 3 is precisely the objective value of Program (5.12) at the obtained solution. Theorem

5.3.4 then follows from two claims: 1. The optimal objective value of Program (5.12) is ε-

close to the optimal sender utility (Claim 1); 2. The continuous greedy process (Calinescu et al.,

2011) can be applied to Program (5.12) to efficiently compute a (1− 1/e)-approximate solution,

modulo a small additive loss (Claim 2). We remark that Theorem 5.3.4 can be generalized to

the sample oracle model, but with an additional ε-loss in persuasiveness constraints (assuming

ui(θ) ∈ [−1, 1]), using the idea from Section 5.2.4.

Claim 1. When K = 108n log(2n|Θ|)
ε3

, the optimal objective value of Program (5.12) is at least

OPT − ε, where OPT is the optimal sender utility in private signaling.

Proof. By Lemma 7, there exists a private signaling scheme ϕ such that: (i) ϕ achieves sender

utility at least OPT − ε; (ii) for each θ, there exists K sets S1
θ , . . . , S

K
θ ⊆ [n] such that ϕθ is

a uniform distribution over {S1
θ , . . . , S

K
θ }. Utilizing ϕ, we can construct a feasible solution x

to Program (5.12) with objective value at least OPT − ε. In particular, let xjθ ∈ {0, 1}n be the

indicator vector of the set Sjθ , formally defined as follows: xjθ,i = 1 if and only if i ∈ Sjθ . By
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Algorithm 3: Private Signaling Scheme for Submodular Sender Objectives

Parameter: ε > 0
Input: Prior distribution λ supported on Θ
Input: ui(θ)’s and value oracle access to the sender utility fθ(S)
Input: State of nature θ
Output: A set S ⊆ [n] indicating the set of receivers who will be recommended action 1.

1: Approximately solve Program (5.12). Let {x̃jθ,i}θ∈Θ,i∈[n],j∈[K] be the returned solution.
2: Choose j from [K] uniformly at random; For each receiver i, add i to S independently with

probability x̃jθ,i.
3: Return S.

referring to the feasibility of ϕ for LP (5.7), it is easy to check that xjθ,i’s are feasible for Program

(5.12). Moreover, since Fθ(x
j
θ) = fθ(S

j
θ), the objective value of Program (5.12) at the solution

x equals the objective value of Program (5.7) at the solution ϕ, which is at least OPT − ε.

Therefore, the optimal objective value of Program (5.12) is at least OPT − ε, as desired.

Claim 2. There is an algorithm that runs in poly(n, |Θ|,K, 1
ε ) time and computes a (1 − 1/e)-

approximate solution, modulo an additive loss of ε/e, to Program (5.12).

Proof. The objective function of Program (5.12) is a linear combination, with non-negative coef-

ficients, of multilinear extensions of monotone submodular functions, and thus is smooth, mono-

tone and submodular. Moreover, the function value can be evaluated within error ε by poly(n, 1
ε )

random samples, and thus in poly(n, 1
ε ) time. To apply Theorem 5.3.1, we only need to prove

that the feasible region is a down-monotone polytope. Observe that there always exists an optimal

solution to Program (5.12) such that xθ,i = 1 for any θ, i such that ui(θ) ≥ 0. Therefore, w.l.o.g.,

we can pre-set these variables to be 1 and view the program as an optimization problem over

xθ,i’s for all θ, i such that ui(θ) < 0. It is easy to verify that these xθ,i’s form a down-monotone

polytope determined by polynomially many constraints, as desired.

Proof of Lemma 7

Our proof is based on the probabilistic method. Recall that the optimal private signaling scheme

can be computed by solving the exponentially large LP (5.7). Roughly speaking, given any

optimal private scheme ϕ∗, we will take polynomially many samples from ϕ∗(θ) for each θ,

and prove that with strictly positive probability the corresponding empirical distributions form a

solution to LP (5.7) that is close to optimality. However, the sampling approach usually suffers

from ε-loss in both the objective and persuasiveness constraints. It turns out that the ε-loss in

persuasiveness constraints can be avoided in our setting with carefully designed pre-processing

steps.
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At a high level, to get rid of the ε-loss in persuasiveness constraints, there are two main

technical barriers. The first is to handle the estimation error in the receiver’s utilities, which is

inevitable due to sampling. We address this by adjusting ϕ∗ to strengthen the persuasiveness

constraints so that a small estimation error still preserves the original persuasiveness constraints.

The second barrier arises when some x∗θ,i’s are smaller than inverse polynomial of the precision

ε. Then poly(1
ε ) samples cannot guarantee a good multiplicative estimate of x∗θ,i. We deal with

this issue by making the “honest” recommendation, i.e., action 0, in these cases, and show that

such a modification does not cause much loss in our objective.

We first introduce some convenient notations. For any receiver i, let Θ+
i = {θ : ui(θ) ≥ 0}

be the set of states in which receiver i (weakly) prefers action 1; similarly, Θ−i = {θ : ui(θ) < 0}
is the set of states in which receiver i strictly prefers action 0. For any state of nature θ, let I+

θ =

{i : ui(θ) ≥ 0} be the set of receivers who (weakly) prefer action 1 in state θ. It is convenient to

think of {Θ+
i }i∈[n] and {I+

θ }θ∈Θ as two different partitions of the set {(θ, i) : ui(θ) ≥ 0}.
Observe that by monotonicity there always exists an optimal signaling scheme ϕ∗ such that

x∗θ,i = 1 for every θ ∈ Θ+
i . Let ϕ∗ be such an optimal signaling scheme and OPT denote

the optimal sender utility. We now adjust the scheme ϕ∗ without degrading the objective value

by much but such that the scheme is more suitable for applying concentration bounds for our

probabilistic argument.

Adjustment 1: Always Recommend Action 0 When x∗θ,i <
ε

3n

Note that x∗θ,i <
ε

3n only when θ ∈ Θ−i , i.e., action 0 is the best action for receiver i condi-

tioned on θ. We first adjust ϕ∗ to obtain a new scheme ϕ̃, as follows: ϕ̃ is the same as ϕ∗ except

that for every θ, i such that x∗θ,i <
ε

3n , ϕ̃ always recommends action 0 to receiver i given the state

of nature θ. As a result, x̃θ,i equals x∗θ,i whenever x∗θ,i ≥ ε
3n and equals 0 otherwise. Note that

the signaling scheme still satisfies the persuasiveness constraints.

Naturally, each adjustment above, corresponding to θ, i satisfying x∗θ,i <
ε

3n , could decrease

the objective value since the marginal probability of recommending action 1 decreases. Never-

theless, this loss, denoted as L(θ, i), can be properly bounded as follows:

L(θ, i) = λ(θ) ·
[ ∑
S:i∈S

ϕ∗(θ, S)fθ(S)−
∑
S:i∈S

ϕ∗(θ, S)fθ(S \ {i})
]

≤ λ(θ) ·
[ ∑
S:i∈S

ϕ∗(θ, S)

]
= λ(θ)x∗θ,i ≤

λ(θ)ε

3n
.
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As a result, the aggregated loss of all the adjustments made in this step can be upper bounded

by
∑

θ∈Θ

∑n
i=1

λ(θ)ε
3n = ε

3 . That is, the objective value of ϕ̃ is at least OPT − ε
3 .

Adjustment 2: Strengthen the Persuasiveness Constraints by Scaling Down xθ,i’s

We now strengthen the persuasiveness constraints by further adjusting the ϕ̃ obtained above

so that a small estimation error due to sampling will still maintain the original persuasive-

ness constraints. For any θ, we define ϕ′(θ, S) = 3
3+ε ϕ̃(θ, S) for all S 6= I+

θ , and define

ϕ′(θ, I+
θ ) = 1 − ∑S 6=I+θ

ϕ′(θ, S). Obviously, ϕ′θ is still a distribution over 2[n]. We claim

that x′θ,i = ES∼ϕ′θ I(i ∈ S) = 1 whenever x̃θ,i = 1, i.e., θ ∈ Θ+
i . That is, given state θ, any

receiver i ∈ I+
θ will still aways be recommended action 1. This is because, to construct ϕ′θ, we

moved some probability mass from all other sets S to the set I+
θ ; therefore the marginal proba-

bility of recommending action 1 to any receiver i ∈ I+
θ will not decrease. However, this marginal

probability is originally 1 in the solution of ϕ̃. Therefore, x′θ,i still equals 1 for any i ∈ I+
θ , or

equivalently, for any θ ∈ Θ+
i . Similarly, we also have x′θ,i = 0 whenever x̃θ,i = 0.

Let V al(ϕ) denote the objective value of a scheme ϕ. We claim that V al(ϕ′) ≥ OPT − 2ε
3

and ϕ′ satisfies x′θ,i = 3
3+ε x̃θ,i for every θ ∈ Θ−i . For any i ∈ [n], θ ∈ Θ−i (which means i 6∈ I+

θ ),

we have

x′θ,i =
∑
S:i∈S

ϕ′(θ, S) =
3

3 + ε

∑
S:i∈S

ϕ̃(θ, S) =
3

3 + ε
x̃θ,i,

since the summation excludes the term ϕ′(θ, I+
θ ). We now prove the guarantee of the objective

value. Observe that ϕ′(θ, I+
θ ) ≥ 3

3+ε ϕ̃(θ, I+
θ ) also holds in our construction. Therefore, we have

V al(ϕ′) =
∑
θ∈Θ

λ(θ)
∑
S⊆[n]

ϕ′(θ, S)fθ(S)

≥ 3

3 + ε

∑
θ∈Θ

λ(θ)
∑
S⊆[n]

ϕ̃(θ, S)fθ(S)

=
3

3 + ε
· V al(ϕ̃)

≥ OPT − 2ε

3
,

where we used the upper bound V al(ϕ̃) ≤ 1.

Existence of An ε-Optimal Solution of Small Support.

The above two steps of adjustment result in a feasible 2ε
3 -optimal solution ϕ′ to LP (5.7) that

satisfies the following properties: (i) x′θ,i = x∗θ,i = 1 whenever ui(θ) ≥ 0; (ii) x′θ,i = 3
3+ε x̃θ,i =

3
3+εx

∗
θ,i ≥ ε

4n when x∗θ,i ≥ ε
3n and θ ∈ Θ−i ; (iii) x′θ,i = 0 when x∗θ,i <

ε
3n and θ ∈ Θ−i . Utilizing

such a ϕ′ we show that there exists an ε-optimal solution ϕ to LP (5.7) such that the distribution

ϕθ is a K-uniform distribution for every θ, where K = 108n log(2n|Θ|)
ε3

.
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Our proof is based on the probabilistic method. For each θ, independently take K =
108n log(2n|Θ|)

ε3
samples from random variable ϕ′(θ), and let ϕθ denote the corresponding empiri-

cal distribution. Obviously, ϕθ is a K-uniform distribution. We claim that with strictly positive

probability over the randomness of the samples, ϕ is feasible to LP (5.7) and achieves utility at

least V al(ϕ′)− ε
3 ≥ OPT − ε.

We first examine the objective value. Note that the objective value V al(ϕ′) can be viewed as

the expectation of the random variable
∑

θ∈Θ λ(θ)fθ(Sθ) ∈ [0, 1], where Sθ follows the distribu-

tion of ϕ′(θ). Our sampling procedure generates K samples for the random variable {Sθ}θ∈Θ;

therefore by the Hoeffding bound, with probability at least 1−exp(−2Kε2/9) > 1−1/(2n|Θ|),

the empirical mean is at least V al(ϕ′)− ε/3.

Now we only need to show that all the persuasiveness constraints are preserved with high

probability. First, if x′θ,i = 0, then xθ,i induced by ϕ also equals 0. This is because x′θ,i =

ES∼ϕ′(θ) I(i ∈ S) = 0 implies that i is not contained in any S from the support of ϕ′(θ), and

therefore, also not contained in any sample. Similarly, x′θ,i = 1 implies xθ,i = 1. To show

that all the persuasiveness constraints hold, we only need to argue that xθ,i ≤ x∗θ,i for every

θ ∈ Θ−i satisfying x∗θ,i ≥ ε
3n . This holds with high probability by tail bounds. In particular,

x′θ,i = ES∼ϕ′(θ) I(i ∈ S) and we take K samples from ϕ′(θ). By the Chernoff bound, with

probability at least

1− exp(−
Kε2x′θ,i

27
) ≥ 1− exp(− Kε

3

108n
) > 1− 1

2n|Θ| ,

the empirical mean xθ,i is at most (1 + ε/3)x′θ,i = x∗θ,i.

Note that there are at most n|Θ| choices of such θ, i. By the union bound, with probability

at least 1 − (n|Θ| + 1)/(2n|Θ|) > 0, ϕ satisfies all the persuasiveness constraints and thus is

feasible for LP (5.7), and achieves objective value at least V al(ϕ′) − ε
3 ≥ OPT − ε. So there

must exist a feasible ε-optimal solution ϕ to LP (5.7) such that ϕθ is K-uniform for every θ. This

concludes our proof of Lemma 7.

5.3.5 The Sharp Contrast Between Private and Public Persuasion

A public signaling scheme π can be viewed as a special type of private signaling schemes in which

each receiver must receive the same signal, i.e., only a public signal is sent. Overloading the

notation of Section 5.3.3, we use Σ to denote the set of public signals and σ ∈ Σ to denote a public

signal. A public signaling scheme π is fully specified by {π(θ, σ)}θ,σ, where π(θ, σ) denotes the

probability of sending signal σ in state θ. Upon receiving a signal σ, each receiver performs the

same Bayesian update and infers a posterior belief over the state of nature, as follows: the realized

state is θ with probability λ(θ)π(θ, σ)/Pr(σ), where Pr(σ) =
∑

θ∈Θ π(θ, σ). This induces a
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subgame for each signal σ, one in which all receivers share the same belief regarding the state of

nature.

Whereas in more general settings than ours, receivers may play a mixed Nash equilibrium in

each subgame, our restriction to a setting with no externalities removes this complication. Given

a posterior distribution on states of nature (say, one induced by a signal σ), our receivers face

disjoint single-agent decision problems, each of which admits an optimal pure strategy. We as-

sume that receivers break ties in favor of the sender (specifically, in favor of action 1), which

results in a unique pure response for each receiver. Therefore, our solution concept here results

in a unique action profile for each posterior distribution, and hence for each signal. A simple

revelation-principle style argument then allows us to conclude that there is an optimal public sig-

naling scheme which is direct, meaning that the public signals are action profiles, and persuasive,

meaning that in the subgame induced by the signal σ = (σ1, . . . , σn) each receiver i’s optimal

decision problem (which breaks ties in favor of action 1) solves to action σi.

Restricting attention to direct and persuasive public signaling schemes, each signal can also

be viewed as a subset S ⊆ [n] of receivers taking action 1. The sender’s optimization problem

can then be written as the following exponentially large linear program.

maximize
∑

θ∈Θ λ(θ)
∑

S⊆[n] π(θ, S)fθ(S)

subject to
∑

θ∈Θ λ(θ)π(θ, S) · ui(θ) ≥ 0, for S ⊆ [n] with i ∈ S.∑
S⊆[n] π(θ, S) = 1, for θ ∈ Θ.

π(θ, S) ≥ 0, for θ ∈ Θ;S ⊆ [n].

(5.13)

The first set of constraints are persuasiveness constraints corresponding to action 1. Like in

LP (5.7), the persuasiveness constraints for action 0 are intentionally omitted from this LP. This

omission is without loss when fθ is non-decreasing for each state θ: if signal S with i 6∈ S is such

that receiver i prefers action 1 in the resulting subgame, then we can replace it with the signal

S ∪ {i} without degrading the sender’s utility. We remark that LP (5.13) and LP (5.7) only differ

in their persuasiveness constraints.

We now consider the design of optimal public signaling schemes, and show a stark contrast

with private signaling, both in terms of their efficacy at optimizing the sender’s utility, and in

terms of their computational complexity.

We start with an example illustrating how the restriction to public signaling can drastically

reduce the sender’s expected utility. The example is notably simple: two states of nature, and a

binary sender utility function which is independent of the state of nature. We show a multiplica-

tive gap of Ω(n), and an additive gap of 1 − 1
Ω(n) , between the expected sender utility from the

optimal private and public signaling schemes, where n is the number of receivers.
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Example 2 (Inefficacy of Public Signaling Schemes). Consider an instance with n identical

receivers and two states of nature Θ = {H,L}. Each receiver has the same utility function,

defined as follows: ui(H) = 1 and ui(L) = −1, for all i. The state of nature H occurs with

probability 1
n+1 , and L occurs with probability n

n+1 . The sender’s utility function is fθ(S) =

f(S) = min(|S|, 1). In other words, the sender gets utility 1 precisely when at least one receiver

takes action 1.

The persuasiveness constraints imply that each receiver can take action 1 with probability no

more than 2
n+1 . This is achievable by always recommending action 1 to the receiver in state H,

and recommending action 0 with probability 1
n in state L. The sender’s expected utility depends

on how these recommendations are correlated.

The optimal private scheme anti-correlates the receivers’ recommendations in order to guar-

antee that at least one receiver takes action 1 always, which achieves an expected sender utility

of 1, the maximum possible. Specifically, in state H the scheme always recommends action 1 to

every receiver, and in state L the scheme chooses one receiver uniformly at random and recom-

mends action 1 to that receiver, and action 0 to the other receivers.

We argue that no public scheme can achieve sender utility more than 2
n+1 . Indeed, since

receivers are identical, our solution concept implies that they choose the same action for every

realization of a public signal. Therefore, the best that a public scheme can do is to recommend

action 1 to all receivers simultaneously with probability 2
n+1 in aggregate, and recommend action

0 with the remaining probability, yielding an expected sender utility of 2
n+1 . This is achievable:

in state H the scheme always recommends action 1 to every receiver, and in state L the scheme

recommends action 1 to all receivers with probability 1
n , and action 0 to all receivers with prob-

ability 1− 1
n .

Our next result illustrates the computational barrier to obtaining the optimal public signaling

scheme, even for additive sender utility functions. Our proof is inspired by a reduction in (Cheng

et al., 2015) for proving the hardness of computing the best posterior distribution over Θ, a

problem termed mixture selection in (Cheng et al., 2015), in a voting setting. That reduction is

from the maximum independent set problem. Since a public signaling scheme is a combination

of posterior distributions, one for each signal, we require a more involved reduction from a graph-

coloring problem to prove our result.

Theorem 5.3.5. Consider public signaling in our model, with sender utility function fθ(S) =

f(S) = |S|
n . It is NP-hard to approximate the optimal sender utility to within any constant

multiplicative factor. Moreover, there is no additive PTAS for evaluating the optimal sender

utility, unless P = NP.
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Proof. We prove the theorem by reducing from the following NP-hard problem. (Khot & Saket,

2012) proves that for any positive integer k, any integer q such that q ≥ 2k + 1, and an arbitrarily

small constant ε > 0, given an undirected graph G, it is NP-hard to distinguish between the

following two cases:

• Case 1: There is a q-colorable induced subgraph of G containing a (1 − ε) fraction of all

vertices, where each color class contains a 1−ε
q fraction of all vertices.

• Case 2: Every independent set in G contains less than a 1
qk+1 fraction of all vertices.

Given a graph G with vertices [n] = {1, . . . , n} and edges E, we will construct a public persua-

sion instance so that the desired algorithm for approximating the optimal sender utility can be

used to distinguish these two cases. Our construction is similar to that in (Cheng et al., 2015).

We let there be n receivers, and let Θ = [n]. In other words, both receivers and states of nature

correspond to vertices of the graph. The prior distribution over states of nature is uniform — i.e.,

the realized state of nature is a uniformly-drawn vertex in the graph. We define the receiver utili-

ties as follows: ui(θ) = 1
2 if i = θ; ui(θ) = −1 if (i, θ) ∈ E; and ui(θ) = − 1

4n otherwise. We

define the sender’s utility function, with range [0, 1], to be fθ(S) = f(S) = |S|
n . The following

claim is proven in (Cheng et al., 2015).

Claim 3. (Cheng et al., 2015) For any distribution x ∈ ∆Θ, the set S = {i ∈ [n] :∑
θ∈Θ xθui(θ) ≥ 0} is an independent set of G.

Claim 3 implies that upon receiving any public signal with any posterior distribution x over

Θ, the players who take action 1 always form an independent set of G. Therefore, if the graph G

is from Case 2, the sender’s expected utility in any public signaling scheme is at most 1
qk+1 .

Now supposing that G is from Case 1, we fix the corresponding coloring of (1− ε)n vertices

with colors k = 1, . . . , q, and we use this coloring to construct a public scheme achieving ex-

pected sender utility at least (1−ε)2
q . The scheme uses q+1 signals, and is as follows: if θ has color

k then deterministically send the signal k, and if θ is uncolored then deterministically send the sig-

nal 0. Given signal k > 0, the posterior distribution on states of nature is the uniform distribution

over the vertices with color k — an independent set Sk of size 1−ε
q n. It is easy to verify that re-

ceivers i ∈ Sk prefer action 1 to action 0, since
∑

θ∈Sk
1
|Sk|ui(θ) = 1

|Sk|(
1
2−

|Sk|−1
4n ) > 1

4|Sk| ≥ 0.

Therefore, the sender’s utility is f(Sk) = |Sk|
n = 1−ε

q whenever k > 0. Since signal 0 has proba-

bility ε, we conclude that the sender’s expected utility is at least (1−ε)2
q , as needed.

Since distinguishing Case 1 and Case 2 is NP-hard for arbitrarily large constants k and q, we

conclude that it is NP-hard to approximate the optimal sender utility to within any constant factor.

Moreover, by setting k = 1, q = 3, we conclude that the sender’s utility cannot be approximated

additively to within (1− ε)2/3− 1/32 > 1/9, and thus there is no additive PTAS, unless P=NP.
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Chapter 6

Persuasion in Security Games

Chapter 5 studies the algorithmic foundations for basic models of persuasion. In this chapter,

we examine how these basic economic models can be applied to real-world security problems,

particularly, the motivating domains described in Chapter 4. We will also illustrate how the

specific domain features further complicate the problem and how we overcome these challenges

by developing new algorithmic techniques.

6.1 Exploiting Informational Advantage to Deter Fare Evasion

In this section, we study how to improve a defender’s utility by strategically revealing noisy

information about each target’s protection status to the attacker. We develop a two-stage security

game model which abstracts the example described in Section 4.1. We then study when the

defender can strictly benefit from such strategic signaling and how the defender can play both

stages in a globally optimal fashion. Finally, we experimentally show that the two-state security

game model allows the defender to achieve better utility than SSE in simulated random games.

6.1.1 A Two-Stage Security Game Model

Consider a security game where the defender allocates k security resources, possibly under

scheduling constraints, to protect n targets. Players’ strategies and the payoff structure are as

described in Section 2.2.1. The game has two stages. The first stage is similar to regular security

games, during which the defender commits to a mixed strategy. We now model the second stage

— the signaling procedure. This stage can be viewed as a Bayesian persuasion game (Kamenica

& Gentzkow, 2011), during which the defender persuades a rational attacker in order to yield a

desired outcome. So we call it the persuasion phase. Specifically, for any t ∈ [n] covered with

probability xt, let Z = {Zc, Zu} be the set of events describing whether t is covered (Zc) or not
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(Zu) and Σ be the set of all possible signals. A signaling scheme, with respect to target t, is a

randomized map

fc : Z
rnd−→ Σ.

The set of probabilities

{p(z, σ) : z ∈ Z, σ ∈ Σ}

completely describes the map f , in which p(z, σ) is the probability that event z ∈ Z happens and

signal σ ∈ Σ is sent. Therefore,
∑

σ p(z, σ) = P(z), ∀z ∈ Z. Upon receiving a signal σ, the

attacker infers a posterior distribution P(Zc|σ) = p(Zc,σ)
p(Zc,σ)+p(Zu,σ) and P(Zu|σ) = p(Zu,σ)

p(Zc,σ)+p(Zu,σ) ,

and makes a decision among two actions: attack or not attack. For every target t, the defender

seeks a signaling scheme w.r.t. t to maximize her expected utility on t.

Mathematically, a signal induces a posterior distribution on Z. Thus a signaling scheme

can be viewed as a partition of the prior distribution (xt, 1 − xt) into |Σ| posteriors so that it

maximizes the defender’s utility on t. Like in Bayesian persuasion, we can w.l.o.g. focus on

“direct” signaling schemes, as formalized in the following lemma.

Lemma 8. (Kamenica & Gentzkow, 2011) There exists an optimal signaling scheme, w.r.t. any

target t, that uses at most two signals, each resulting in an attacker best response of attacking

and not attacking, respectively.

As a result, a signaling scheme w.r.t. t can be characterized by

p(Zc, σc) = p p(Zc, σu) = xt − p;
p(Zu, σc) = q p(Zu, σu) = 1− xt − q,

in which p ∈ [0, xt], q ∈ [0, 1 − xt] are variables. So the attacker infers the following expected

utility: E(utility|σc) = 1
p+q (pUac + qUau ) and E(utility|σu) = 1

1−p−q ((x − p)Uac + (1 − x −
q)Uau ), where, for ease of notation, we drop the “t” in xt and Ud/ac/u (t) when it is clear from

context. W.l.o.g, let σc be a signal recommending the attacker to not attack, i.e., constraining

E(utility|σc) ≤ 0, in which case both players get 0. Then the following LP parametrized by

coverage probability x, denoted as peLPt(x) (Persuasion Linear Program), computes the optimal

signaling scheme w.r.t. t:

max (x− p)Udc + (1− x− q)Udu (6.1)

s.t. pUac + qUau ≤ 0

(x− p)Uac + (1− x− q)Uau ≥ 0

0 ≤ p ≤ x
0 ≤ q ≤ 1− x.
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This yields the attacker utility P(σu)E(utility|σu) + P(σc)× 0 = (x− p)Uac + (1− x− q)Uau
and defender utility (x− p)Udc + (1− x− q)Udu , w.r.t. t.

We propose the following two-stage Stackelberg security game model:

• Phase 1 (Scheduling Phase): the defender (randomly) schedules the resources by playing a

mixed strategy x ∈ [0, 1]T , and samples one pure strategy each round.

• Phase 2 (Persuasion Phase): ∀t ∈ [n], the defender commits to an optimal signaling scheme

w.r.t. t computed by peLPt(xt) before the game starts, and then in each round, sends a

signal on each target t according to the commitment.

During the play, the attacker first observes x by surveillance. Then he chooses a target t0 to

approach or board at some round, where the attacker receives a signal and decides whether to

attack t0 or not. Note that the model makes the following three assumptions. First, the defender

is able to commit to a signaling scheme, and crucially will also follow the commitment. She

is incentivized to do so because otherwise the attacker will not trust the signaling scheme, and

thus may ignore signals. Then the game degenerates to a standard Stackelberg game. Second,

the attacker breaks ties in favor of the defender. Similar to the definition of SSE, this is without

loss of generality since if there is a tie among different choices, we can always make a tiny shift

of the probability mass to make the choice preferred by the defender ε better than other choices.

Third, we assume that the attacker cannot distinguish whether a target is protected or not when

he approaches it.

With the persuasion phase, both of the defender and the attacker’s payoff structures might

be changed. Specifically, the defender’s utility on any target t is the optimal objective value of

the linear program peLPt(x), which is non-linear in x. Can the defender always strictly benefit

by adding the persuasion phase? How can we compute the optimal mixed strategy in this new

model? We answer these questions in the next two sections.

6.1.2 When Does Signaling Help?

In this section, fixing a marginal coverage x on a target t, we compare the defender’s and at-

tacker’s utilities w.r.t. t in the following two different models:

• Model 1: the regular security game model, without persuasion (but the attacker can choose

to not attack);

• Model 2: the two-stage security game model, in which the signaling scheme w.r.t. t is

optimal.
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The following notation will be used frequently in our comparisons and proofs (the index t is

omitted when it is clear):

DefU1/2(t) : defender’s expected utility in Model 1/2;

AttU1/2(t) : attacker’s expected utility in Model 1/2;

Udef/att (t) : = xUd/ac + (1− x)Ud/au , expected utility of

defense/attack, if attacker attacks t.

Note that AttU1 = max(Uatt, 0) may not equal Uatt since the attacker chooses to not attack if

Uatt < 0. Similarly, DefU1 may not equal to Udef.

Defender’s Utility

First, we observe that the defender will never be worse off in Model 2 than Model 1 w.r.t. t.

Proposition 1. For any t ∈ [n], DefU2 ≥ DefU1.

Proof. If Uatt ≥ 0, then p, q = 0 is a feasible solution to peLPt(x) in formula (6.1), which

achieves a defender utility xUdc + (1− x)Udu = DefU1. So DefU2 ≥ DefU1.

If Uatt < 0, the attacker will choose to not attack in Model 1, so DefU1 = 0. In this case,

p = x, q = 1 − x is a feasible solution to peLPt(x), which achieves a defender utility 0. So

DefU2 ≥ 0 = DefU1.

However, the question is whether the defender will always strictly benefit w.r.t. t from the

persuasion phase. The following theorem gives a succinct characterization.

Theorem 6.1.1. For any t ∈ [n] with marginal coverage x ∈ [0, 1], DefU2 > DefU1, if and only

if:

Uatt(Udc U
a
u − Uac Udu) < 0. (6.2)

Proof. The inequality Condition (6.2) corresponds to the following four cases:

1. Uatt > 0, Udu ≥ 0, Udc U
a
u − Uac Udu < 0;

2. Uatt > 0, Udu < 0, Udc U
a
u − Uac Udu < 0;

3. Uatt < 0, Udu ≥ 0, Udc U
a
u − Uac Udu > 0;

4. Uatt < 0, Udu < 0, Udc U
a
u − Uac Udu > 0.
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Figure 6.1: Feasible regions (gray areas) and an objective function gaining strictly better defender
utility than SSE for the case Uatt > 0 (Left) and Uatt < 0 (Right).

Case 1 obviously does not happen, since Udc U
a
u − Uac Udu > 0 when Udc > Udu ≥ 0 and Uau >

0 > Uac . Interestingly, cases 2–4 correspond exactly to all the three possible conditions that

make DefU2 > DefU1. We now give a geometric proof. Instead of peLPt(x), we consider the

following equivalent LP:

min pUdc + qUdu

s.t. pUac + qUau ≤ 0

pUac + qUau ≤ Uatt

0 ≤ p ≤ x
0 ≤ q ≤ 1− x,

so that DefU2 = Udef − Opt. Figure 6.1 plots the feasible region for the cases Uatt > 0 and

Uatt < 0, respectively. Note that the vertex (x, 0) can never be an optimal solution in either

case, since the feasible point (x − ε, ε) for tiny enough ε > 0 always achieves strictly smaller

objective value, assuming Udc > Udu . When Uatt > 0, the attacker chooses to attack, resulting in

DefU1 = Udef. So to strictly increase the defender’s utility is equivalent to making Opt < 0 for

the above LP. That is, we only need to guarantee that the optimal solution is not the origin (0, 0) (a

vertex of the feasible polytope). This happens when Udu < 0, and the slope of obj = pUdc +qUdu is

less than the slope of 0 = pUac +qUau , that is, Udc /U
d
u−Uac /Uau > 0. These conditions correspond

to the case 2. In this case, the defender gains extra utility −Opt = − z
Uau

(UauU
d
c − Uac Udu) > 0 by

adding the persuasion phase.

When Uatt < 0, the attacker chooses to not attack, resulting in DefU1 = 0. To increase

the defender’s utility, we have to guarantee Opt < Udef. Note that the vertex (x, 1 − x) yields

exactly an objective Udef, so we only need to guarantee the optimal solution is the vertex (Uatt

Uac
, 0).

This happens either when Udu ≥ 0 (corresponding to case 3 in which case Udc U
a
u − Uac Udu > 0

holds naturally) or when Udu < 0 and the slope of obj = pUdc + qUdu is greater than the slope
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of 0 = pUac + qUau . That is, −Udc /Udu > −Uac /Uau . This corresponds to case 4 above. In such

cases, the defender gains extra utility Udef − Opt = −1−x
Uac

(UauU
d
c − Uac Udu) > 0 by adding the

persuasion phase.

When Uatt = 0, the possible optimal vertices are (0, 0) and (x, 1 − x), which corresponds

to the defender utility 0 and Udef, respectively. So DefU2 = max{0,Udef} at optimality, which

equals to DefU1 assuming the attacker breaks ties in favor of the defender.

Interpreting the Condition in Theorem 6.1.1

Inequality (6.2) immediately yields that the defender does not benefit from persuasion in zero-

sum security games, since Udc U
a
u − Uac Udu = 0 for any target in zero-sum games. Intuitively, this

is because there are no posterior distributions, and thus signals, where the defender and attacker

can cooperate due to the strictly competitive nature of zero-sum games.

One case of the Inequality (6.2) is Uatt > 0 and Udc U
a
u −Uac Udu < 0. To interpret the latter, let

us start from a zero-sum game, which assumes −Udu = Uau > 0 and Udc = −Uac > 0. Then the

condition Udc U
a
u−Uac Udu = Udc U

a
u−(−Uac )(−Udu) < 0 could be achieved by making−Udu > Uau

or Udc < −Uac . That is, the defender values a target more than the attacker (−Udu > Uau ), e.g., the

damage to a flight causes more utility loss to the defender than the utility gained by the attacker,

or the defender values catching the attacker less than the cost to the attacker (Udc < −Uac ), e.g.,

the defender does not gain much benefit by placing a violator in jail but the violator loses a lot. In

such games, if the attacker has incentives to attack (i.e., Uatt > 0), the defender can “persuade”

him to not attack.

Another case of Condition 2 is Uatt < 0 and Udc U
a
u − Uac Udu > 0. In contrast to the situation

above, this is when the defender values a target less than the attacker (e.g., a fake target or honey

pot) but cares more about catching the attacker. Interestingly, the defender benefits when the

attacker does not want to attack (i.e., Uatt < 0), but the defender “entices” him to commit an

attack in order to catch him.

Attacker’s Utility

Now we compare the attacker’s utilities w.r.t. t in Model 1 and Model 2. Recall that Proposition 1

shows the defender will never be worse off. A natural question is: whether the attacker can be

strictly better off? The attacker will never be worse off under any signaling scheme. Intuitively,

this is because he could just ignore any signals. Mathematically, this holds simply by observing

the constraints in peLPt(x) Formulation 6.1:

1. when Uatt ≥ 0, AttU1 = Uatt = xUac +(1−x)Uau and AttU2 = (x−p)Uac +(1−x−q)Uau ,

so AttU1 − AttU2 = pUac + qUau ≤ 0;
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2. when Uatt < 0, AttU2 = (x− p)Uac + (1− x− q)Uau ≥ 0 = AttU1.

Note that the above conclusion holds without requiring the signaling scheme to be optimal, since

the derivation only uses feasibility constraints. Interestingly, if the defender does persuade opti-

mally, then equality holds.

Theorem 6.1.2. Given any target t ∈ [n] with marginal coverage x ∈ [0, 1], we have AttU1 =

AttU2 = max(0,Uatt) .

Proof. From peLPt(x) we know that AttU2 = Uatt − (pUac + qUau ). The proof is divided into

three cases. When Uatt > 0 (left panel in Figure 6.1), we have AttU1 = Uatt. As argued in

the proof of Theorem 6.1.1, the optimal solution can never be the vertex (x, 0). So the only

possible optimal vertices are (0, 0) and (x,−xUacUau ), both of which satisfy pUac + qUau = 0. So

AttU2 = Uatt − (pUac + qUau ) = Uatt = DefU1. When Uatt < 0 (right panel in Figure 6.1),we

have AttU1 = 0. The only possible optimal vertices are (x, 1 − x) or (−Uatt

Uac
, 0), both of which

satisfies pUac + qUau = Uatt. So AttU2 = 0 = AttU1. For the case Uatt = 0, a similar argument

holds. To sum up, we always have AttU1 = AttU2.

6.1.3 Computing the Optimal Defender Strategy

As we have seen so far, the defender can strictly benefit from persuasion in the two-stage security

game model. Here comes the natural question for computer scientists: how can we compute the

optimal mixed strategy? We answer the question in this section, starting with an example showing

that the defender’s optimal mixed strategy in the two-stage model is different from the SSE in its

standard security game model.

Example 3. Consider a security game with payoff matrix in Table 6.1.

Udc Udu Uac Uau

t1 1 -2 -1 1

t2 3 -5 -3 5

t3 1 -4 -2 4

t4 0 -0.5 -2 1

Table 6.1: Payoff table for the constructed game

Assume that there are two resources, and the feasible pure strategies are A1 = (t1, t2),

A2 = (t2, t3) and A3 = (t3, t4). Let p = (p1, p2, p3) denote a mixed strategy where pi is the

probability of taking actionAi. After simple calculations, one can compute the Strong Stackelberg

Equilibrium (SSE) as p = (3
8 ,

7
32 ,

13
32) with coverage probability vector x = (3

8 ,
19
32 ,

5
8 ,

13
32). The
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attacker’s utility is (1
4 ,

1
4 ,

1
4 ,− 7

32) and the defender’s utility is (−7
8 ,−1

4 ,−7
8 ,−19

64), so the attacker

will attack t2.

Now, if we add the persuasion phase as in Model 2, the optimal mixed strategy is p =

(3
8 ,

3
8 ,

1
4) with coverage probability vector x = (3

8 ,
3
4 ,

5
8 ,

1
4). The attacker’s utility is (1

4 ,−1, 1
4 ,

1
4)

and defender’s utility is (−1
2 , 1,−1

4 ,−1
8), so the attacker will attack t4, in favor of the defender’s

preference. So the defender’s utility changes from −1
4 in Model 1 to −1

8 in Model 2.

Therefore, we define the following solution concept.

Definition 3. The optimal defender mixed strategy and signaling scheme in the two-stage Stack-

elberg security game, together with the attacker’s best response, form an equilibrium called the

Strong Stackelberg Equilibrium with Persuasion (peSSE).

Proposition 1 yields that, by adding the persuasion phase, the defender’s utility will not be

worse off under any mixed strategy, and specifically under the SSE mixed strategy. This yields

the following performance guarantee of peSSE.

Proposition 2. Given any security game, the defender’s utility in peSSE is at least the defender’s

utility in SSE.

Now we consider the computation of peSSE. Note that the optimal signaling scheme can be

computed by LP 6.1 for any target t with given coverage probability xt. The main challenge is

how to compute the optimal mixed strategy in Phase 1. Assume that the defender’s (leader) mixed

strategy, represented as a marginal coverage vector over target set [n], lies in a polytope Pd. 1

With a bit of abuse of notation, let us use peLPt(xt) to denote also the optimal objective value of

the persuasion LP, as a function of xt. Let

Uatt(t, x) = xUac (t) + (1− x)Uau (t)

be the attacker’s expected utility, if he attacks, as a linear function of x.

Recall that, given a mixed strategy x ∈ [0, 1]T , the defender’s utility w.r.t. t is peLPt(xt) and

the attacker’s utility w.r.t. t is max(Uatt(t, xt), 0) (Theorem 6.1.2). Similar to the framework in

1Note that a polytope can always be represented by linear constraints (though possibly exponentially many). For
example, a simple case is the games in which pure strategies are arbitrary subsets A ⊆ [n] with cardinality |A| ≤ k,
Pd can be represented by 2T + 1 linear inequalities:

∑
i xi ≤ k and 0 ≤ x ≤ 1. However, Pd can be compli-

cated in security games, such that it is NP-hard to optimize a linear objective over Pd (Xu, 2016). Finding succinct
representations of Pd plays a key role in the computation of SSE.
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(Conitzer & Sandholm, 2006), we define the following optimization problem for every target t,

denoted as OPTt:

max peLPt(xt) (6.3)

s.t. max(Uatt(t, xt), 0) ≥ max(Uatt(t′, xt′), 0)∀t′

x ∈ Pd,

which computes a defender mixed strategy maximizing the defender’s utility on t, subject to: 1.

the mixed strategy is achievable; 2. attacking t is the attacker’s best response. Notice that some

of these optimization problems may be infeasible. Nevertheless, at least one of them is feasible.

The peSSE is obtained by solving these T optimization problems and picking the best solution

among those OPTt’s.

To solve optimization problem (6.3), we have to deal with non-linear constraints and the

specific objective peLPt(xt), which is the optimal objective value of another LP. We first simplify

the constraints to make them linear. In particular, the following constraints

max(Uatt(t, xt), 0) ≥ max(Uatt(t′, xt′), 0),∀t′ ∈ [n]

can be split into two cases, corresponding to Uatt(t, xt) ≥ 0 and Uatt(t, xt) ≤ 0 respectively, as

follows,

CASE 1 CASE 2

Uatt(t, xt) ≥ 0 Uatt(t′, xt′) ≤ 0,∀t′
Uatt(t, xt) ≥ Uatt(t′, xt′),∀t′

Now, the only problem is to deal with the objective function in Formulation (6.3). Here comes

the crux.

Lemma 9. For any t ∈ [n], peLPt(x) is increasing in x for any x ∈ (0, 1).

Proof. For ease of notation, let f(x) = peLPt(x). We show that for any sufficiently small ε > 0

(so that x+ ε < 1), f(x+ ε) ≥ f(x). Fixing x, if the optimal solution for peLPt(x), say p∗, q∗,

satisfies q∗ = 0, then we observe that p∗, q∗ is also feasible for peLPt(x+ε). As a result, plugging

p∗, q∗ in peLPt(x+ ε), we have f(x+ ε) ≥ (x−p∗)Udc + (1−x− q∗)Udu + ε(Udc −Udc ) ≥ f(x)

since ε(Udc − Udc ) ≥ 0. On the other hand, if q∗ > 0, then for any small ε > 0 (specifically,

ε < q∗), p∗+ ε, q∗− ε is feasible for peLPt(x+ ε). Here the only need is to check the feasibility

constraint (p∗ + ε)Uac + (q∗ − ε)Uau = p∗Uac + q∗Uau + ε(Uac − Uau ) ≤ 0, which holds since
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ε(Uac − Uau ) ≤ 0. This feasible solution achieves an objective value equaling f(x). Therefore,

we must have f(x+ ε) ≥ f(x).

The intuition behind Lemma 9 is straightforward — the defender should always get more

utility by protecting a target more. However, this actually does not hold in standard security

games. Simply consider a target with Udc = 2, Udu = −1 and Uac = −1, Uau = 1. If the target is

covered with probability 0.4, then in expectation both the attacker and defender get 0.2; however,

if the target is covered with probability 0.6, the attacker will not attack and both of them get 0.

Therefore, the monotonicity in Lemma 9 is really due to the signaling scheme.

Back to the optimization problem (6.3), here comes our last key observation: the monotonic-

ity property in Lemma 9 reduces the problem to an LP. Specifically, the following lemma is a

simple consequence of the monotonicity.

Lemma 10. Maximizing the increasing function peLPt(xt) over any feasible region D reduces

to directly maximizing xt over D and then plugging in the optimal xt to peLPt(xt).

To this end, we summarize the main results in this section. The following theorem essentially

shows that computing peSSE efficiently reduces to computing SSE (see (Conitzer & Sandholm,

2006) for a standard way to compute SSE by multiple LPs). In other words, adding the persuasion

phase does not increase the computational complexity.

Theorem 6.1.3. For any security game, the Strong Stackelberg Equilibrium with Persuasion

(peSSE), defined in Definition 3, can be computed by multiple LPs.

Proof. According to Lemma 9 and 10, Algorithm 4, based on multiple LPs, computes the peSSE.

6.1.4 Experiments

In this section, we compare SSE and peSSE on randomly generated security games. Our simula-

tions aim to compare the two concepts, SSE and peSSE, in games with various payoff structures.

To generate payoffs, we follow most security game papers and use the covariance random

payoff generator (Nudelman, Wortman, Shoham, & Kevin, 2004), but with a slight modifica-

tion. Let µ[a, b] denote a uniform distribution on interval [a, b]. Then we randomly generate

the following random payoffs: Udc ∼ µ[0, r], Udu ∼ µ[−10, 0], Uac = aUdc × 10
r + bµ[−10, 0]

(set Udc × 10
r = 0 if r = 0) and Uau = aUdu + bµ[0, 10], where a = cov, b =

√
1− a2. Here

cov ∈ [−1, 0] is the covariance parameter between the defender’s reward (or penalty) and the at-

tacker’s penalty (or reward). So cov = 0 means completely uncorrelated payoffs while cov = −1

and r = 10 means a zero-sum game. By setting Udc ∈ [0, r] while Uac ∈ [0, 10], we intentionally
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Algorithm 4: Computing peSSE

1: For every target t ∈ [n], compute the optimal objectives for the following two LPs:

max xt (6.4)

s.t. Uatt(t, xt) ≥ 0

Uatt(t, xt) ≥ Uatt(t′, xt′),∀t′ ∈ [n]

x ∈ Pd

and

max xt (6.5)

s.t. Uatt(t′, xt′) ≤ 0, ∀t′ ∈ [n]

x ∈ Pd.

Let x∗t,1, x∗t,2 be the optimal objective value for LP (6.4), LP (6.5) respectively. x∗t,i = null
if the corresponding LP is infeasible.

2: Choose the non-null x∗t,i, denoted as x∗, that maximizes peLPt(x∗t,i) over t ∈ [n] and
i = 1, 2. The optimal mixed strategy that achieves x∗ in one of the above LPs is the peSSE
mixed strategy.

capture the defender’s “overall” value of catching the attacker by the parameter r. Standard co-

variance payoff (Nudelman et al., 2004) fixes r = 10, but Theorem 1 suggests that r may affect

the utility difference between SSE and peSSE.

In all the simulations, every game has 8 targets and 3 resources, and the attacker has the option

to not attack. We simulate two different kinds of pure strategies, which results in two types of

games:

1. Uniform Strategy Game (UniG): in such games, a pure strategy is any subset of targets

with cardinality at most 3.

2. Random Strategy Game (RanG): for each game we randomly generate 6 pure strategies,

each of which is a subset of targets with cardinality at most 3. Each target is guaranteed to

be covered by at least one pure strategy.

We set r = 0, 1, . . . , 10 and cov = 0,−0.1,−0.2, . . . ,−1. For each parameter instance, i.e., r

and cov, 100 random security games are simulated. As a result, in total 2× 100× 112 = 24, 200

(2 types of games, 112 parameter combinations and 100 games per case) random security games

are tested in our experiments. We find that the UniG and RanG games have similar experimental

performance, except that RanG games have a lower utility at a given parameter instance. This

69



−1 −0.8 −0.6 −0.4 −0.2 0
0

20

40

60

80

100

cov

n
u

m

UniG Equilibria −− fix r=3

 

 

SSE 6= peSSE

USSE > UpeSSE

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1

1.5

2

cov

u

UniG Utiity −− fix r=3

 

 

SSE
peSSE
Udif

0 2 4 6 8 10
0

20

40

60

80

100

r

n
u

m

UniG Equilibria −− fix cov=−0.5

 

 

SSE 6= peSSE

USSE > UpeSSE

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

r
u

UniG Utility −− fix cov=−0.5

 

 

SSE
peSSE
Udif

Figure 6.2: Comparison between SSE and peSSE: fixed parameter r = 3 (upper) and fixed
parameter cov = −0.5. The trend is similar for different r or cov, except the utility scales are
different.

is reasonable since UniG games are relaxations of the RanG games in terms of the set of pure

strategies. So we only show results for UniG to avoid repetition.

Figure 6.2 gives a comprehensive comparison of the difference between SSE and peSSE. All

these performances are averaged over 100 games. These figures suggest the following empirical

conclusions as expected (note that the trends reflected in the figures are basically similar for

different r or cov, except the utility scales are different):

• In the left two panels, the line SSE 6= peSSE describes the number of games within 100

simulations that have different SSE and peSSE mixed strategies. This number seems not

very sensitive to the parameter cov (note that games with cov = −1 are not zero-sum when

r = 3), but increases as r decreases. That is, when the defender cares less about catching

the attacker, then persuading the attacker to not attack benefits the defender more.

• The line USSE > UpeSSE in the left two panels describes how many games have strictly

greater peSSE utility than SSE utility. This number increases as cov or r decreases. That is,

if the defender cares less about catching the attacker or the game becomes more competitive
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(i.e., cov decreases), then the defender benefits more from strategic signaling. Note that the

Udif lines in the right two panels also show the same trend.

• The right two panels show that persuasion usually helps more when the defender’s SSE

utility is less. Specifically, peSSE can increase the SSE utility by about half when r is

small with fixed cov = −0.5 (right-lower panel).

6.2 Exploiting Informational Advantages to Combat Poaching

In this section, we study how to improve a defender’s utility via strategic signaling in a different

setting, motivated by the emerging application of utilizing mobile sensors for patrolling (the

example in Section 4.2). This setting differs from that of the previous section in the following key

aspects. First, here we assume that the attacker (e.g., a poacher) can observe whether a patroller

is at a target or not before he attacks the target (e.g., whether a ranger is patrolling the area

or not); while in the previous section, the attacker cannot observe whether a target is protected

or not before he attacks. Second, here the defender has a limited number of signaling devices

(e.g., mobile sensors) and we have to optimally place these signaling devices at targets; while

previously, the defender can have every target signal noisy information about its own protection

status.

These differences necessitate a different game model with strategic signaling. In particular,

we propose the Sensor-Empowered security Game (SEG) model in this section. SEG captures

the joint allocation of human patrollers and mobile sensors, and abstracts the example described

in Section 4.2. Sensors differ from patrollers in that they cannot directly interdict attacks, but

they can notify nearby patrollers about the attack (if any) and strategically signal to the attacker

in order to deter attacks. On the technical side, we first illustrate the challenges in solving the

new SEG model by proving its NP-hardness even for zero-sum cases. We then develop a scalable

algorithm SEGer based on the branch-and-price framework with two key novelties: (1) a novel

MILP formulation for the slave; (2) an efficient relaxation of the problem for pruning. To further

accelerate SEGer, we design a faster combinatorial algorithm for the slave problem, which is

provably a constant-approximation to the slave problem in zero-sum cases and serves as a useful

heuristic for general-sum SEGs. We experimentally demonstrate the benefit of utilizing mobile

sensors via simulations.

6.2.1 The Model

Basic Setup. Consider a security game played between a defender (she) and an attacker (he).

The defender possesses k human patrollers and m mobile sensors. She aims to protect n targets,
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whose underlying geographic structure is captured by an undirected graphG. We use [n] to denote

the set of all targets, i.e., all vertices. The attacker seeks to attack one target. Let Ud/a+/−(i) denote

the defender/attacker (d/a) payoff when the defender successfully protects/fails to protect (+/−)

the attacked target i.2 Assume Ud+(i) ≥ 0 > Ud−(i) and Ua+(i) ≤ 0 < Ua−(i) for every i. Sensors

cannot directly interdict an attack; however, they can inform patrollers to come when detecting

the attacker at a target. Let integer τ > 0 be the intervention distance such that a sensor-informed

patroller within distance τ to the attacked target can successfully come to intervene in the attack.

If there is no patroller within distance τ to the attacked target, the target is not protected despite

being covered by a sensor. So a target covered by some resource (i.e., sensors) is not necessarily

protected, which is a key difference between SEGs and classical security games. We assume that

sensors are visible. Therefore, the attacker knows whether a target is covered by a sensor or not,

upon visiting the target.

Defender’s Action Space of Resource Allocation. We assume that any patroller or sensor can

be assigned to cover any target on G without scheduling restrictions. Therefore, a defender pure

strategy covers an arbitrary subset of k vertices with patrollers and another subset of m vertices

with sensors. For convenience, we call both patrollers and sensors resources. W.l.o.g., we assume

that the defender never places more than one resource at any target (otherwise, reallocating one

resource to any uncovered target would only do better). Targets in SEGs have 4 possible states: (1)

covered by a patroller (state θ+); (2) uncovered by any resource (state θ−); (3) covered by a sensor

and at least one patroller is within distance τ (state θs+); (4) covered by a sensor but no patroller

is within distance τ (state θs−). Note that only state θ+, θs+ mean successful defense. Let

Θ = {θ+, θ−, θs+, θs−} denote the set of all states. Any resource allocation uniquely determines

the state for each target and vice versa. Therefore we can equivalently use a state vector e ∈ Θn

to denote a defender pure strategy. Let ei ∈ Θ denote the state of target i ∈ [n] and E ⊆ Θn

denote the set of defender pure strategies. A defender mixed strategy is a distribution over the

exponentially large set E .

Mobile Sensor Signaling. SEGs naturally integrate the sensor functionality of strategic signal-

ing, which can be easily implemented for many types of mobile sensors (e.g., UAVs). Let Σ

denote the set of possible signals that a sensor could send (e.g, noise, warning lights, etc.). Let

Θs = {θs+, θs−} denote the set of possible states when a sensor covers the target. A signaling

scheme, w.r.t. target i, is a randomized map

πi : Θs
r n d−→ Σ,

2The utility notationUd/a+/−(i) is different from the standard notationUd/ac/u (i) of classic security games as described
in Section 2.2.1. This is to avoid confusion because in SEGs, successfully protecting a target is not the same as covering
the target with a security guard. For example, if a target is covered by a UAV and meanwhile a security guard is nearby,
the target is also successfully protected.
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which is characterized by variables {πi(ei, σi)}ei∈Θs,σi∈Σ. Here πi(ei, σi) is the joint probability

that target i is in state ei ∈ Θs and signal σi ∈ Σ is sent. So
∑

σi∈Σ πi(ei, σi) must equal P(ei),

the marginal probability that target i is in state ei. A sensor at target i first determines its state

ei ∈ Θs and then sends a signal σi with probability πi(ei, σi)/P(ei). We assume that the defender

commits to a signaling scheme and the rational attacker is aware of the commitment.

Upon observing signal σi, the attacker updates his belief on the target state: P(θs+|σi) =
πi(θs+,σi)

πi(θs+,σi)+πi(θs−,σi)
and P(θs−|σi) = 1− P(θs+|σi), and derives expected utility

AttU(σi) = Ua+(i) · P(θs+|σi) + Ua−(i) · P(θs−|σi).

The attacker will attack target i if AttU(σi) > 0. When AttU(σi) < 0, the rational attacker

chooses to not attack, in which case both players get utility 0. We assume that the attacker breaks

tie in favor of the defender when AttU(σi) = 0. This is without loss of generality because the

defender can always slightly tune the probabilities to favor her preferred attacker action.

As illustrated in Lemma 8 of the previous section, there always exists an optimal signaling

scheme (w.r.t. a target) that uses at most two signals, each resulting in an attacker best response

of attacking and not attacking, respectively. In our previous example of Section 6.2.3.1, an alert

signal results in not attacking while a quiet signal result in attacking.

Attacker’s Action Space. We assume that the defender commits to a mixed strategy (i.e., ran-

domized resource allocation) and signaling schemes. The attacker is aware of the defender’s

commitment, and will rationally respond. In particular, the attacker first chooses a target to visit.

If he observes a sensor at the target, the attacker then makes a second decision and determines

to attack or not, based on the signal from the sensor. If the attacker chooses to not attack, both

players get utility 0. The attacker will choose actions that maximize his utility.

6.2.2 Additional Challenges and Computational Hardness

We are interested in solving SEGs, by which we mean computing the globally optimal defender

commitment consisting of the mixed strategy and signaling schemes. Without sensors in the game

(i.e., m = 0), the problem can be easily solved by an O(n2) algorithm called ORIGAMI (Kiek-

intveld, Jain, Tsai, Pita, Ordóñez, & Tambe, 2009). In this section, we illustrate the additional

challenges due to the consideration of sensors by proving the NP-hardness of solving SEGs even

in zero-sum cases. Then we formulate the problem using the multiple-LP approach (Conitzer &

Sandholm, 2006).

Theorem 6.2.1. Computing the optimal defender commitment is NP-hard even in zero-sum SEGs.

Proof. We reduce from the dominating set problem. A dominating set for a graphG is a subsetD

of vertices such that every vertex is either in D or adjacent to a vertex in D. The dominating set
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problem is to compute the size of a smallest dominating set for G. This problem is NP-hard even

when G is a planar graph with maximum degree 3 (Garey & Johnson, 1979). We now reduce an

arbitrary dominating set instance to our problem.

Given any graph G with n vertices, consider a zero-sum SEG instance with k patrollers and

m = n − k sensors. Let τ = 1 and Ud+(i) = Ua+(i) = 0, Ud−(i) = −1 = −Ua−(i) for every

i. That is the defender receives utility 0 for successfully protecting a target and utility −1 for

failing to protect a target. We now prove that G has a dominating set of size k if and only if the

optimal defender utility is 0 in the constructed SEG. As a result, by solving SEGs, we can solve

the dominating set problem by enumerating different k’s, yielding the NP-hardness of solving

SEGs.

⇒: If G has a dominating set D of size k, the defender can cover the k vertices in D with

patrollers and cover all the remaining vertices with sensors. By definition, any vertex not in D,

covered by a sensor, will be adjacent to a vertex in D and therefore is successfully protected. As

a result, all vertices are successfully protected and the defender receives utility 0.

⇐: If the defender achieves utility 0, this must imply that each target is always successfully

protected, i.e., either in state θ+ or θs+. Otherwise, since attack failure has cost 0 to the attacker

(Ua+(i) = 0), the attacker will attack any target that is protected with probability p < 1, which

would have resulted in a negative defender utility — a contraction. This implies that any pure

strategy must aways protect every target, which means the vertices protected by the k patrollers

must form a dominating set.

A Formulation with Exponential-Size LPs

The main challenge of solving a SEG is its nature as a bi-level optimization problem since signal-

ing schemes are built on top of the mixed strategy. We show that the problem can be formulated

as multiple (exponential-size) LPs.

We first formulate the signaling process w.r.t. target i. For convenience, let yi = P(ei = θs+)

and zi = P(ei = θs−) denote the marginal probabilities of states θs+, θs−, respectively. Thanks

to Lemma 8, we can w.l.o.g. restrict to signaling schemes with two signals σ1, σ0 that result

in the attacker best response of attacking and not attacking, respectively. Define variables π+
i =

πi(θs+, σ1) ∈ [0, yi] and π−i = πi(θs−, σ1) ∈ [0, zi]. To guarantee that σ1, σ0 result in the desired

attacker best responses, we need two constraints: Uaσ1(π+
i , π

−
i ) = π+

i · Ua+(i) + π−i · Ua−(i) ≥ 0

and Uaσ0(π+
i , π

−
i , yi, zi) = (yi − π+

i )Ua+(i) + (zi − π−i )Ua−(i) ≤ 0. Under these constraints, the

defender’s expected utility from σ1 is Udσ1(π+
i , π

−
i ) = π+

i · Ud+(i) + π−i · Ud−(i). Recall that the

defender utility from σ0 is 0. Crucially, Uaσ1 , U
d
σ1 , U

a
σ0 are all linear functions of π+

i , π
−
i , yi, zi.

With these representations of defender and attacker utilities from different signals, we are

ready to present LPs to compute the optimal defender mixed strategy. For any fixed target t we
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exhibit an LP that computes the optimal defender strategy, subject to visiting target t being the

attacker’s best response. Details are given in the following linear program with variables {pe}e∈E
and xi, yi, zi, wi, π+

i , π
−
i for all i ∈ [n].

max xtU
d
+(t) + wtU

d
−(t) + Udσ1(π+

t , π
−
t )

s.t. xtU
a
+(t) + wtU

a
−(t) + Uaσ1(π+

t , π
−
t ) ≥

xiU
a
+(i) + wiU

a
−(i) + Uaσ1(π+

i , π
−
i ) ∀ i 6= t∑

e∈E:ei=θ+
pe = xi ∀ i ∈ [n]∑

e∈E:ei=θs+
pe = yi ∀ i ∈ [n]∑

e∈E:ei=θs−
pe = zi ∀ i ∈ [n]

xi + yi + zi + wi = 1 ∀ i ∈ [n]∑
e∈E pe = 1

pe ≥ 0 ∀ e ∈ E
Uaσ1(π+

i , π
−
i ) ≥ 0 ∀ i ∈ [n]

Uaσ0(π+
i , π

−
i , yi, zi) ≤ 0 ∀ i ∈ [n]

0 ≤ π+
i ≤ yi, 0 ≤ π−i ≤ zi ∀ i ∈ [n]

(6.6)

In LP (6.6), variable pe is the probability of pure strategy e and xi, yi, zi, wi are the marginal

probabilities of different states. Program (6.6) is an LP since Udσ1 , U
a
σ1 , U

a
σ0 are all linear func-

tions. The last three sets of constraints guarantee that {π+
i , π

−
i } is a feasible signaling scheme at

each target i. The first set of constraints enforce that visiting target t is an attacker best response.

The remaining constraints define various marginal probabilities. It is easy to see that LP (6.6)

computes the optimal defender commitment, subject to visiting target t being an attacker best

response.

The optimal commitment can be computed by solving LP (6.6) for each t and picking the

solution with maximum objective. A scalable algorithm for solving SEGs is given next.

6.2.3 A Branch-and-Price Approach

The challenge of solving SEGs are two-fold. First, LP (6.6) has exponentially many variables.

Second, we have to solve LP (6.6) for each t ∈ [n], which is very costly. In this section, we

propose SEGer (SEGs engine with LP relaxations) — a branch and price based algorithm —

to solve SEGs. We omit the standard description of branch and price (see, e.g., (Barnhart, John-

son, Nemhauser, Savelsbergh, & Vance, 1998)) but highlight how SEGer instantiates the two

key ingredients of this framework: (a) the column generation technique for solving LP (6.6) by

developing scalable algorithms for the slave problem; (a) an efficient relaxation of LP (6.6) for

branch-and-bound pruning. We will describe the column generation step first.
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6.2.3.1 Column Generation & Scalable Algorithms for the Slave

Our goal is to efficiently solve the exponential-size LP (6.6). The idea of column generation is

to start by solving a restricted version of LP (6.6), where only a small subset E ′ ⊂ E of pure

strategies are considered. We then search for a pure strategy e ∈ E \ E ′ such that adding e to E ′
improves the optimal objective value. This procedure iterates until no pure strategies in E \ E ′
can improve the objective, which means an optimal solution is found. The restricted LP (6.6) is

called the master, while the problem of searching for a pure strategy e ∈ E \ E ′ is referred to

as the slave problem. The slave is derived from the dual program of LP (6.6), particularly, from

the dual constraints corresponding to primal variable pes. We omit its textbook derivation here

(see, e.g., (Tambe, 2011) for details), and only directly describe the slave problem in our setting

as follows.

Slave Problem: Given different weights αi, βi, γi ∈ R for each i, solve the following weight

maximization problem:

maximizee∈E
∑

i:ei=θ+

αi +
∑

i:ei=θs+

βi +
∑

i:ei=θs−

γi. (6.7)

We mention that αi, βi, γi in the slave are the optimal dual variables for the constraints that

define xi, yi, zi respectively in LP (6.6). The slave is an interesting resource allocation prob-

lem with multiple resource types (i.e., patrollers and sensors) which affect each other. Using a

reduction from the dominating set problem, it is not difficult to prove the following.

Lemma 11. The slave problem is NP-hard.

Proof. The proof is similar to the proof of Theorem 6.2.1. By letting αi = βi = 1, γi = 0, τ = 1

and m = n − k, it is easy to show that the graph has an independent set of size k if and only if

the slave problem has optimal objective value n.

An MILP Formulation for the Slave

Next we propose a mixed integer linear program (MILP) formulation for the slave problem. Our

idea is to use three binary vectors v1,v2,v3 ∈ {0, 1}n to encode for each target whether it is

in state θ+, θs+, θs− respectively. For example, target i is in state θs+ if and only if v2
i = 1.

The main challenge then is to properly set up linear (in)equalities over these vectors to precisely

capture their constraints and relations.

The capacity for each resource type results in two natural constraints:
∑

i∈[n] v
1
i ≤ k and∑

i∈[n](v
2
i + v3

i ) ≤ m. Moreover, since at most one resource is assigned to any target, we have
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v1
i + v2

i + v3
i ≤ 1 for each i ∈ [n]. Finally, we use the set of constraints Aτ · v1 ≥ v2 to specify

which vertices could possibly have state θs+ (i.e., have a patroller within distance τ ). To see that

this is the correct constraint, we claim that no vertex in v1 is within distance τ to i if and only

if Aτi · v1 = 0 where Aτi is the i’th row of Aτ . This is easy to verify for τ = 1 and follows

by induction for general τ . It turns out that these constraints are sufficient to encode the slave

problem. Details are presented in MILP (6.8), whose correctness is summarized in Proposition 3.

Here, α = (α1, . . . , αn)> (β, γ defined similarly) and 〈v1 · α〉 is the inner product between v1

and α. The matrix A ∈ {0, 1}n×n is the adjacency matrix of G (but with ones on its diagonal),

and Aτ is the τ ’th power of A.

maximize 〈v1 · α〉+ 〈v2 · β〉+ 〈v3 · γ〉
subject to

∑
i∈[n] v

1
i ≤ k∑

i∈[n](v
2
i + v3

i ) ≤ m
v1
i + v2

i + v3
i ≤ 1, for i ∈ [n].

Aτ · v1 ≥ v2

v1,v2,v3 ∈ {0, 1}n

(6.8)

Proposition 3. Let {ê1, ê2, ê3} be an optimal solution to MILP (6.8). Then assigning k patrollers

to vertices in ê1 and m sensors to vertices in ê2 + ê3 correctly solves Slave (6.7). Here, for a

vector v ∈ {0, 1}n, we say “i is in v” iff vi = 1.

Proof. We prove that feasible solutions to MILP (6.8) precisely encode all pure strategies in E ,

under the mapping that vertices in ê1 have state s+, vertices in ê2 have state ss+ and vertices

in ê3 have state ss−. As a result, the objective of MILP (6.8) equals the objective of the slave,

yielding the desired conclusion.

First, any pure strategy in E must satisfy all constraints of MILP (6.8). To see this, we only

need to argue the necessity of satisfying constraint Aτ · v1 ≥ v2. Let Ai denote the i’th row of

A. The non-zero entries in Ai specify all vertices within distance 1 from i. A standard inductive

argument shows that the non-zero entries in the i’th row of Aτ , denoted by Aτi , are precisely all

the vertices within distance τ to i. Let v1 denote the subset of vertices covered by patrollers. Then

Aτi ·v1 > 0 if and only if there is a vertex in v1 (i.e., covered by a patroller) that is within distance

τ to i. Only such a vertex i can have e2
i = 1, and this is precisely captured by Aτi · v1 ≥ e2

i for

all i (i.e., Aτ · v1 ≥ v2).

Conversely, a similar argument shows that any feasible solution to MILP (6.8) corresponds to

a pure strategy in E by assigning k patrollers to vertices in ê1 andm sensors to vertices in ê2 + ê3,

concluding the proof of the proposition.

77



A 1
2(1− 1

e )-Approximation Algorithm for the Slave

Next, we design a polynomial-time algorithm to approximately solve the slave problem, which

can be used to accelerate SEGer. Our algorithm is provably a 1
2(1 − 1

e )-approximation to the

slave problem in zero-sum cases. The approximation guarantee relies on a special property of the

slave for zero-sum SEGs, stated as follows, which unfortunately is not true in general. However,

the algorithm can still be used as a good heuristic for solving general-sum SEGs. All the proofs

in this part are deferred to Appendix B.

Lemma 12. In zero-sum SEGs, the αi, βi, γi in Slave (6.7) are guaranteed to satisfy: αi ≥ βi ≥
γi ≥ 0 for any i ∈ [n].

Our algorithm originates from the following idea. The slave problem can be viewed as a two-

step resource allocation problem. In the first step, a vertex subset T of size at most k is chosen

for allocating patrollers; in the second step, a subset I ⊆ [n] \ T of size at most m is chosen for

allocating sensors. Our key observation is that given T , the second step of choosing I is easy. Let

TN = {i | i 6∈ T but Aτi,j > 0 for some j ∈ T}

denote the set of all vertices that are not in T but within distance τ to some vertices in T (in-

terpreted as neighbors of T ). With some abuse of notations, let T c = [n] \ (T ∪ TN ) denote

the set of remaining vertices. Notice that T, TN , T c are mutually disjoint. The following lemma

illustrates how to pick the optimal set I , given T .

Lemma 13. Given T , the second step of the slave (i.e., picking set I) simply picks the m vertices

corresponding to the largest m weights in {βi | i ∈ TN} ∪ {γi | i ∈ T c}.

Lemma 13 is true because when T is given, the weight of covering target i by a sensor is

determined — either βi if i ∈ TN or γi if i ∈ T c. Thus the main difficulty of solving the

slave problem lies at the first step, i.e., to find the allocation for patrollers. For convenience, let

operator Σm
max(W ) denote the sum of the largest m weights in weight set W . Utilizing Lemma

13, the objective value of the slave, parameterized by set T , can be viewed as a set function of T :

f(T ) =
∑

i∈T αi + Σm
max

(
{βi | i ∈ TN} ∪ {γi | i ∈ T c}

)
.

As a result, the slave problem can be re-formulated as a set function maximization problem:

Slave Reformulation: max
T⊂[n]:|T |≤k

f(T ).
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The NP-hardness of the slave implies that there is unlikely to be a polynomial-time algo-

rithm that maximizes f(T ) exactly. One natural question is whether f(T ) is submodular, since

submodular maximization admits good approximation guarantees (Calinescu et al., 2011). Unfor-

tunately, the answer turns out to be “No” (see Appendix B.2 for a counter example). Nevertheless,

we show that maximizing f(T ) admits a constant approximation under certain conditions.

Theorem 6.2.2. When αi ≥ βi ≥ γi ≥ 0,∀i ∈ [n], there is a poly-time 1
2(1 − 1

e )-approximate

algorithm for the slave.

A formal proof of Theorem 6.2.2 can be found in Appendix B; we only provide a proof sketch

here. The key insight is that although f(T ) is not submodular, a variant of f(T ), defined below,

can be proved to be submodular. Define

g(T ) =
∑

i∈T αi + Σm
max

(
{βi | i ∈ TN ∪ T} ∪ {γi | i ∈ T c}

)
.

The only difference between f(T ) and g(T ) is that the weight set in the definition of f(T ) [resp.,

g(T )] contains βis for any i ∈ TN [resp., i ∈ TN ∪ T ]. Notice that g(T ) can be evaluated in

polynomial time for any T ⊆ [n].

Our algorithm, named TailoredGreedy (details in Algorithm 5), runs the greedy algo-

rithm for maximizing g(T ) and then uses the output to construct a solution for the slave, i.e.,

for maximizing f(T ). The theorem can then be proved in two steps. First, we prove that g(T )

is monotone submodular. This requires a somewhat intricate proof with careful analysis of the

function. Then we show that TailoredGreedy yields a 1
2(1− 1

e )-approximation for the slave

problem. The key step for proving this result is to establish the following relation between the

functions f(T ) and g(T ): f(T ) ≤ g(T ) ≤ 2f(T ).

Algorithm 5: TailoredGreedy
Input: weights αi, βi, γi ∈ R for any i ∈ [n]
Output: a pure strategy in E

1: Initialization: T = ∅.
2: for t = 1 to k do
3: Compute i∗ = arg maxi∈[n]\T [g(T ∪ {i})− g(T )].
4: Add i∗ to T
5: return the pure strategy that covers the vertices in T with patrollers and covers the m

vertices corresponding to the largest m weights in {βi | i ∈ TN} ∪ {γi | i ∈ T c} with
sensors.

6.2.3.2 LP Relaxation for Branch-and-Bound Pruning

Our goal of using branch-and-bound is to avoid solving LP (6.6) one by one for each t, which

is too costly. The idea is to come up with an efficiently computable upper bound of LP (6.6) for
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each t, so that once the best objective value among the solved LP (6.6)’s is larger than the upper

bound of all the (yet) unsolved ones, we can safely claim that the current best solution is optimal

without solving the remaining LPs. In this section, by properly relaxing LP (6.6) we obtain such

an upper bound, which leads to significant speed-up in experiments.

The standard approach for finding relaxations in security games is to ignore scheduling con-

straints. Unfortunately, this does not work in our case since our security resources do not have

scheduling constraints. The difficulty of our problem lies in characterizing marginal probabili-

ties of different states in Θ. Our idea is to utilize the constraints in MILP (6.8). Observe that

v1,v2,v3 in MILP (6.8) can be viewed as marginal vectors of a pure strategy for the states

θ+, θs+, θs− respectively. Recall that x,y, z in LP (6.6) are the marginal vectors of a mixed strat-

egy p for state θ+, θs+, θs− respectively. Therefore, the x,y, z of any pure strategy must satisfy

the constraints in MILP (6.8) by setting v1 = x, v2 = y, v3 = z. By linearity, the x,y, z of

any mixed strategy must also satisfy these constraints. This results in a relaxation of LP (6.6) by

substituting the constraints in LP (6.6) that define xi, yi, zi with the constraints of MILP (6.8).

Proposition 4. The following is a valid relaxation of LP (6.6). Moreover, this relaxation results

in a linear program with polynomially many variables and constraints.

∑
e∈E:ei=θ+

pe = xi,∀i∑
e∈E:ei=θs+

pe = yi,∀i∑
e∈E:ei=θs−

pe = zi, ∀i∑
e∈E pe = 1

pe ≥ 0, ∀e ∈ E

=⇒

∑
i∈[n] xi ≤ k∑
i∈[n](yi + zi) ≤ m

xi + yi + zi ≤ 1, ∀i
Aτ · x ≥ y

x,y, z ∈ [0, 1]n

Relaxation: substitute left part in LP (6.6) with right part

6.2.4 Experiments

In this section, we experimentally test our model and algorithms. All LPs and MILPs are solved

by CPLEX (version 12.7.1) on a machine with an Intel core i5-7200U CPU and 11.6 GB mem-

ory. All the game payoffs are generated via the covariant game model (Nudelman et al., 2004),

which are widely adopted to test algorithms in security games. Let µ[a, b] denote the uniform

distribution over the interval [a, b]. For any i ∈ [n], we generate Ud+(i) ∼ µ[0, 10], Ud−(i) ∼
µ[−10, 0], Ua+(i) = cor·Ud+(i)+(1+cor)·µ[−10, 0] andUa−(i) = cor·Ud−(i)+(1+cor)·µ[0, 10]

where cor ∈ [−1, 0] is a parameter controlling the correlation between the defender and attacker

payoffs. The game is zero-sum when cor = −1. All general-sum games are generated with

cor = −0.6 unless otherwise stated. The graph G is generated via the Erdös — Rényi random

graph model.
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Sensors Improve the Defender’s Utility

Figure 6.3 shows the comparison of the defender utility under different scenarios. All data points

in Figure 6.3 are averaged over 30 random instances and each instance has 30 targets.
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Figure 6.3: Utility comparison
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Figure 6.5: Utility comparison and scalability test of different algorithms for solving general-sum
and zero-sum SEGs.

The left panel of Figure 6.3 compares the following scenarios. The defender has a fixed

budget that equals the total cost of 7 patrollers, and the cost of a patroller may equal the cost

of 3 or 5 or 7 sensors (corresponding to ratio 3, ratio 5 and ratio 7 line, respectively). The x-

axis coordinate k means that the defender gets k patrollers and ratio × (7 − k) sensors; the

y-axis is the defender utility. The figure demonstrates that a proper combination of patrollers

and sensors results in better defender utility than just having patrollers (i.e., k = 7). This is the

case even when the cost ratio is 3. The figure also shows that many sensors with few patrollers

will not perform well, either. Therefore, the number of patrollers and sensors need to be properly

balanced in practice.

The right panel of Figure 6.3 compares the defender utility in three different models: 1.

signaling — SEG model; 2. no signaling — SEG model but assuming sensors do

not strategically signal; 3. no sensor — classical security games. Both signaling and no

signaling have 4 patrollers and 10 sensors while no sensor has 6 patrollers with no sensors

(i.e., cost ratio between the patroller and sensor is 5). The x-axis is the correlation parameter of the

general-sum games. The graph G used in this figure is a cycle graph motivated by the protection

of the border of conservation parks as in our previous illustrative example. The figure shows that

signaling results in higher utility than no signaling, demonstrating the benefit of using

strategic signaling in this setting. Such a benefit decreases as the game becomes closer to being
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zero-sum (i.e., cor tends to −1). This is as expected since signaling does not help in zero-sum

settings due to its strict competition — any information to the attacker will benefit the attacker,

and thus hurt the defender in a zero-sum setting. Both signaling and no signaling result

in a stably higher utility that no sensor regardless of players’ payoff correlation.

TailoredGreedy vs. MILP

In Figure 6.4, we compare the performances of MILP (6.8) and TailoredGreedy on solving

just the slave problem. Notice that that running time in the right panel is in logarithmic scale.

Each data point is an average over 15 instances with randomly generated αi ≥ βi ≥ γi ≥ 0 for

each i ∈ [n]. Figure 6.4 shows that TailoredGreedy achieves only slightly worse objective

value than MILP but is much more scalable. The scalability superiority of TailoredGreedy

becomes prominent for larger instances (n ≥280) where MILP starts to run in exponential time

while TailoredGreedy is a polynomial time algorithm.

Game Solving: Utility & Scalability Comparisons

Finally, we compare the performance of different algorithms in solving SEGs in Figure 6.5. Since

zero-sum SEGs can be formulated as a single LP, which can then be solved by column generation.

We compare two algorithms in this case: CG[milp] — column generation with MILP (6.8) for

the slave; CG[grdy] — column generation with TailoredGreedy for the slave. Note that

CG[milp] is optimal while CG[grdy] is not optimal since it uses an approximate algorithm

for the slave.3 Figure 6.10(a) shows that our algorithms can solve zero-sum SEGs with 80 ∼
100 targets (depending on the algorithm) within 10 minutes. CG[grdy] achieves less utility

than CG[milp], but is more scalable (exact calculations show that CG[grdy] is at least 6

times faster). The utility gap between CG[milp] and CG[grdy] becomes smaller as n grows,

while their running time gap becomes larger. This suggests that it might be more desirable to

use CG[milp] for small instances and CG[grdy] for large instances if some utility loss is

acceptable.

For general-sum SEGs (Figures 6.10(d) and 6.10(c)), we consider three algorithms: 1.

SEGer[milp] — SEGer using MILP for column generation; 2. SEGer[grdy] —

SEGer using TailoredGreedy for column generation; 3. NtLP — solving LP (6.6) one by

one for each t without branch and bound. Though SEGer[grdy] is not optimal, it achieves

close-to-optimal objective value in this case and runs faster than SEGer[milp] (roughly

half of the running time of SEGer[milp]). On the other hand, both SEGer[milp] and
3We also implemented the algorithm that uses TailoredGreedy first and then switches to MILP when

TailoredGreedy does not improve the objective. However, this approach seems to not help in our case and
results in the same running time as CG[milp]. Thus we do not present it here.
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SEGer[grdy] are much more scalable than NtLP. In fact, the running time for solving a

general-sum SEG by SEGer[milp] is only slightly more than the running time of solving a

zero-sum SEG of the same size, which demonstrates the significant advantage of our branch and

price algorithm.

6.3 Exploiting Informational Advantage in Bayesian Stackelberg
Games

The previous two sections developed Stackelberg security game models which allow the defender

to commit not only to a distribution over actions, but also to a scheme for stochastically signaling

information about these actions to the attacker. This can result in higher utility for the defender.

In this section, we extend this methodology to general Bayesian games, in which either the leader

or the follower or both have payoff-relevant private information. This leads to novel variants of

the model, for example by imposing an incentive compatibility constraint for each type to listen

to the signal intended for it. We show that, in contrast to previous hardness results for the case

without signaling (Conitzer & Sandholm, 2006; Letchford, Conitzer, & Munagala, 2009), we can

solve unrestricted games in time polynomial in their natural representation. For security games,

we obtain hardness results as well as efficient algorithms, depending on the settings. We show

the benefits of our approach in experimental evaluations of our algorithms.

6.3.1 An Example of Stackelberg Competition

The Stackelberg model was originally introduced to capture market competition between a leader

(e.g., a leading firm in some area) and a follower (e.g., an emerging start-up). The leader has an

advantage of committing to a strategy (or equivalently, moving first) before the follower makes

decisions. Here we consider a Bayesian case of Stackelberg competition where the leader does

not have full information about the follower.

For example, consider a market with two firms, a leader and a follower. The leader specializes

in two products, product 1 and product 2. The follower is a new start-up which focuses on only

one product. It is publicly known that the follower will focus on product 1 with probability

0.55 (call him a follower of type θ1 in this case), and product 2 with probability 0.45 (call him

a follower of type θ2). But the realization is only known to the follower. The leader has a

research team, and must decide which product to devote this (indivisible) team to, or to send

them on vacation. On the other hand, the follower has two options: either entering the market

and developing the product he focuses on, or leaving the market.
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F∅ F1 F2

L∅ 0 2 −∞
L1 0 −1 −∞
L2 0 2 −∞

type θ1, p = 0.55

F∅ F1 F2

L∅ 0 −∞ 1

L1 0 −∞ 1

L2 0 −∞ −1
type θ2, p = 0.45

Figure 6.6: Payoff matrices for followers of different types

Naturally, the follower wants to avoid competition with the leader’s research team. In partic-

ular, depending on the type of the follower, the leader’s decision may drive the follower out of the

market or leave the follower with a chance to gain substantial market share. This can be modeled

as a Bayesian Stackelberg Game (BSG) where the leader has one type and the follower has two

possible types. To be concrete, we specify the payoff matrices for different types of follower in

Figure 6.6, where the leader’s action Li simply denotes the leader’s decision to devote the team

to product i for i ∈ {1, 2, ∅}; ∅ means a team vacation. Similarly, the follower’s action Fi means

the follower focuses on products i ∈ {1, 2, ∅} where ∅ means leaving the market. Notice that the

payoff matrices force the follower to only produce the product that is consistent with his type,

otherwise he gets utility −∞. The utility for the leader is relatively simple: the leader gets utility

1 only if the follower (of any type) takes action F∅, i.e., leaving the market, and gets utility 0

otherwise. In other words, the leader wants to drive the follower out of the market.

Possessing a first-mover advantage, the leader can commit to a randomized strategy to assign

her research team so that it maximizes her utility in expectation over the randomness of her mixed

strategy and the follower types. Unfortunately, finding the optimal mixed strategy to commit to

turns out to be NP-hard for BSGs in general (Conitzer & Sandholm, 2006). Nevertheless, by

exploiting the special structure in this example, it is easy to show that any mixed strategy that

puts at least 2/3 probability on L1 is optimal for the leader to commit to. This is because to

drive a follower of type θ1 out of the market, the leader has to take L1 with probability at least

2/3. Likewise, to drive a follower of type θ2 out of the market, the leader has to take L2 with

probability at least 1/2. Since 2/3 + 1/2 > 1, the leader cannot achieve both, so the optimal

choice is to drive the follower of type θ1 (occurring with a higher probability) out of the market

so that the leader gets utility 0.55 in expectation.

Notice that the leader commits to the strategy without knowing the realization of the fol-

lower’s type. This is reasonable because the follower, as a start-up, can keep information con-

fidential from the leader firm at the initial stage of the competition. However, as time goes on,

the leader will gradually learn the type of the follower. Nevertheless, the leader firm cannot

change her chosen action at that point because, for example, there is insufficient time to switch

to another product. Can the leader still do something strategic at this point? In particular, we
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study whether the leader can benefit by partially revealing her action to the follower after observ-

ing the follower’s type. To be concrete, consider the following leader policy. Before observing

the follower’s type, the leader commits to choose action L1 and L2 uniformly at random, each

with probability 1/2. Meanwhile, the leader also commits to the following signaling scheme. If

the follower has type θ1, the leader will send a signal σ∅ to the follower when the leader takes

action L1, and will send either σ∅ or σ1 uniformly at random when the leader takes action L2.

Mathematically, the signaling scheme for the follower of type θ1 is captured by the following

probabilities.

Pr(σ∅|L1, θ1) = 1 Pr(σ1|L1, θ1) = 0;

Pr(σ∅|L2, θ1) = 1
2 Pr(σ1|L2, θ1) = 1

2 .

On the other hand, if the follower has type θ2, the leader will always send σ∅ regardless of what

action she has taken.

When a follower of type θ1 receives signal σ∅ (occurring with probability 3/4), he infers

the posterior belief of the leader’s strategy as Pr(L1|σ∅, θ1) = 2/3 and Pr(L2|σ∅, θ1) = 1/3,

thus deriving an expected utility of 0 from taking action F1. Assuming the follower breaks ties

in favor of the leader,4 he will then choose action F∅, leaving the market. On the other hand,

if the follower receives σ1 (occurring with probability 1/4), he knows that the leader has taken

action L2 for sure; thus the follower will take action F1, achieving utility 2. In other words, the

signals σ∅ and σ1 can be viewed as recommendations to the follower to leave the market (σ∅) or

develop the product (σ1), though we emphasize that a signal has no meaning beyond the posterior

distribution on leader’s actions that it induces. As a result, the leader drives the follower out of

the market 3/4 of the time. On the other hand, if the follower has type θ2, since the leader reveals

no information, the follower derives expected utility 0 from taking F2, and thus will choose F0 in

favor of the leader. In expectation, the leader gets utility 3
4 × 1

2 + 1
2 = 0.875(> 0.55). Thus, the

leader achieves better utility by signaling.

The design of the signaling scheme above depends crucially on the fact that the leader can

distinguish different follower types before sending the signals and will signal differently to dif-

ferent follower types. This fits the setting where the leader can observe the follower’s type after

the leader takes her action and then signals accordingly. However, in many cases, the leader is

not able to observe the follower’s type. Interestingly, it turns out that the leader can in some

cases design a signaling scheme which incentivizes the follower to truthfully report his type to

the leader and still benefit from signaling. Note that the signaling scheme above does not satisfy

the follower’s incentive compatibility constraints — if the follower is asked to report his type, a

follower of type θ2 would be better off to report his type as θ1. This follows from some simple
4This is without loss of generality because the leader can always slightly tune the probability mass to make the

follower slightly prefer F∅.
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calculation, but an intuitive reason is that a follower of type θ2 will not get any information if

he truthfully reports θ2, but will receive a more informative signal, and thus benefit himself, by

reporting θ1.

Now let us consider another leader policy. The leader commits to the mixed strategy

(L∅, L1, L2) = (1/11, 6/11, 4/11). Interestingly, this involves sometimes sending the research

team on vacation! Meanwhile, the leader also commits to the following more sophisticated sig-

naling scheme. If the follower reports type θ1, the leader will send signal σ∅ whenever L1 is taken

as well as 3
4 of the time that L2 is taken; otherwise the leader sends signal σ1. If the follower

reports type θ2, the leader sends signal σ∅ whenever L2 is taken as well as 2
3 of the time that L1

is taken; otherwise the leader sends signal σ2. It turns out that this policy is incentive compatible

— truthfully reporting the type is in the follower’s best interests — and achieves the maximum

expected leader utility 17
22 ≈ 0.773 ∈ (0.55, 0.875) among all such policies.

6.3.2 Single Leader Type, Multiple Follower Types

We now generalize the example in Section 6.3.1 and consider how the leader’s additional ability

of committing to a signaling scheme changes the game and the computation. We start with the

Bayesian Stackelberg Game (BSG) with one leader type and multiple follower types. Let Θ

denote the set of all the follower types. An instance of such a BSG in normal form is given by

a set of tuples {(Aθ, Bθ, λθ)}θ∈Θ where Aθ, Bθ ∈ Rm×n are the payoff matrices of the leader

(row player) and the follower (column player), respectively, when the follower has type θ, which

occurs with probability λθ. We use [m] and [n] to denote the leader’s and follower’s pure strategy

set respectively. For convenience, we assume that every follower type has the same number of

actions (i.e., n) in the above notation. This is without loss of generality since we can always add

“dummy” actions with payoff −∞ to both players. We use aθij [bθij ] to denote a generic entry of

Aθ [Bθ]. If Aθ = −Bθ for all θ ∈ Θ, we say that the BSG is zero-sum. Following the standard

assumption of Stackelberg games, we assume that the leader can commit to a mixed strategy.

Such a leader strategy is optimal if it results in maximal leader utility in expectation over the

randomness of the strategy and follower types, assuming each follower type best responds to the

leader’s mixed strategy.5 It is known that computing the optimal mixed strategy, also known as

the Bayesian Strong Stackelberg Equilibrium (BSSE) strategy, to commit to is NP-hard in such

a normal-form BSG (Conitzer & Sandholm, 2006). A later result strengthened the hardness to

approximation — no polynomial time algorithm can give a non-trivial approximation ratio in

general unless P=NP (Letchford et al., 2009).
5Note that the follower cannot observe the leader’s realized action, which is a standard assumption in Stackelberg

games.
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1 

Leader commits  
(strategy + signaling scheme) 

Leader “observes” follower type 
and samples a signal  

Follower’s type is 
realized 

Follower observes the 
signal and plays 

time 

Leader plays an 
action 

Figure 6.7: Timeline of the BSG with multiple follower types.

We consider a richer model where the defender can commit not only to a mixed strategy but

also to a signaling scheme of partially revealing information regarding the action she is currently

playing, i.e., the realized sample of the leader’s mixed strategy. Formally, the leader commits

to a mixed strategy x ∈ ∆m, where ∆m is the m-dimensional simplex, and a signaling scheme

ϕ which is a randomized map from Θ × [m] to a set of signals Σ. In other words, the sender

randomly chooses a signal to send based on the action she currently plays and the follower type

she observes. We call the pair

(x, ϕ) where x ∈ ∆m; ϕ : Θ× [m]
rnd−→ Σ (6.9)

a leader policy. After the commitment, the leader samples an action to play. Then the follower’s

type is realized, and the leader observes the follower’s type and samples a signal. We assume

that the follower has full knowledge of the leader policy. Upon receiving a signal, the follower

updates his belief about the leader’s action and takes a best response. Figure 6.7 illustrates the

timeline of the game.

We note that if the leader cannot distinguish different follower types and has to send the

same signal to all different follower types, then signaling does not benefit the leader (for the

same reason as in the non-Bayesian setting). In this case, she should simply commit to the

optimal mixed strategy. The leader only benefits when she can target different follower types

with different signals. In many cases, like the example in Section 6.3.1, the leader gets to observe

the follower’s type when it is realized (but after her action is completed) and can therefore choose

to signal differently to different follower types. Moreover, in practice it is sometimes natural for

the leader to send different signals to different follower types even without genuinely learning

their types, e.g., the follower’s type may be defined by their location, in which case the leader

can send signals using location-specific devices such as physical signs or radio transmission —

this fits our model just as well. We will elaborate on one such example when discussing security

games.

6.3.2.1 Normal-Form Games

We first consider the case where the leader can explicitly observe the follower’s type, and thus

can signal differently to different follower types. Like in the Bayesian persuasion model, we can
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w.l.o.g. focus on direct signaling schemes that use at most n signals with signal σj recommending

action j ∈ [n] to the follower. As a result, we assume that Σ = {σj}j∈[n].

Theorem 6.3.1. The optimal leader policy can be computed in poly(m,n, |Θ|) time by linear

programming.

Proof. Let x = (x1, . . . , xm) ∈ ∆m be the leader’s mixed strategy to commit to. A direct

signaling scheme ϕ can be characterized by ϕ(j|i, θ) which is the probability of sending signal

σj conditioned on the leader’s (pure) action i and the follower’s type θ. Then, pθij = xi ·ϕ(j|i, θ)
is the joint probability that the leader plays pure strategy i and sends signal σj , conditioned on

observing the follower of type θ. Then the following linear program computes the optimal leader

policy captured by variables {xi}i∈[m] and {pθij}i∈[m],j∈[n],θ∈Θ.

maximize
∑

θ∈Θ λθ
∑

ij p
θ
ija

θ
ij

subject to
∑n

j=1 p
θ
ij = xi, for i ∈ [m], θ ∈ Θ.∑m

i=1 p
θ
ijb

θ
ij ≥

∑m
i=1 p

θ
ijb

θ
ij′ , for θ, j 6= j′.∑m

i=1 xi = 1

pθij ≥ 0, for all i, j, θ.

.

(6.10)

The first set of constraints mean that the summation of probability mass pθij — the joint proba-

bility of playing pure strategy i and sending signal σj conditioned on follower type θ — over j

should equal the probability of playing action i for any type θ. The second set of constraints are to

guarantee that the recommended action j by signal σj is indeed the follower’s best response.

Given any game G, let Usig(G) be the leader’s expected utility by taking the optimal leader

policy computed by LP (6.10). Moreover, let UBSSE(G) be the leader’s utility in the BSSE, i.e.,

the expected leader utility by committing to (only) the optimal mixed strategy.

Proposition 5. If G is a zero-sum BSG, then Usig(G) = UBSSE(G). That is, the leader does not

benefit from signaling in zero-sum BSGs.

The intuition underlying Proposition 5 is that, in a situation of pure competition, any infor-

mation volunteered to the follower will be used to “harm” the leader. In other words, signaling is

only helpful when the game exhibits some “cooperative components”. We defer the formal proof

to Appendix C.1

Remark: As we mentioned earlier, computing the optimal mixed strategy (assuming no sig-

naling) to commit to is NP-hard to approximate within any non-trivial ratio (Conitzer & Sand-

holm, 2006; Letchford et al., 2009). Interestingly, it turns out that when we consider a richer

model with signaling, the problem becomes easy! Intuitively, this is because the signaling scheme
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“relaxes” the game by introducing correlation between the leader’s and follower’s action (via the

signal). Such correlation allows more efficient computation. Similar intuition can be seen in the

literature on computing Nash equilibria (hard for two players (Daskalakis et al., 2006; Chen et al.,

2009)) and correlated equilibria (easy in fairly general settings (Papadimitriou & Roughgarden,

2008; Jiang & Leyton-Brown, 2011)).

Incentivizing the Follower Type

In many situations, it is not realistic to expect that the leader can observe the follower’s type. For

example, the follower’s type may be whether he has a high or low value for an object, which is not

directly observable. In such cases, the leader can ask the follower to report his type. However, it

is not always in the follower’s best interest to truthfully report his own type since the signal that is

intended for a different follower type might be more beneficial to the follower (recall the example

in Section 6.3.1). In this section, we consider how to compute an optimal incentive compatible

(IC) leader policy that incentivizes the follower to truthfully report his type, and meanwhile

benefits the leader.

Note that focusing on direct signaling schemes is still without loss of generality in this setting.

To see this, consider a follower of type θ that receives more than one signal, each resulting in the

same follower best response. Then, as before, the leader can merge these signals without harming

the follower of type θ. But if a follower of type β 6= θ misreports his type as θ, receiving the

merged signal provides less information than receiving one of the unmerged signals. Therefore,

if the follower of type β had no incentive to misreport type θ before the signals were merged, he

has no incentive to misreport after the signals are merged. So any signaling scheme with more

than n signals can be reduced to an equivalent scheme with exactly n signals.

Theorem 6.3.2. The optimal incentive compatible (IC) leader policy can be computed in

poly(m,n, |Θ|) time by linear programming, assuming the leader does not observe the follower’s

type.

Proof. We still use variables x ∈ ∆m and {pθij}i∈[m],j∈[n],θ∈Θ to capture the leader’s policy.

Then αθj =
∑m

i=1 p
θ
ij is the probability of sending signal j when the follower has type θ. Now

consider the case where the follower reports type β, but has true type θ. When the leader

recommends action j (assuming a follower of type β), which now is not necessarily the fol-

lower’s best response due to the follower’s misreport, the follower’s utility for any action j′ is

89



1

αβj

∑m
i=1 p

β
ijb

θ
ij′ . Therefore, the follower’s action will be arg maxj′

1

αβj

∑m
i=1 p

β
ijb

θ
ij′ with ex-

pected utility maxj′
1

αβj

∑m
i=1 p

β
ijb

θ
ij′ . As a result, the expected utility for the follower of type θ,

but misreporting type β, is

U(β; θ) =
n∑
j=1

[
αβj ×max

j′

1

αβj

m∑
i=1

pβijb
θ
ij′

]
=

n∑
j=1

[
max
j′

m∑
i=1

pβijb
θ
ij′

]
.

Therefore, to incentivize the follower to truthfully report his type, we only need to add the

incentive compatibility constraintsU(θ; θ) ≥ U(β; θ). Using the condition maxj′
∑m

i=1 p
θ
ijb

θ
ij′ =∑m

i=1 p
θ
ijb

θ
ij , i.e., the recommended action j by σj is indeed the follower’s best response when

the follower has type θ, we have

U(θ; θ) =
∑n

j=1

[
maxj′

∑m
i=1 p

θ
ijb

θ
ij′

]
=
∑n

j=1

∑m
i=1 p

θ
ijb

θ
ij

Therefore, incorporating the above constraints to LP (6.10) gives the following optimization pro-

gram which computes an optimal incentive compatible leader policy.

maximize
∑

θ∈Θ λθ
∑

ij p
θ
ija

θ
ij

subject to
∑n

j=1 p
θ
ij = xi, for all i, θ.∑m

i=1 p
θ
ijb

θ
ij ≥

∑m
i=1 p

θ
ijb

θ
ij′ , for j 6= j′.∑n

j=1

∑m
i=1 p

θ
ijb

θ
ij ≥∑n

j=1

[
maxj′

∑m
i=1 p

β
ijb

θ
ij′

]
, for β 6= θ.∑m

i=1 xi = 1

pθij ≥ 0, for all i, j, θ.

(6.11)

Notice that
∑n

j=1

[
maxj′

∑m
i=1 p

β
ijb

θ
ij′

]
is a convex function. Therefore, the above is a convex

program. By standard tricks, the convex constraint can be converted to a set of polynomially

many linear constraints (see, e.g., (Boyd & Vandenberghe, 2004)).

Given any BSG G, let UIC(G) be the expected leader utility by playing an optimal incentive

compatible leader policy computed by Convex Program (6.11). The following theorem captures

the utility ranking of the different models.

Proposition 6 (Utility Ranking).

Usig(G) ≥ UIC(G) ≥ UBSSE(G).

Proof. The first inequality holds because any feasible solution to Program (6.11) must be feasible

to LP (6.10). The second inequality follows from the fact that the BSSE is an incentive compatible

leader policy where the signaling scheme simply reveals no information to any follower. This

scheme is trivially incentive compatible because it is indifferent to the follower’s report.
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Relation to Other Models. Our model in this section relates to the model of Persuasion

with Privately Informed Receivers (“followers” in our terminology) by (Kolotilin et al., 2017).

Though in a different context, the model of Kolotilin et al. is essentially a BSG played between a

leader and a follower of type only known to himself. In our model, players’ payoffs are affected

by the leader’s action; thus the leader first commits to a mixed strategy and then signals her

sampled action to the follower with incentive compatibility constraints. In (Kolotilin et al., 2017),

the leader does not have actions. Instead, the payoffs are determined by some random state of

nature, which the leader can privately observe but does not have control over. The follower

only has a prior belief about the state of nature, analogous to the follower knowing the leader’s

mixed strategy in our model. Kolotilin et al. study how the leader can signal such exogenously

given information to the follower with incentive compatibility constraints. Mathematically, this

corresponds to the case where x in Program (6.11) is given a-priori instead of being designed.

6.3.2.2 Security Games

We now consider Bayesian Security Games, a particular type of Stackelberg game played between

a defender (leader) and an attacker (follower). Our results here are generally negative — the

optimal leader policy becomes hard to compute even in the simplest of the security games. In

particular, we consider a security game with n targets and k (< n) identical unconstrained

security resources. Each resource can be assigned to at most one target; a target with a resource

assigned is called covered, otherwise it is uncovered. Therefore, the defender pure strategies are

subsets of targets (to be protected) of cardinality k. The attacker has n actions — attack any

one of the n targets. The attacker has a private type θ which is drawn from finite set Θ with

probability λθ. The attacker is privy to his own type, but the defender only knows the distribution

{λθ}θ∈Θ. This captures many natural security settings. For example, in airport patrolling, the

attacker could either be a terrorist or a regular policy violator as modeled in (Pita, Jain, Marecki,

Ordóñez, Portway, Tambe, Western, Paruchuri, & Kraus, 2008b). In wildlife patrolling, the type

of an attacker could be the species the attacker is interested in (Fang, Stone, & Tambe, 2015).

If the attacker chooses to attack target i ∈ [n], players’ utilities depend not only on whether

target i is covered or not, but also on the attacker’s type θ. We use Ud/ac/u (i|θ) to denote the

defender/attacker (d/a) utility when target i is covered/uncovered (c/u) and an attacker of type θ

attacks target i.

The leader now has
(
n
k

)
pure strategies; thus, the natural LP has exponential size. Never-

theless, in security games we can sometimes solve the game efficiently by exploiting compact

representations of the defender’s strategies. Unfortunately, we show that this is not possible here.

It turns out that the complexity of the problem depends on how many targets an attacker is inter-

ested in. We say that an attacker of type θ is not interested in attacking target i if there exists j
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such that Uau (i|θ) < Uac (j|θ). That is, even when target i is totally uncovered and target j is fully

covered, the attacker still prefers attacking target j — thus target i will never be attacked by an

attacker of type θ. Otherwise we say that an attacker of type θ is interested in attacking target i.

One might imagine that if an attacker is only interested in a small number of targets, this should

simplify the computation. Unfortunately, this is not the case.

Proposition 7. Computing the optimal defender policy in a Bayesian Stackelberg security game

(both with and without type-reporting IC constraints) is NP-hard, even when the defender payoff

does not depend on the attacker’s type and when each type of attacker is interested in attacking

at most four targets.

The proof of Proposition 7 requires a slight modification of a similar proof in (Li, Conitzer,

& Korzhyk, 2016), and is provided in Appendix C.2 just for completeness. Our next proposition

shows that we are able to compute the optimal defender policy in a restricted setting. This setting

is motivated by fare evasion deterrence (Yin et al., 2012) where each attacker (i.e., a passenger)

is only interested in attacking (i.e., stealing a ride from) one specific target (i.e., the metro station

nearby), or choosing to not attack (e.g., buying a ticket) in which case both players get utility 0.

Formally, we model this as a setting where each attacker type is interested in two targets: one

type-specific target and one common target t∅ (corresponding to the option of not attacking). If

t∅ is attacked, each player gets utility 0 regardless of whether t∅ is protected or not — we call t∅
coverage-invariant for this reason.6

Proposition 8. Suppose each attacker type is interested in two targets: the common coverage-

invariant target t∅ and a type-specific target. Then the defender’s optimal policy (without type-

reporting IC constraints) can be computed in poly(m,n, |Θ|) time.

The proof of Proposition 8 crucially exploits the fact that each player’s utility is “coverage-

invariant” on target t∅. As a result, the defender will not cover t∅ at all at optimality. Therefore,

for any attacker of type θ who is interested in target i and t∅, the defender only needs to signal

information about the protection of target i. This allows us to write a linear program. The

proof is deferred to Appendix C.2. Note that when we take incentive compatibility constraints

into account, the situation becomes more intricate. It could be the case that an attacker is not

interested in attacking a target, but would still like to receive an informative signal regarding its

coverage status in order to infer some information about the distribution of resources. This is

reminiscent of information leakage as described in (Xu, Jiang, Sinha, Rabinovich, Dughmi, &

Tambe, 2015), and our proof does not naturally extend to this setting.
6The utility 0 is not essential so long as t∅ is coverage-invariant.
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Leader commits  
(strategies + signaling scheme) 

Follower observes the 
signal and plays 

Leader observes her type and 
samples an action + a signal 

time 

Figure 6.8: Timeline of the BSG with multiple leader types

Our next result shows that the restriction in Proposition 8 is almost necessary for efficient

computation, as evidence of computational hardness manifests itself when we slightly go beyond

the condition there.

Proposition 9. The defender oracle problem 7 is NP-hard (both with and without type-reporting

IC constraints), even when each type of attacker is interested in two targets.

6.3.3 Multiple Leader Types, Single Follower Type

Similarly to Section 6.3.2, we still start with the normal-form Bayesian Stackelberg Game, but

with multiple leader types and a single follower type. Following the notation in Section 6.3.2, an

instance of such a BSG is also given by a set of tuples {(Aθ, Bθ, λθ)}θ∈Θ whereAθ, Bθ ∈ Rm×n

are the payoff matrices of the leader (row player) and the follower (column player) respectively.

However, Θ now is the set of leader types and λθ is the probability that the leader has type θ.

Among its many applications, one key motivation of this model is from security domains. In

security games, the follower, i.e., the attacker, usually does not have full information regarding

the importance and vulnerability of the targets for attack, while the leader, i.e., the defender,

possesses much better knowledge. This can be modeled as a BSG where the leader has multiple

types and the single-type follower has a prior belief regarding the leader’s types.

It is known that in this case, a set of linear programs suffices to compute the optimal mixed

strategy to commit to (Conitzer & Sandholm, 2006). We consider a richer model where the leader

can additionally commit to a policy, namely a signaling scheme, of partially releasing her type

and action. Formally, the leader commits to a mixed strategy xθ for each realized type θ and a

signaling scheme ϕ which is a stochastic map from Θ× [m] to Σ. We call the pair

({xθ}θ∈Θ, ϕ) where xθ ∈ ∆m; ϕ : Θ× [m]
rnd−→ Σ (6.12)

a leader policy in this setting. The game starts with the leader’s commitment. Afterwards, the

leader observes her own type, and then samples an action and a signal accordingly. The follower

observes the signal and best responds. Figure 6.8 illustrates the timeline of the game.
7The optimal policy can be computed by an LP with exponential size. The defender oracle is a main subroutine for

solving the dual of the LP. See Appendix C.2 for a derivation of the defender oracle and proof of the hardness.
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6.3.3.1 Normal-Form Games

We focus on direct signaling schemes and assume Σ = {σ1, . . . , σn} where σj is a signal recom-

mending action j to the follower.

Theorem 6.3.3. The optimal leader policy defined in Formula (6.12) can be computed in

poly(m,n, |Θ|) time by linear programming.

Proof. To represent the signaling scheme ϕ, let ϕ(j|i, θ) be the probability of sending signal σj ,

conditioned on the realized leader type θ and pure strategy i. Then pθij = ϕ(j|i, θ) · xθ(i) is the

joint probability for the leader to take (pure) action i and send signal σj , conditioned on a realized

leader type θ. The following linear program computes the optimal {pθij}i∈[m],j∈[n],θ∈Θ.8

maximize
∑

θ∈Θ λθ
∑

ij p
θ
ija

θ
ij

subject to
∑m

i=1

∑n
j=1 p

θ
ij = 1, for θ ∈ Θ.∑

i,θ λθp
θ
ijb

θ
ij ≥

∑
i,θ λθp

θ
ijb

θ
ij′ , for j 6= j′.

pθij ≥ 0, for all i, j, θ.

(6.13)

By letting xθ(i) =
∑n

j=1 p
θ
ij and ϕ(j|i, θ) = pθij/x

θ(i), we can recover the optimal defender

policy ({xθ}θ∈Θ, ϕ).

6.3.3.2 Security Games

We now again consider the security game setting. We have shown in Section 6.3.2 that, when

there are multiple follower types, the polynomial-time solvability of BSGs does not extend to

even the simplest security game setting. It turns out that when the leader has multiple types,

the optimal leader strategy and signaling scheme can be efficiently computed in fairly general

settings, as we show below.

We still adopt the notations from Section 6.3.2.2, except that θ is now the defender’s private

type. We further allow scheduling constraints in the defender’s resource allocation. Recall that

the set of defender pure strategies E and the set of marginal probabilitiesP have been described in

Section 2.2.1. It was shown previously that if the defender’s best response problem can be solved

in polynomial time, then the Strong Stackelberg equilibrium can also be computed in polynomial

time (Jain et al., 2010; Xu, 2016). We now establish an analogous result for BSG with signaling.

Theorem 6.3.4. The optimal defender policy can be computed in poly(n, |Θ|) time if the de-

fender’s best response problem (i.e., defender oracle) admits a poly(n) time algorithm.
8When |Θ| = 1, the game degenerates to a Stackelberg game without uncertainty of player types, and LP (6.13)

degenerates to a linear program that computes the Strong Stackelberg equilibrium (Conitzer & Korzhyk, 2011).
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Proof. First, observe that LP (6.13) does not obviously extend to security game settings because

the number of leader pure strategies is exponentially large here and so is the LP formulation.

Therefore, like classic security game algorithms, it is crucial to exploit a compact representation

of the leader’s policy space. For this, we need an equivalent but slightly different view of the

leader policy. That is, the leader policy can be equivalently viewed as follows: the leader ob-

serves her type θ and then randomly chooses a signal σj (occurring with probability
∑m

i=1 p
θ
ij

in LP (6.13)), and finally picks a mixed strategy that depends on both θ and σj (i.e., the vector

(pθ1j , p
θ
2j , . . . , p

θ
mj) normalized by the factor

∑m
i=1 p

θ
ij in LP (6.13)).

The different view of leader policy above allows us to write a quadratic program for comput-

ing the optimal leader policy. In particular, let pθj be the probability that the leader sends signal

j conditioned on the realized leader type θ, and let xθj be the leader’s (marginal) mixed strategy

conditioned on observing θ and sending signal σj . Then, upon receiving signal σj , a rational

Bayesian attacker will updates his belief, and compute the expected utility for attacking target j′

as ∑
θ

(
λθp

θ
j

αj
·
[
xθj(j

′)Uac (j′|θ) +
(

1− xθj(j
′)
)
Uau (j′|θ)

])
(6.14)

where the normalization factor αj =
∑

θ λθp
θ
j is the probability of sending signal σj . Define

AttU(j, j′) to be the attacker utility by attacking target j′ conditioned on receiving signal σj ,

multiplied by the probability αj of receiving signal j. Formally,

AttU(j, j′)

= αj × Equation (6.14)

=
∑

θ

(
λθp

θ
jx

θ
j(j
′)Uac (j′|θ) +

[
λθp

θ
j − λθpθjxθj(j′)

]
Uau (j′|θ)

)
Similarly, we can also define DefU(j, j′), the leader’s expected utility of sending signal σj

with target j′ being attacked, scaled by the probability of sending σj . The attacker’s incentive

compatibility constraints are then AttU(j, j) ≥ AttU(j, j′) for any j′ 6= j. Then the leader’s

problem can be expressed as the following quadratic program with variables {xθj}j∈[n],θ∈Θ and

{pθj}j∈[n],θ∈Θ.

maximize
∑

j DefU(j, j)

subject to AttU(j, j) ≥ AttU(j, j′), for j 6= j′.∑
j p

θ
j = 1, for θ ∈ Θ.

xθj ∈ P, for j, θ.

pθj ≥ 0, for j, θ.

(6.15)

The optimization program (6.15) is quadratic becauseAttU(j, j′) andDefU(j, j′) are quadratic

in the variables. Notably, these two functions are linear in pθj and the term pθjx
θ
j . Therefore, we

define variables yθj = pθjx
θ
j ∈ Rn. Then, both AttU(j, j′) and DefU(j, j′) are linear in pθj and
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yθj . The only problematic constraint in program (6.15) is xθj ∈ P , which now becomes yθj ∈ pθjP
where both pθj and yθj are variables. Here pP denotes the polytope {px : x ∈ P} for any given

p. This turns out to still be a convex constraint, and behaves nicely as long as the polytope P
behaves nicely.

Lemma 14 (Polytope Transformation). Let P ⊆ Rn be any bounded convex set. Then the fol-

lowing hold:

(i) The extended set P̃ = {(x, p) : x ∈ pP, p ≥ 0} is convex.

(ii) If P is a polytope expressed by constraints Ax ≤ b, then P̃ is also a polytope, given by

{(x, p) : Ax ≤ pb, p ≥ 0};
(iii) If P admits a poly(n) time separation oracle, so does P̃ .

The proof of Lemma 15 is standard, and is deferred to Appendix C.3. We note that the

restriction thatP is bounded is important; otherwise, some conclusions do not hold, e.g., Property

2. Fortunately, the polytope P of mixed strategies is bounded. Therefore, using Lemma 15, we

can rewrite Quadratic Program (6.15) as the following linear program.

maximize
∑

j DefU(j, j)

subject to AttU(j, j) ≥ AttU(j, j′), for j 6= j′.∑
j p

θ
j = 1, for θ ∈ Θ.

(yθj , p
θ
j) ∈ P̃, for j, θ.

pθj ≥ 0, for j, θ.

(6.16)

Program (6.16) is linear because AttU(j, j′) and DefU(j, j) are linear in pθj and yθj , and more-

over, (yθj , p
θ
j) ∈ P̃ are essentially linear constraints due to Lemma 15 and the fact that P is a

polytope in security games. Furthermore, LP (6.16) has a compact representation as long as the

polytope of realizable mixed strategies P has one. In this case, LP (6.16) can be solved explicitly.

More generally, by standard techniques from convex programing, we can show that the separa-

tion oracle for P easily reduces to the defender’s best response problem. Thus if the defender

oracle admits a poly(n) time algorithm, then a separation oracle for P can be found in poly(n)

time. By Lemma 15, P̃ then admits a poly(n) time separation oracle, so LP (6.16) can solved in

poly(n, |Θ|) time. The proof is not particularly insightful and a similar argument can be found in

(Xu, Fang, Jiang, Conitzer, Dughmi, & Tambe, 2014). So we omit the details here.

Relation to Other Models

We note that our model in this section is related to several models from the literature on both

information economics and security games. In particular, when the leader does not have actions

and only privately observes her type, our model degenerates to the Bayesian Persuasion (BP)
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model of (Kamenica & Gentzkow, 2011). Our model generalizes the BP model to the case where

the sender has both actions and private information, and our results show that this generalized

model can be solved in fairly general settings.

The security game setting in this section also relates to the model of Rabinovich et al. (Ra-

binovich et al., 2015). Rabinovich et al. considered a similar security setting where the defender

can partially signal her strategy and extra knowledge about targets’ states to the attacker in or-

der to achieve better defender utility. This is essentially a BSG with multiple leader types and a

single follower type. Rabinovich et al. (Rabinovich et al., 2015) were able to efficiently solve

for the case with unconstrained identical security resources. Our Theorem 6.3.4 shows that this

model can actually be efficiently solved in much more general security settings allowing com-

plicated real-world scheduling constraints, as long as the defender oracle problem can be solved

efficiently.

6.3.4 Experiments

We mainly present the comparison of the models discussed in Section 6.3.2 in terms of both the

leader’s optimal utility and the runtime required to compute the leader’s optimal policy. We focus

primarily on the setting with one leader type and multiple follower types, for two reasons. First,

this is the case in which it is NP-hard to compute the optimal leader strategy without allowing

the leader to signal (i.e., to compute the BSSE strategy), while our models of signaling permit a

polynomial time solution. Second, some interesting phenomena in our simulations for the case

of multiple leader types also show up in the case of multiple follower types.

We generate random instances using a modification of the covariant game model (Nudel-

man et al., 2004). For any i, j, and Θ, we independently set aθij equal to a random inte-

ger in the range [−5, 5] for each i, j, θ. The probabilities {λθ}θ∈Θ are generated randomly.
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Figure 6.9: Extra utility gained by the

leader from signaling.

For some value of α ∈ [0, 1], we then set B = α(B′) +

(1−α)(−A), whereB′ is a random matrix generated in

the same fashion as A. So in the case α = 0 the game is

zero-sum, while α = 1 means completely uncorrelated

leader and follower payoffs. For every set of parameter

values, we averaged over 50 instances generated in this

manner to obtain the utility/runtime values we report.

We first consider the value of signaling for different

values of α chosen from the set {0, 0.1, 0.2, . . . , 1}. For

these simulations, we fix m = n = 10 and |Θ| = 5.

Figure 6.9 shows the absolute increase in leader utility

from signaling (both with and without the type-reporting IC constraints), compared with the
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utility from BSSE (the y = 0 baseline). Note that when α = 0 there is no gain from signaling, by

Proposition 5. The gain from signaling is non-monotone, peaking at around α = 0.7. Intuitively,

large α means low correlation between the payoff matrices of the leader and follower; therefore,

there is a high probability that some entries will induce high payoff to both players. The leader can

therefore extract high utility from commitment alone, and thus derives little gain from signaling.

However, as we decrease α and the game becomes more competitive, commitment alone is not

as powerful for the leader and she has more to gain from being able to signal.
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Figure 6.10: Runtime and utility comparisons by varying the number of actions n and the number
of types |Θ| for the three different models in the case of multiple follower types.

We next investigate the relation between the size of the BSG and the leader’s utility, as well

as runtime, for the three different models. In Figures 6.10(a) and 6.10(b), we hold the number

of follower types constant (|Θ| = 5) and vary m = n between 1 and 15. In Figures 6.10(c)

and 6.10(d) we fix m = n = 5 and vary |Θ| between 1 and 15. In all cases we set α = 0.5 for

generating random instances.

Not surprisingly, allowing signaling (both with and without the IC constraints) provides a

significant speed-up over computing the BSSE.9 On the other hand, the additional constraints

in the model with IC constraints also increase the running time over the model without those

constraints. Indeed, the time to compute the leader’s optimal policy without the IC constraints

appears as a flat line in Figures 6.10(a) and 6.10(c).

In both figures of leader utility, the differences of the leader’s utility among the models are

as indicated by Proposition 6. Observe that in all models the leader’s utility increases with the

number of actions, but decreases with the number of types. One explanation is that the former

effect is due to the increased probability that the payoff matrices for a given follower type contain

‘cooperative’ entries where both players achieve high utility. However, as the number of follower

types increases, it becomes less likely that the leader’s strategy (which does not depend on the

follower type) can “cooperate” with a majority of follower types simultaneously. Thus there
9To compute the BSSE, we implement the state-of-art algorithm DOBBS, a mixed integer linear program as for-

mulated in (Paruchuri, Pearce, Marecki, Tambe, Ordonez, & Kraus, 2008).
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is an increased chance that the leader’s strategy results in low utilities when playing against a

reasonable fraction of follower types, which accounts for the latter effect.

In the case of multiple leader types, allowing the leader to signal actually results in a small

computational speed up compared to the case without signaling. We hypothesize that this is

because we only need to solve one LP to compute the optimal policy, rather than the multiple LPs

required to solve without signaling (Conitzer & Sandholm, 2006). Unsurprisingly, we also see

an increase in the leader’s utility. The utility trends are similar to the case of multiple follower

types, so we do not present them in detail.
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Part III

Dealing with Information Leakage
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Chapter 7

Real-World Motivation and Two Illustrative Examples

In this chapter, we describe two concrete examples motivated from real-world domains that illus-

trate the issue of information leakage in security games. Our examples show that such leakage

may cause significant loss to the defender if not addressed properly.

7.1 Motivating Example I: Information Leakage in Air Marshal
Scheduling

Our first example considers the problem of scheduling federal air marshals to protect flights (Tsai,

Rathi, Kiekintveld, Ordonez, & Tambe, 2009). With more than 30,000 commercial flights per day

in the United States airspace but only a limited number of air marshals, the Federal Air Marshal

Service (FAMS) can only cover a small portion of flights and has to schedule air marshals in

a randomized fashion. Naturally, such randomization needs to be intelligently designed based

on the risk and importance of different flights. To assist in this large-scale scheduling process,

a software assistance called Intelligent Randomization in Scheduling (IRIS) has been deployed

and is currently in use by the FAMS (Tsai et al., 2009).

Figure 7.1: A tweet that leaks information
Figure 7.2: A round-trip schedule with

information leakage.
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When designing IRIS, a crucial assumption made was that the attacker could only observe the

defender’s mixed strategy but was not able to observe, even partially, the defender’s pure strategy.

However, this assumption may fail in practice. The realized protection status of some flights may

leak out to the adversary due to various reasons, e.g., even an unintentional tweet (Figure 7.1).

Since the air marshal’s schedule is usually a round trip or even a multi-way trip, if the adversary

knows the protection status of a certain flight, he can infer the protection status of return flights

(see Figure 7.2). It turns out that such information leakage may cause a significant loss to the

defender if not addressed carefully.

To illustrate this vulnerability, we consider a simple example in which the FAMS needs to

protect four flights — two from LAX to ORD (denoted as A1, A2) and two return flights from

ORD to LAX (denoted as B1, B2). There is only one air marshal available. The flights are

depicted in the left panel of Figure 7.3. We assume that any outbound flight can form a round trip

with any return flight — i.e., their arrival and departure times are compatible. Assume that, due

to the different importances of the flights, the desired marginal protection probability is 2/3 for

flights A1 and B1 and is 1/3 for flights A2 and B2 when there is no information leakage.

Figure 7.3: Desired marginal protection probabilities and two different mixed strategies to imple-

ment the marginals.

There have been different algorithms (Tsai et al., 2009; Kiekintveld et al., 2009; Jain et al.,

2010) developed to efficiently compute the optimal defender mixed strategy — i.e., a distribu-

tion over the air marshal’s schedules — for the air marshal scheduling problem. However, they

all assume that the attacker does not observe the defender’s realized pure strategy. Under this

assumption, it does not matter how we implement the marginal protection probabilities. One

computational challenge here is the exponential explosion of the total number of pure strategies

due to the combinatorial structure of the defender’s strategy. To overcome this challenge, most

efficient algorithms are designed to implement the desired marginal protection probabilities by

randomizing over as few schedules as possible. This is also the reason that they are efficient — if

the algorithm randomizes over too many schedules, it is not efficient any more.

In this example, most efficient algorithms will output the strategy depicted in the middle panel

of Figure 7.3. That is, the air marshal will take the red round trip with probability 2/3 and the
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blue round trip with probability 1/3. It is easy to verify that this mixed strategy implements the

desired marginal protection probabilities.

Unfortunately, such a mixed strategy with small support may be extremely vulnerable to in-

formation leakage. In fact, in this example, the attacker can completely uncover the air marshal’s

schedule by observing the protection status of just one flight — actually, any flight. This is be-

cause this mixed strategy creates too much correlation among flights. For example, consider that

the adversary can observe the protection status of flight A2 (e.g., because he sees a tweet about

an air marshal as in Figure 7.1). Now, if flight A2 is protected, this implies that the air marshal

is taking the blue trip; therefore flight B1 will not be protected later. Therefore, the attacker will

have some time to plan an attack on B1. On the other hand, if flight A2 is not protected, this

implies that the air marshal is taking the red trip and flight B2 will not protected later. In either

case, the attacker can always identify a completely uncovered flight to attack.

This example illustrates that previous algorithms can be extremely vulnerable to information

leakage. In particular, these algorithms save running time by generating small-support mixed

strategies which tends to introduce strong correlation among flights and make the strategies vul-

nerable to leakage. This seems to create a dilemma between time efficiency and robustness to

leakage. The next two chapters will illustrate how we can overcome such a dilemma.

In this particular example, one possible way of overcoming the vulnerability to information

leakage is to design a different schedule distribution that achieves the same marginal protection

probabilities but has much less correlation among flights. The right panel of Figure 7.3 depicts

one such implementation. It is easy to verify that the distribution implements the given marginal

probabilities. However, it has much less correlation among flights. For example, even if the

attacker knows that flight A2 is protected, he is still uncertain whether B1 or B2 will be protected

later since both the orange and blue trip are possible. We note that the distribution of the air

marshal’s schedule here is the max-entropy distribution subject to achieving the given marginal

distributions. As we will see, the max-entropy distribution turns out to be a natural and useful

choice in the presence of information leakage.

Remark. One might wonder how much information the attacker needs in order to infer the

protection status of a flight from the status of another. In particular, would this require the attacker

to know the whole pure strategy — i.e., the probability of each pure strategy, which may be

unrealistic for the attacker to know? For such inference, it is enough for the attacker to just know

the correlation of the protection status for each pair of flights. In fact, if the attacker has a more

specific idea about which particular target to observe and which to attack, he would only need to

know the correlation among these two flights.
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7.2 Motivating Example II: Information Leakage in Patrol Route
Design

Our second example considers the design of randomized patrol routes for rangers in order to

combat poachers’ poaching activity. Information leakage is also a very important concern in this

setting due to the poacher’s partial observation of rangers’ patrol routes.

There have been many works optimizing the design of randomized patrol routes under differ-

ent game settings and player rationality models (Fang et al., 2015; Nguyen, Delle Fave, Kar, Lak-

shminarayanan, Yadav, Tambe, Agmon, Plumptre, Driciru, Wanyama, et al., 2015; Fang et al.,

2016a). The essential charge of all these works — regardless of which model or algorithm is

adopted — is to create unpredictability via randomization. However, despite te fact that there

are usually a huge number of patrol routes to choose from, most efficient algorithms tend to ran-

domize over as few routes as possible, as we illustrated in Section 7.1. Such small-support mixed

strategies usually result in high correlation among targets. This opens the door for the poacher to

use his partial observation to infer the rangers’ upcoming patrol directions. In fact, such an issue

of information leakage has been a widely known concern in wildlife conservation (Nyirenda &

Chomba, 2012; Moreto, 2013).

To be more concrete, we now give an example illustrating how the attacker can first observe

the protection status of a single target and then utilize correlations to infer the protection of other

targets. To do so, the attacker does not even need full knowledge of the defender’s mixed strategy.

Instead he only needs to know the correlations among the observed targets and his targets.

Consider the problem of designing rangers’ patrolling routes within a fixed time period, say, a

day. This is usually modeled by discretizing the area into cells as well as discretizing the time. At

the top of Figure 7.4, we depict a concrete example with 4 cells to be protected at 3 time layers —

morning, noon and afternoon. The numbers around each cell are the desired marginal coverage

probabilities for each cell at each time. For simplicity, we assume that as time goes by, the ranger

can move from any cell to any other one without constraints. The defender has 2 rangers, and

seeks to randomize their patrolling to achieve the required marginal probabilities.
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Figure 7.4: An example with four cells to be protected within three time layers.

Figure 7.5: One mixed strategy that implements the marginals in Figure 7.4

Naturally, there are many different ways to implement this mixed strategy. As we mentioned

before, classic algorithms strive to compute a mixed strategies of small support. In this example,

previous algorithms tend to output the mixed strategy, as depicted in Figure 7.5, that randomizes

over the three pure strategies.

Unfortunately, such an implementation is extremely vulnerable to the attacker’s partial

surveillance. For example, if the attacker can surveil the protection status of the bottom cell

in the morning (i.e., the one with gray color and dashed boundary in Figure 7.4) and prepare an

attack in the afternoon, he can always find a completely uncovered cell to attack. Specifically,

if the dashed cell is covered, this means the third strategy in Figure 7.5 is deployed and the at-

tacker can find two completely uncovered cells in the afternoon; Otherwise, either the first or the

second strategy is deployed; thus the second-from-the-top cell will be uncovered in the afternoon

for sure. To sum up, the attacker can successfully identify uncovered cells in the afternoon by

monitoring only one cell in the morning.
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7.3 The Curse of Correlation in Security Games

The issue illustrated in the previous motivating examples is due to the inherent correlation among

the protection status of different targets when allocating a limited number of resources. The

coverage of some targets must imply that some other targets are unprotected. These examples

show how the attacker can take advantage of such correlation and infer a significant amount of

information about the protection of other targets by monitoring even a single target. This is what

we term the Curse of Correlation (CoC) in security games. The following Proposition tries to

capture this phenomenon in a more formal sense.

We begin with some notation. Recall that any mixed strategy p is a distribution over the

set E of pure strategies. Equivalently, we can view a mixed strategy as a random binary vector

X = (X1, . . . , Xn) ∈ {0, 1}n satisfying Pr(X = e) = pe. Here, Xi ∈ {0, 1} denotes the

random protection status of target i, and Pr(Xi = 1) = xi is the marginal coverage probability.

For any Xi, let H(Xi) = xi log xi + (1 − xi) log(1 − xi) denote its Shannon entropy. Note

that, the Xi’s are correlated. Let Xi|Xk denote Xi conditioned on Xk and H(Xi|Xk) denote its

conditional entropy. We say that target k is trivial if Pr(Xk = 1) = 0 or 1; otherwise, k is non-

trivial. Obviously, the attacker infers no information about other targets by monitoring a trivial

target. The following proposition shows that if any non-trivial target k is monitored, the attacker

can always infer information about the protection of other targets.1

Proposition 10. For any non-trivial target k, we have

EXk
[∑
i 6=k

H(Xi|Xk)
]
<
∑
i 6=k

H(Xi)

.

Proof. Let Pr(Xi = 1|Xk = 1) = x1
i and Pr(Xi = 1|Xk = 0) = x0

i . Since EXk [Pr(Xi =

1|Xk)] = Pr(Xi = 1) = xi, we have xi = x1
i ·Pr(Xk = 1) + x0

i ·Pr(Xk = 0). Since H(Xi)

is strictly concave w.r.t. xi, we have

EXkH(Xi|Xk) ≥ H(Xi).

Summing over all i 6= k, we get
∑

i∈[n]:i 6=k EXk H(Xi|Xk) ≥
∑

i∈[n]:i 6=kH(Xi).

We now argue that the “=” cannot hold, and will prove it by contradiction. Note that target

i is non-trivial; therefore Pr(Xk) 6= 0, 1. Since H(Xi)’s are strictly concave, if the “=” holds,

then we must have Pr(Xi = 1|Xk = 1) = Pr(Xi = 1|Xk = 0) = xi for any i 6= k. However,

this implies that target i is trivial, i.e., i is either fully protected or unprotected. Otherwise, there
1Here we assume that all resources are fully used, and do not consider the (unreasonable) situations in which

certain security resources are sometimes underused or idle.
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must exist some j 6= i such that the marginal probability of j will be different between the

circumstances that i is protected and not protected.

Proposition 10 shows that, conditioned on Xk, the entropy sum of all other Xi’s strictly

decreases in expectation. Note that it holds regardless of whether the security resources have

scheduling constraints or not. This illustrates that the correlations among targets are intrinsic and

inevitable.
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Chapter 8

The Algorithmic Foundation for Dealing with Information Leakage

Most security games assume that the attacker only knows the defender’s mixed strategy, but is

not able to observe (even partially) the instantiated pure strategy. This fails to capture the cases

where the attacker conducts real-time surveillance and may get partial observation regarding the

deployed pure strategy. Despite its potential presence in reality as illustrated in Chapter 7, such

issues, which we refer to as information leakage, have not been payed much attention in the

literature on security games.

In this chapter, we propose two natural models of security games with information leakage,

depending on how much the defender knows about the leakage situation. We then undertake an

algorithmic study for the problem of computing the optimal defender strategy under leakage, and

focus on perhaps the most basic setting: zero-sum security games with no scheduling constraints.

We first describe an exponential-size LP formulation to compute the defender’s optimal strategy

against leakage, and then exhibit evidence of computational intractability for the model. This

shows the intrinsic difficulty of handling leakage. We then tackle the problem from two different

angles: developing polynomial-time algorithms for restricted settings and designing algorithms

with approximation guarantees.

8.1 Information Leakage in Security Games – Two Basic Models

To the best of our knowledge, there has not been any previous study about security games with in-

formation leakage. Therefore, for simplicity, we start with a basic model where information leaks

from only one target, though our model and algorithms can be generalized. For our algorithmic

analysis in this chapter, we will focus on the simple security game setting where the defender

allocates k resources to protect n targets without any scheduling constraint. Such models have

applications in real security systems like ARMOR for the LAX airport and GUARDS for port

patrolling (Tambe, 2011).
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Consider a standard zero-sum Stackelberg security game with a defender and an attacker. The

defender allocates k security resources to protect n targets, denoted by the set [n] = {1, 2, . . . , n}.
In this section we focus on the case where the security resources do not have scheduling con-

straints. As a result, any subset of [n] with cardinality at most k is a defender pure strategy. For

any i ∈ [n], let ri be the reward [ci be the cost] of the defender when the attacked target i is

protected [unprotected]. Since the game is zero-sum, the attacker’s utility is the negation of the

defender’s utility. Following the notation in Section 2.2, we still use e ∈ {0, 1}n to denote a pure

strategy and E to denote the set of all pure strategies. Recall that we may also view e as a subset

of [n], denoting the protected targets. The intended interpretation should be clear from context.

The support of a mixed strategy is the set of pure strategies with non-zero probabilities. With-

out information leakage, the problem of computing the defender’s optimal mixed strategy can be

compactly formulated as linear program (8.1) with each variable xi as the marginal probability of

covering target i. Any feasible marginal vector ~x can be efficiently implemented as a distribution

over pure strategies, e.g., by Comb Sampling (Tsai, Yin, young Kwak, Kempe, Kiekintveld, &

Tambe, 2010).

maximize u

subject to u ≤ rixi + ci(1− xi), for i ∈ [n].∑
i∈[n] xi ≤ k

0 ≤ xi ≤ 1, for i ∈ [n].

(8.1)

Building on this basic security game, our model goes one step further and considers the possi-

bility that the protection status of one target leaks to the attacker. Here, by “protection status” we

mean whether this target is protected or not in an instantiation of the mixed strategy. We consider

two basic models of information leakage.

8.1.1 Adversarial Leakage

In the ADversarial Information Leakage (ADIL) model, parameterized by a probability param-

eter p0 ∈ [0, 1], we assume that with probability 1 − p0, one adversarially chosen target leaks

information, and otherwise no target leaks information. Our goal then is to compute the opti-

mal defender strategy assuming such an adversarially chosen leaking target. This model captures

the case where the attacker will strategically choose a target for surveillance and with a certain

probability he succeeds in observing the protection status of the surveiled target. In practice, the

parameter p0 can be estimated by domain experts. This model is suitable for the situation where

the defender does not know much about the leakage situation except knowing that some target

may leak information. The model then takes a robust perspective and optimizes against the worst

case.
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8.1.2 Probabilistic Leakage

In the PRobabilistic Information Ieakage (PRIL) model, parameterized by probabilities pi(≥ 0)

for i = 0, 1, . . . , n, we assume that the leaking target is i with probability pi, and with probability

p0 no targets leak information. Therefore, these probabilities satisfy p0 +
∑n

i=1 pi = 1, i.e.,

~p = (p0, p1, . . . , pn) ∈ ∆n+1 where ∆n+1 is the (n + 1)-dimensional simplex. In practice, the

vector ~p is usually given by domain experts and may be determined by the nature or property of

targets. This model requires the defender to have much more knowledge about the game. It is

suitable when the defender has a relatively good estimate of the leakage situation and such an

estimate is summarized as a distribution over the leakage probabilities of targets.

8.2 Complexity Barriers to Computing the Optimal Strategy

Given either leakage model – PRIL parameterized by ~p ∈ ∆n+1 or ADIL parameterized by p0–

we are interested in computing the optimal defender mixed strategy. Recall that we focus on

zero-sum security games.

To see what an optimal strategy is like under a particular leakage model and what kind of

information we need to keep track of, we start with a simple illustrative example. Consider a

zero-sum security game with 4 targets and 2 resources. The profile of rewards ri [cost ci] is

~r = (1, 1, 2, 2) [~c = (−2,−2,−1,−1)], where the coordinates are indexed by target ids. If

there is no information leakage, it is easy to see that the optimal marginal coverage is ~x =

(2
3 ,

2
3 ,

1
3 ,

1
3). The attacker will attack an arbitrary target, resulting in a defender utility of 0. Now,

let us consider a simple case of information leakage. Assume the attacker observes whether target

1 is protected or not in any instantiation of the mixed strategy, i.e., p1 = 1. As we will argue,

how the marginal probability ~x is implemented would matter now. One way to implement ~x is

to protect targets {1, 2} with probability 2
3 and protect {3, 4} with probability 1

3 . However, this

implementation is “fragile” in the presence of the above information leakage. In particular, if

the attacker observes that target 1 is protected (which occurs with probability 2
3 ), he infers that

the defender is protecting targets {1, 2} and will attack 3 or 4, resulting in a defender utility of

−1; if target 1 is not protected, the attacker will just attack, resulting in a defender utility of −2.

Therefore, the defender gets expected utility −4
3 .

Now consider another way to implement the same marginal ~x by the following mixed strat-

egy:

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
10/27 4/27 4/27 4/27 4/27 1/27
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If the attacker observes that target 1 is protected (which occurs with probability 2
3 ), then he

infers that target 2 is protected with probability
10
27

10
27

+ 4
27

+ 4
27

= 5
9 , and target 3, 4 are both protected

with probability 2
9 . Some calculation shows that the attacker will have the same utility 1

3 on

targets 2, 3, 4 and thus will choose an arbitrary one to attack, resulting in a defender utility of

−1
3 . On the other hand, if target 1 is observed to be unprotected, the defender gets utility −2. In

expectation, the defender gets utility 2
3 × (−1

3) + 1
3 × (−2) = −8

9 .

As seen above, though implementing the same marginals, the latter mixed strategy achieves

better defender utility than the former one in the presence of information leakage. However, is it

optimal? It turns out that the following mixed strategy achieves an even better defender utility of

−1
3 , which can be proved to be optimal: protect {1, 2} with probability 5

9 , {1, 3} with probability
2
9 and {1, 4} with probability 2

9 .

This example shows that compact representation by marginal coverage probabilities is not

sufficient for computing the optimal defending strategy assuming information leakage. This nat-

urally raises new computational challenges: how can we formulate the defender’s optimization

problem and compute the optimal solution? Is there still a compact formulation or is it necessary

to enumerate all the exponentially many pure strategies? What is the computational complexity

of this problem? These are the questions we aim to answer in this section.

8.2.1 An Exponential-Size LP Formulation and Evidence of Hardness

We will focus on the PRIL model. The formulation for the ADIL model will be provided at

the end of this section since it admits a similar derivation. Fixing the defender’s mixed strategy,

let Ti (¬Ti) denote the event that target i is protected (unprotected). For the PRIL model, the

defender’s utility equals

DefU = p0u+
n∑
i=1

pi(ui + vi)

where u = minj [rj Pr(Tj) + cj Pr(¬Tj)] is the defender’s utility when there is no information

leakage; and

ui = Pr(Ti)×min
j

[rj Pr(Tj |Ti) + cj Pr(¬Tj |Ti)]

= min
j

[rj Pr(Tj , Ti) + cj Pr(¬Tj , Ti)]

is the defender’s utility when target i leaks out its protection status as Ti (i.e., protected) multiplied

by probability Pr(Ti). Similarly

vi = min
j

[rj Pr(Tj ,¬Ti) + cj Pr(¬Tj ,¬Ti)]

is the defender’s expected utility multiplied by probability Pr(¬Ti) when target i leaks status

¬Ti (i.e., unprotected).
111



Define variables xij = Pr(Ti, Tj) (setting xii = Pr(Ti)). Using the fact that Pr(Ti,¬Tj) =

xii−xij and Pr(¬Ti,¬Tj) = 1−xii−xjj +xij , we obtain the following linear program which

computes the defender’s optimal patrolling strategy:

maximize p0u+
∑n

i=1 pi(ui + vi)

subject to u ≤ rjxjj + cj(1− xjj), for j ∈ [n].

ui ≤ rjxij + cj(xii − xij), for i, j ∈ [n].

vi ≤ rj(xjj − xij) + cj(1− xii − xjj + xij), for i, j ∈ [n].

xij =
∑

e:i,j∈e θe, for i, j ∈ [n].∑
e∈E θe = 1

θe ≥ 0, for e ∈ E .

(8.2)

where u, ui, vi, xij , θe are variables; e denotes a pure strategy and the sum condition “e : i, j ∈
e” means summing over all the pure strategies that protect both targets i and j (or i if i = j); θe
denotes the probability of choosing strategy e.

Unfortunately, LP (8.2) suffers from an exponential explosion of variables, specifically, θe.

From the sake of computational efficiency, one natural idea is to find a compact representation

of the defender’s mixed strategy. As suggested by LP (8.2), the variables xij , indicating the

probability that targets i, j are both protected, are sufficient to describe the defender’s objective

and the attacker’s incentive constraints.

Let us call the variables xij the pairwise marginals and think of them as a matrixX ∈ Rn×n,

i.e., the i’th row and j’th column of X is xij (not to be confused with the marginals ~x). We say

X is feasible if there exists a mixed strategy, i.e., a distribution over pure strategies, that achieves

the pair-wise marginals X . Clearly, not all X ∈ Rn×n are feasible. Let P(n, k) ⊆ Rn×n be the

set of all feasible X . The following lemma shows a structural property of P(n, k).

Lemma 15. P(n, k) is a polytope and any X ∈ P(n, k) is a symmetric positive semi-definite

(PSD) matrix.

Proof. Notice that X is feasible if and only if there exists θe for any pure strategy e such that the

following linear constraints hold:

xij =
∑

e:i,j∈e θe, for i, j ∈ [n].∑
e∈E θe = 1

θe ≥ 0, for e ∈ E .
(8.3)

These constraints define a polytope for variables (X, ~θ). Therefore, its projection to the lower

dimension X , which is precisely P(n, k), is also a polytope.

To prove X ∈ P(n, k) is PSD, we first observe that any vertex of P(n, k), characterizing a

pure strategy, is PSD. In fact, let e ∈ {0, 1}n be any pure strategy. Then the pair-wise marginal
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w.r.t. e is Xe = e · eT , which is PSD. Therefore, any X ∈ P , which is a convex combination of

its vertices, is also PSD.

maximize p0u+
∑n

i=1 pi(ui + vi)

subject to u ≤ rjxjj + cj(1− xjj), for j ∈ [n].

ui ≤ rjxij + cj(xii − xij), for i, j ∈ [n].

vi ≤ rj(xjj − xij) + cj(1− xii − xjj + xij), for i, j ∈ [n].

X ∈ P(n, k)

(8.4)

With Lemma 15, we may re-write LP (8.2) compactly as LP (8.4) with variables u, ui, vi
and X . Therefore, we would be able to compute the optimal strategy in polynomial time if there

are only polynomially many constraints determining the polytope P(n, k) — recall that this is

the approach we took with LP (8.1) in the case of no information leakage. Unfortunately, the

following lemma rules out the approach of using compact representations of polytopes (unless P

= NP).

Lemma 16. Optimizing over P(n, k) is NP-hard.

Proof. We prove the lemma by reduction from the densest k-subgraph problem. Given any graph

instance G = (V,E), let A be the adjacency matrix of G. Consider the following linear program:

maximize
∑

i,j∈[n]Aijxij

subject to X ∈ P(n, k).
(8.5)

This linear program must have a vertex optimal solution X∗ which satisfies X∗ = eeT for some

pure strategy e ∈ {0, 1}n. Therefore, the linear objective satisfies∑
i,j∈[n]

Aijxij = tr(AX∗) = tr(A× eeT ) = tr(eTAe) = eTAe.

Notice that eTAe/2k equals the density of a subgraph of G with k nodes indicated by e. Since

X∗ is the optimal solution to LP (8.5), it also maximizes the density eTAe/2k over all subgraphs

with k nodes. In other words, the ability to optimize LP (8.5) implies the ability to compute the

densest k-subgraph, which is NP-hard. Therefore, optimizing over P(n, k) is NP-hard.

Lemma 16 suggests that there is no hope of finding polynomially many linear constraints

which determine P(n, k) or, more generally, an efficient separation oracle for P(n, k), assuming

P 6=NP. In fact, P(n, k) is closely related to a fundamental geometric object, known as the corre-

lation polytope, which has applications in quantum mechanics, statistics, machine learning and

combinatorial problems. The following is a formal definition of the correlation polytope.
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Definition 4. (Pitowsky, 1991) Given an integer n, the Correlation Polytope P(n) is defined as

follows

P(n) = Conv
(
{vvT : v ∈ {0, 1}n}

)
.

where Conv(S) denotes the convex hull of set S. Notice that vvT ∈ {0, 1}n×n for all v ∈
{0, 1}n.

The following proposition shows an interesting connection between P(n, k) and the correla-

tion polytope P(n).

Proposition 11. X ∈ P(n, k) if and only if the following three constraints hold: (a) X ∈ P(n);

(b) tr(X) =
∑n

i=1 xii = k; and (c) sum(X) =
∑n

i,j=1 xij = k2. In other words, P(n, k) is

decided by P(n) with two additional linear constraints.

Proof. We show that, given X ∈ P(n), if X satisfies the following two linear constraints:

tr(X) = k, sum(X) = k2, then X ∈ P(n, k).

Since X ∈ P(n), there exist Xi ∈ P(n, i) and pi ≥ 0, such that X =
∑n

i=1 piXi and∑n
i=1 pi = 1. That is, X is a convex combination of elements from each P(n, i). Notice that

∀Xi ∈ P(n, i), we have tr(Xi) = i and sum(Xi) = i2, since any vertex of P(n, i) satisfies

these constraints. Let X ∈ P(n, k). Then we have:

(i) :1 =
n∑
i=1

pi

(ii) :k = tr(X) =
n∑
i=1

pi × tr(Xi) =
n∑
i=1

pi × i

(iii) :k2 = sum(X) =
n∑
i=1

pi × sum(Xi) =
n∑
i=1

pi × i2

By the Cauchy-Schwarz inequality, we have (
∑n

i=1 pi)(
∑n

i=1 pii
2) ≥ (

∑n
i=1 pii)

2. Plugging

the above three equations into the Cauchy-Schwarz inequality yields that the equality holds. The

condition of equality for the Cauchy-Schwarz inequality is that pii2/pi is a constant for all i, such

that pi 6= 0. This shows that there is only one non-zero element among the pi’s. That is pk = 1.

Therefore, X ∈ P(n, k).

We note that (Pitowsky, 1991) defines correlation polytopes in a more general fashion, and

our definition of P(n) is in fact an important special case of the correlation polytope, which is

called the full correlation polytope. (Pitowsky, 1991) proved that checking for membership of

polytope P(n) is NP-complete.

Remark. Though Lemma 16 does not directly imply the NP-hardness of computing the optimal

defender strategy (i.e., solving LP (8.4)), it serves as strong evidence. In (Xu, 2016), it was proved
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that for standard security games with no information leakage, the NP-hardness of optimizing

over the polytople of marginal probabilities implies the NP-hardness of computing the optimal

defender strategy. Thus we view Lemma 16 as an indicator of the difficulty for computing the

optimal defender strategy, though we remark that whether such an implication holds rigorously

in the setting with information leakage is an interesting open problem.

8.2.2 The Dual Program and Evidence of Hardness

Another popular approach for computing the optimal defender strategy in security games is to

use the technique of column generation, which is a master/slave decomposition of an optimiza-

tion problem (Tambe, 2011; Jain, Korzhyk, Vaněk, Conitzer, Pěchouček, & Tambe, 2011). The

essential part of this approach is the slave problem (Jain et al., 2010). Next we show that this

approach will not work either. In particular, we will first derive the slave problem and then show

that it is NP-hard to solve.

A slave problem is an important subproblem for solving security games with a large number

of pure strategies using the Column Generation technique. Any algorithm for solving the slave

problem is also called a “defender oracle” by convention (Jain et al., 2010). We now derive the

formulation for the slave problem in the PRIL model.

Recall that LP (8.2) has a large number of variables because the number of pure strategies is

exponential. However, by counting the number of activated constraints at optimality, we know

that only polynomially many of these pure strategies will have non-zero probabilities at optimality

since most pure strategies activate the corresponding constraint θe ≥ 0 and take probability 0.

Column generation is based on this observation, i.e., the optimal mixed strategy has small support.

Basically, instead of solving LP (8.2) on the set E of all pure strategies, it starts from a small subset

of pure strategies, denoted as A, and solves the following “restricted” LP.

maximize p0u+
∑n

i=1 pi(ui + vi)

subject to u ≤ rjxjj + cj(1− xjj), for j ∈ [n].

ui ≤ rjxij + cj(xii − xij), for i, j ∈ [n].

vi ≤ rj(xjj − xij) + cj(1− xii − xjj + xij), for i, j ∈ [n].

xij =
∑

e∈A:i,j∈e θe, for i, j ∈ [n].∑
e∈A θe = 1

θe ≥ 0, for e ∈ A.

(8.6)

Notice that the only difference between LP (8.2) and LP (8.6) is that the set E of all pure strategies

is replaced by a small subset A. In practice, A is usually initialized with a small number of pure

strategies that are arbitrarily chosen. Column generation proceeds roughly as follows: 1. it solves

LP (8.6); 2. by checking the dual of LP (8.6) the defender oracle judges whether the computed
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optimal solution for LP (8.6) is also optimal for LP (8.2) (assigning all pure strategies in E \ A
probability 0); if not, the oracle finds a new pure strategy to be added to the set A and updates

A. This procedure continues until the defender oracle asserts that the computed optimal solution

w.r.t. the current A is also optimal for LP (8.2). We now explain the underlying rationale of the

column generation technique.

We first derive the dual of LP (8.6). In fact, to emphasize the key aspects and avoid messy

derivations, we rewrite LP (8.6) in the following abstract form:

maximize dT y

subject to Mx+Ny ≤ c
xij −

∑
e∈A:i,j∈e θe = 0, for i, j ∈ [n].∑

e∈A θe = 1

θe ≥ 0, for e ∈ A.

(8.7)

where the variable y represents the vector consisting of u, vi, ui while the variable x is the vector

representation of xij (putting i, j in some fixed order); d is a vector summarizing the original

objective coefficients; the constraints Mx+Ny ≤ c summarize the first three sets of constraints

in LP (8.6). This abstract form not only simplifies our derivation of the dual; more importantly it

emphasizes that the column generation technique works regardless of what the first three sets of

constraints are as long as there are polynomially many of them.

LetMindex(i,j) be the column vector ofM corresponding to variable xij andNl be the column

vector of N corresponding to the l’th component of y. We can now simply derive the dual of

LP (8.7) as follows:

minimize cTρ+ ω

subject to ρTNl ≥ dl, for all l.

ρTMindex(i,j) + βij≥0, for i, j ∈ [n].

−∑i,j∈e βij + ω ≥ 0, for e ∈ A.
ρ ≥ 0

(8.8)

where ρ are the dual variables w.r.t. the first set of constraints in LP (8.7) and βij , ω are the dual

variables w.r.t. the second and third set of constraints.

Note that the optimal solution to LP (8.7) (denoted as OptSolA) and the optimal solution

to LP (8.8) (denoted as OptSolDualA) can both be computed efficiently when A is small. A

key observation here is that, if OptSolDualA, in particular, ω and βij , happens to make the

constraints−∑i,j∈e βij+ω ≥ 0, ∀e ∈ A hold more generally as−∑i,j∈e βij+ω ≥ 0, ∀e ∈ E
, then we claim that OptSolA is also an optimal solution to LP (8.2) (by picking pure strategies

in E \A with probability 0). This is because, if we replace A by E in both LP (8.7) and LP (8.8),

OptSolA is still feasible to LP (8.7) because all the newly added strategies (in E \ A) have
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probability 0; OptSolDualA is still feasible to LP (8.8) because our ω, βij make constraints

−∑i,j∈e βij + ω ≥ 0 hold for all e ∈ E by assumption. Furthermore, complementary slackness

still holds since the added new variables in LP (8.7) all take value 0. By linear program basics,

OptSolA is still optimal if we replace A in LP (8.7) by E , which is precisely LP (8.2).

As a result, our key task is to judge whether −∑i,j∈e βij + ω ≥ 0 holds for all e ∈ E
for a given dual solution. This is equivalent to deciding whether ω ≥ maxe∈E

[∑
i,j∈e βij

]
.

Therefore, the slave problem is defined as follows.

Slave Problem: For any given weights βij , solve the following maximization problem:

max
e∈E

∑
i,j∈e

βij

 = max
e∈E

sT (
M +MT

2
)s (8.9)

where M is the matrix satisfying Mij = βij . In other words, the defender oracle finds a pure

strategy e that maximizes the sum
∑

i,j∈e βij .

Recall that any algorithm that solves the slave problem is called a defender oracle. With

this oracle, column generation proceeds as follows: 1. compute LP (8.7) and LP (8.8); 2. use

the defender oracle to solve Problem (8.9): if the optimal value is less than or equal to the dual

variable ω, asserts optimality; otherwise, add e∗ – the optimal solution to Problem (8.9) – to

A; 3. repeat until optimality is reached. Notice that the newly added e∗ does not belong to the

original A because all e ∈ A satisfy
∑

i,j∈e βij ≤ ω. Column generation does not guarantee

polynomial convergence, but usually converges very fast in practice. This is because the optimal

mixed strategy usually has small support.

The following lemma shows that the slave problem is also NP-hard, and thus rules out the

efficient implementation of the column generation approach for solving the problem.

Lemma 17. The slave problem described above is NP-hard.

Proof. The proof is similar to that of Lemma 16 by viewing the matrixM as an adjacency matrix

of a graph. We omit the repetition here.

By now, we have exhibited evidence of the hardness for solving LP (8.2) using either compact

representation or the technique of column generation. For the ADIL model, a similar derivation
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yields that the following LP formulation computes the optimal defender strategy. It is easy to

verify that it shares its marginal probabilities and slave problem with the PRIL model.

maximize p0u+ (1− p0)w

subject to u ≤ rjxjj + cj(1− xjj), for j ∈ [n].

ui ≤ rjxij + cj(xii − xij), for i, j ∈ [n].

vi ≤ rj(xjj − xij) + cj(1− xii − xjj + xij), for i, j ∈ [n].

w ≤ ui + vi, for i ∈ [n].

X ∈ P(n, k)

(8.10)

where variable w is the defender’s expected utility when an adversarially chosen target is ob-

served by the attacker. LP (8.10) can also be abstractly written in the form of LP (8.7), and thus

its slave problem is also NP-hard.

8.3 Provable Algorithms for Restricted Settings and Approximate
Solutions

The results in Section 8.2 suggest the difficulty of developing a polynomial-time algorithm to

exactly solve security games with leakage. In this section, we seek to tackle this computational

challenge by focusing on well-motivated special settings.

8.3.1 Leakage from Small Support

Despite the hardness results for the general case, we show that the slave problem admits a polyno-

mial time algorithm if the information only possibly leaks from a small subset of targets; we call

this set the leakage support. By reordering the targets, we may assume without loss of generality

that only the first m targets, denoted by the set [m], could possibly leak information in both the

PRIL and ADIL model. For the PRIL model, this means pi = 0 for any i > m and for the ADIL

model, this means the attacker only chooses a target in [m] for surveillance.

Why does this make the problem tractable? Intuitively the reason is as follows: when infor-

mation leaks from a small set of targets, we only need to consider the correlations between these

leaking targets and others, which is a much smaller set of variables than in LP (8.2) or (8.10).

When restricted to a leakage support of size m, a similar derivation as in Section 8.2.2 reveals

that the slave problem is the follows. Let A be a symmetric matrix of the following block form

Slave Problem with Leakage Support [m]: Let A be a symmetric matrix of the following block

form

A :

[
Amm Amm′

Am′m Am′m′

]
(8.11)
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where m′ = n − m; Amm′ ∈ Rm×m′ for any integers m,m′ is a sub-matrix and, crucially,

Am′m′ is a diagonal matrix. Given A of the form (8.11), find a pure strategy e such that eTAe is

maximized.

A defender oracle will identify the size-k principal submatrix with maximum entry sum for

any A of form (8.11). Note that m = n in the general case. Next, we prove that the slave

problem admits a polynomial time algorithm when m is a constant. We start with some notation.

LetA[i, :] be the i’th row of matrixA and diag(A) be the vector consisting of the diagonal entries

ofA. For any subsetsC1, C2 of [n], letAC1,C2 be the submatrix ofA consisting of rows inC1 and

columns in C2, and sum(AC1,C2) =
∑

i∈C1,j∈C2
Aij be the entry sum of AC1,C2 . The following

lemma shows that Algorithm 6 solves the slave problem. The key insight here is that for a pure

strategy e to be optimal, once the set C = e ∩ [m] is decided, its complement C = e \ C can

be explicitly identified. Therefore we can simply brute-force search to find the best C ⊆ [m].

Lemma 18 provides the algorithm’s guarantee, which then yields the polynomial-time solvability

for the case of small m (Theorem 8.3.1).

Lemma 18. Let m be the size of the leakage support. Algorithm 6 solves the slave problem and

runs in poly(n, k, 2m) time. In particular, the slave problem admits a poly(n, k) time algorithm

if m is a constant.

Proof. First, it is easy to see that Algorithm 1 runs in poly(2m, n, k) time since the for-loop is

executed at most 2m times. We show that it solves the slave problem.

Let e denote the indices of the principal submatrix of A with maximum entry sum. Notice

that e can also be viewed as a pure strategy. Let C = e ∩ [m] and C = e \ C. We claim that,

given C, C must be the set of indices of the largest k − |C| values from the set {vm+1, . . . , vn},
where ~v is defined as ~v = 2

∑
i∈C A[i, :] +diag(A). In other words, if we know C, the set C can

be easily identified. To prove the claim, we re-write the sum(As,s) as follows:

sum(As,s)

= sum(AC,C) + 2sum(AC,C) + sum(AC,C)

= sum(AC,C) + 2sum(AC,C) + sum(diag(AC,C))

= sum(AC,C) + sum(2
∑
i∈C

Ai,C + diag(AC,C))

= sum(AC,C) + sum(vC)

= valC

where ~v = 2
∑

i∈C A[i, :] + diag(A) and vC is the sub-vector of v with indices in C. Given C,

sum(AC,C) is fixed; therefore C must be the set of indices of the largest k − |C| elements from

119



{vm+1, . . . , vn}. Algorithm 1 then loops over all the possible C ⊆ [m] (2m many ) and identifies

the optimal one, i.e., the one achieving the maximum valC .

Algorithm 6: Defender Oracle

Input: matrix A of the form (8.11).
Output: a pure strategy e.

1: for all C ⊆ [m] constrained by |C| ≤ k do
2: ~v = 2

∑
i∈C A[i, :] + diag(A);

3: Choose the largest k− |C| values from the set {vm+1, . . . , vn}, and denote the set of their
indices as C;

4: Set valC = sum(AC,C) + sum(vC);
5: return the pure strategy e = C ∪ C with maximum valC .

Utilizing Lemma 18, we can prove the following theorem.

Theorem 8.3.1. (Polynomial Solvability) There is a poly(n, k) time algorithm which computes

the optimal defender strategy in the PRIL and ADIL model, if the size of the leakage support m

is a constant.

Proof. We prove that LP (8.7) (which is really LP (8.4) written abstractly) can be solved in

polynomial time. In fact, we prove that its dual program can be solved in polynomial time, which

then implies that the primal LP (8.7) can be solved in polynomial time due to complementary

slackness (Grötschel et al., 1988).

Since the leaking target could only be from [m], LP (8.7) only has variables xij for any

i ∈ [m] or j ∈ [m] or i = j. As a result, the dual LP (8.8) only has variable βij’s for i ∈ [m]

or j ∈ [m] or i = j, which satisfies precisely the condition in the above slave problem for small

support [m]. This implies that the polynomial time defender oracle (Algorithm 6) can be used

to efficiently evaluate whether the constraints −∑i,j∈e βij + ω ≥ 0 are violated or not. All

other other (polynomially many) constraints can be explicitly evaluated. Therefore, an efficient

defender oracle gives rise to an efficient separation oracle for the feasible region of the dual LP

(8.8). As a result, we can solve the dual program in polynomial time, concluding the proof.

8.3.2 An Approximation Algorithm

We now consider approximation algorithms. Recall that information leakage is due to the cor-

relation between targets. Thus one natural way to minimize leakage is to allocate each resource

independently with certain distributions. The normalized marginal ~x∗/k is a natural choice, where

~x∗ is the solution to LP (8.1). To avoid the waste of using multiple resources to protect the same

target, we sample without replacement. Formally, the independent sampling without replacement
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(IndepSamp) algorithm proceeds as follows: 1. compute the optimal solution ~x∗ of LP (8.1);

2. independently sample k elements from [n] without replacement using the distribution ~x∗/k.

Since players may have positive or negative utilities in zero-sum games, a multiplicative

approximation ratio in terms of utility is not meaningful. To analyze the performance of this

algorithm, we instead consider the “coverage-match” criterion — i.e., how many more security

resources are needed in order to achieve the same coverage level as the case of no leakage? More

formally, we say that an algorithm is an α-approximation (α ≥ 1) if the protection statuses

T1, . . . , Tn it induces satisfy that for any i, Pr(Ti) ≥ x∗i , Pr(Ti|Tj) ≥ x∗i and Pr(Ti|¬Tj) ≥ x∗i
for any target j that possibly leaks information.1 This guarantees that the marginal protection

probability of any target i is at least x∗i , i.e., i’s protection probability in the SSE with no leakage,

conditioned on any target j with possible leakage.

Theorem 8.3.2 shows that IndepSamp with a slight modification2 is roughly a ( e
e−1)-

approximation under the aforementioned coverage-match criterion for both the PRIL and ADIL

models.

Theorem 8.3.2. Under the coverage-match criterion, there is a e
e− k−1

k−2

-approximation algorithm

for both the PRIL and ADIL model.

Proof of Theorem 8.3.2

Let Y = Y (~x) ∈ Rn×n be a function of any ~x ∈ Rn, where yij is the probability that targets i, j

are both protected using IndepSamp. Let Ti (¬Ti) denote the event that target i is protected

(unprotected) using IndepSamp. We first prove Lemma 19, which provides a lower bound

regarding how well the pair-wise marginals in Y approximate the original marginals ~x. The

difficulty of proving Lemma 19 lies in the fact that Y does not have a closed form in terms of

~x if we sample without replacement. Our proof is based on a coupling argument by relating the

algorithm to independent sampling with replacement.3

Lemma 19. Given ~x, Y = Y (~x) satisfies the following (in)equalities:

Pr(Tj) = yjj ≥ (1− 1

e
)xj , ∀j ∈ [n]; (8.12)

Pr(Tj |Ti) =
yij
yii
≥ (

k − 2

k − 1
− 1

e
)xj , ∀i 6= j. (8.13)

Pr(Tj |¬Ti) =
yjj − yij
1− yii

≥ (1− 1

e
)xj , ∀i 6= j. (8.14)

1Recall that Ti is the event that target i is protected.
2Because directly applying IndepSamp can never match, e.g., coverage probability 1.
3Our insistence on sampling without replacement is due to a practical consideration — making complete use of all

security resources, though using the sampling approach with replacement may be easier to analyze from a theoretical
perspective.
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Proof. To prove these inequalities, we instead consider independent sampling with replacement.

Define the function Z = Z(~x) ∈ Rn×n to be a function of ~x, where zij is the probability that

targets i, j are protected together when sampling with replacement. Contrary to Y , Z has a

succinct closed forms, and therefore we can lower bound entries in Z. We first consider zjj .

zjj = 1− (1− xj/k)k

≥ 1− e−xj

≥ (1− 1

e
)xj .

where we used the fact (1 − ε)
1
ε ≤ e−1 for any ε ∈ (0, 1). Now we lower bound zij/zii as

follows.

zij
zii

=
1− (1− xi

k )k − (1− xj
k )k + (1− xi

k −
xj
k )k

1− (1− xi/k)k
(8.15)

= 1− (1− xj
k

)k − (1− xi
k )k(1− xj

k )k − (1− xi
k −

xj
k )k

1− (1− xi/k)k

= 1− (1− xj
k

)k − (1− xi
k )k

1− (1− xi/k)k
[(1− xj

k
)k − (1− xj

k − xi
)k]

≥ (1− 1

e
)xj −

e−xi

1− e−xi [(1−
xj
k

)k − (1− xj
k − xi

)k]

where all the equations use arithmetic, while the inequality uses the fact that (1− xj
k )k ≤ e−xj and

− x
1−x is a decreasing function of x ∈ (0, 1). We now upper-bound the term (1− xj

k )k−(1− xj
k−1)k

using the formula ak − bk = (a− b)∑k−1
i=0 a

ibk−1−i, as follows

(1− xj
k

)k − (1− xj
k − xi

)k

= (1− xj
k
− 1 +

xj
k − xi

)

k−1∑
t=0

(1− xj
k

)t(1− xj
k − xi

)k−1−t

≤ xjxi
k(k − xi)

× k

≤ xixj
k − 1

Plugging the above upper bound back into Inequality 8.15, we thus have

zij
zii

≥ (1− 1

e
)xj −

e−xi

1− e−xi
xixj
k − 1

= (1− 1

e
)xj −

xi
exi − 1

xj
k − 1

≥ (1− 1

e
)xj −

xj
k − 1

= (
k − 2

k − 1
− 1

e
)xj ,

122



where the last inequality is due to the fact that f(x) = x
ex−1 is a decreasing function for x ∈ (0, 1)

and is upper bounded by limx→0
x

ex−1 = 1.

Finally, we have

zjj − zij
1− zii

=
(1− xi

k )k − (1− xi
k −

xj
k )k

(1− xi
k )k

= 1− (1− xj
k − xi

)k

≥ 1− (1− xj/k)k

≥ (1− 1

e
)xj .

To prove the lemma, we only need to show that yjj ≥ zjj , yij/yii ≥ zij/zii and (yjj −
yij)/(1− yii) ≥ (zjj − zij)/(1− zii). To prove these inequalities, we use a coupling argument.

Consider the following two stochastic process (StoP):

1. StoP 1: at time t independently sample a random value it (∈ [n]) with probability xit/k

for any t = 1, 2, . . . until precisely k different elements from [n] show up.

2. StoP 2: at time t independently sample a random value it (∈ [n]) with probability xit/k

for t = 1, 2, . . . k.

Let C1 [C2] denote all the possible random sequences generated by StoP 1 [StoP 2], and C1
j

[C2
j ] denote the subset of C1 [C2], which consists of all the sequences including at least one j.

For any e ∈ C2
j , let Ce be the subset of sequences in C1, whose first k elements are precisely e.

Notice that any sequence in C1 has length at least k while any sequence in C2 has precisely k

elements. Furthermore, Ce ⊆ C1
j and Ce ∩ Ce′ = ∅ for any e, e′ ∈ C2

j and e 6= e′.

Now, think of each sequence as a probabilistic event generated by the stochastic process.

Notice that P (e;StoP 2) = P (Ce;StoP
1) due to the independence of the sampling procedure.

Therefore, we have

P (C2
j ;StoP 2) =

∑
e∈C2

j

P (e;StoP 2)

=
∑
e∈C2

j

P (Ce;StoP
1)

≤ P (C1
j ;StoP 1)

However, P (C1
j |StoP 1) = yjj and P (C2

j |StoP 2) = zjj . This proves yjj ≥ zjj .
Notice that yij/yii ≥ zij/zii is equivalent to P (e ∈ C2

j |e ∈ C2
i ;StoP 2) ≥ P (e ∈ C1

j |e ∈
C1
i ;StoP 1). To prove this inequality, we claim that it is without loss of generality to assume the

first sample is i in both processes. This is because, if the first i shows up as the t’th sample, mov-

ing i to the first position would not change the probability of the sequence due to independence
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between the sampling steps. Conditioned on i being sampled first, a similar argument as above

shows that the probability of Stochastic process StoP 1 generating j is at least the probability of

stochastic process StoP 2 generating j.

Finally, (yjj − yij)/(1 − yii) ≥ (zjj − zij)/(1 − zii) is equivalent to P (e ∈ C2
j |e 6∈

C2
i ;StoP 2) ≥ P (e ∈ C1

j |e 6∈ C1
i ;StoP 1). The conditional probability P (e ∈ C2

j |e 6∈
C2
i ;StoP 2) can be viewed as the probability of generating a sequence including element j in

a modified StoP 2 — it generates any j 6= i with probability x∗j/(k − x∗i ) but generates i with

probability 0. Viewing from this perspective, we can conclude P (e ∈ C2
j |e 6∈ C2

i ;StoP 2) ≥
P (e ∈ C1

j |e 6∈ C1
i ;StoP 1) using a similar argument for proving yjj ≥ zjj .

Let ~x∗ be the optimal solution to LP (8.1) and let α = e
e− k−1

k−2

. One natural idea is to scale

up ~x∗ by a factor of α and then apply IndepSamp. The problem here is that some targets may

have probability larger than 1 after the scaling up. To deal with this issue, we divide targets into

two sets: S = {j : x∗j < 1/α} and S{ = [n] \ S = {j : x∗j ≥ 1/α}. For any j ∈ S{, we

simply cover it with probability 1. Note that these targets will satisfy Pr(Tj) ≥ x∗j and will not

leak any information about the protection of other targets since they will be always protected.

For targets in S, we scale up their marginal probability by a factor of α and then apply the

IndepSamp algorithm. In total we need no more than αk resources. By Lemma 19, we know

that Pr(Tj) ≥ x∗j , Pr(Tj |Ti) ≥ x∗j and Pr(Tj |¬Ti) ≥ x∗j for any j 6= i ∈ S.

To summarize, for any target i ∈ [n] that possibly leaks its protection status (either protected

or unprotected), the conditional protection probability of any other target j is always at least

x∗j . Therefore, in the ADIL leakage model, regardless which target i leaks information, the

conditional protection probability of any other target j is always at least x∗j . This also holds in

the PRIL model.
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Chapter 9

Mitigating Harms of Information Leakage via Entropy
Maximization

Chapter 8 proposed and studied the complexity of two basic leakage models. Unfortunately, even

in simple security game settings, we easily encounter barriers of computational intractability.

Therefore, to obtain solutions with rigorous guarantees, we have to restrict ourselves to even

more specific settings as described in Section 8.2. In this chapter, we instead propose a heuristic

approach, based on max-entropy sampling, for handling information leakage. The solutions in

Chapter 8 only work for the setting with no scheduling constraints. However, the framework

we describe in this chapter will be generalizable to security games with arbitrary scheduling

constraints. Together with some other practical advantages (illustrated later), this makes the

approach very appealing in various real-world security applications.

9.1 The Max-Entropy Sampling Framework

9.1.1 Max-Entropy Sampling Over General Set Systems

As we mentioned in Section 2.2.1, the set of defender pure strategies can be viewed as a set

system, or equivalently, a set of binary vectors. Classic security games seek to achieve certain

marginal probability vector ~x (indexed by targets) by randomizing over these binary vectors.

From Carathéodory’s theorem we know that, given any marginal vector ~x in the convex hull of

E , denoted as conv(E), there are usually many different mixed strategies that achieve the same ~x

(e.g., see examples in Section 7.1). One question then is which of these mixed strategies is more

robust to information leakage. One natural choice is the mixed strategy of maximum entropy

subject to achieving the given marginal vector x. Intuitively, this is because the max-entropy

distribution is the most unpredictable distribution and usually has low correlation among targets.

In this section, we describe a general framework for computing the max-entropy distribution

over the set system E subject to matching any given marginal ~x ∈ conv(E). This problem has
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been studied in the literature of theoretic computer science; see, e.g., (Jerrum, Valiant, & Vazirani,

1986; Singh & Vishnoi, 2013). Our description here serves more as a review of previous work or

its variants.

Computing the max-entropy distribution can be formulated as the solution to an O(2n)-size

Convex Program (CP (9.1)) where variable θe is the probability of taking pure strategy e.

maximize
∑

e∈E −θe ln(θe)

subject to
∑

e: i∈e θe = xi, for i ∈ [n].∑
e∈E θe = 1

θe ≥ 0, for e ∈ E .

(9.1)

Convex program for computing the max-entropy distribution

An obvious challenge for solving CP (9.1) is that the optimal θ∗ typically has exponentially

large support, and thus cannot even be written down explicitly in polynomial time. This can be

overcome via algorithms that efficiently sample a set e “on the fly”. Therefore, we say that an

algorithm solves CP (9.1) if it takes x as input and randomly samples e ∈ E with probability θ∗e
where θ∗ is the optimal solution to CP (9.1).

Sampling the max-entropy distribution is closely related to the following generalized count-

ing problem over E .

Definition 5 (Generalized Counting). Given any α ∈ Rn+, compute C(α) =
∑

e∈E αe, where

αe =
∏
i∈e αi.

Observe that C(1) equals precisely the cardinality of E . More generally, C(α) is a weighted

count of the elements in E with weights αe =
∏
i∈e αi. The relation between max-entropy sam-

pling and counting is through the following unconstrained and convex dual program of CP (9.1)

with variables ~β ∈ Rn and e−βe = Πi∈ee
−βi .

minimize f(~β) =
∑n

i=1 βixi + ln(
∑

e∈E e
−βe), (9.2)

Dual program of the convex program (9.1).

The following theorem characterizes the optimal solutions for CP (9.1) and will be useful for

our later results.

Theorem 9.1.1. (Singh & Vishnoi, 2013) Let ~β∗ ∈ Rn be the optimal solution to CP (9.2) and

set αi = e−β
∗
i for any i ∈ [n]. Then, the optimal solution of CP (9.1) satisfies

θ∗e =
αe∑

e′∈E αe′
, (9.3)
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where αe = Πi∈eαi for any pure strategy e ∈ E .

Furthermore, if the generalized counting problem over E can be solved in poly(n) time, then
~β∗ can be computed in poly(n) time.

Proof. The characterization of θ∗e is based on the KKT conditions of CP (9.1) and its dual pro-

gram (9.2). Its proof can be found in (Singh & Vishnoi, 2013); we thus will not repeat the

argument. Here, we prove the prescriptive part of the theorem. In particular, we will show that
~β∗ can be computed in poly(n) time given any polynomial-time algorithm for the generalized

counting problem and moreover, our algorithm will be practically efficient as well.

Notice that CP (9.2) has n variables but an expression of exponentially many terms, in partic-

ular, the sum
∑

e∈E e
−βe . The essential difficulty in evaluating f(~β) lies in computing the sum∑

e∈E e
−βe , since the other parts can be explicitly calculated in poly(n) time. Note that calculat-

ing
∑

e∈E e
−βe is precisely the generalized counting problem over the set system E with weights

αi = e−βi for i ∈ [n]. As a result, if we have a poly(n) time counting oracle, we can evaluate the

function value of f(~β) in poly(n) time. With this poly(n) time value oracle, one can conclude

that CP (9.1) can be solved in poly(n) time using the ellipsoid method (Grötschel et al., 1988),

though the order of this polynomial is usually large.

Here, we instead give a more practical algorithm. We show that the gradient can also be

evaluated efficiently. Therefore, one can use standard gradient-descent based algorithm to solve

CP (9.1) which is usually more efficient in practice. In particular,

∂f(~β)

∂βi
= xi −

∑
e∈E:i∈e e

−βe∑
e∈E e

−βe .

The only non-trivial part of evaluating ∂f(~β)
∂βi

is to compute
∑

e∈E:i∈e e
−βe . This can be calculated

by employing a generalized counting algorithm twice: once for the weights e−βj for each j ∈ [n]

and once with the same weights except using 2e−βi for i. Their difference equals precisely∑
e∈E:i∈e e

−βe .

To sum up, given a poly(n) time algorithm for the generalized counting problem, we can

evaluate f(~β) and its gradient in poly(n) time. Thus we can also optimize the function in poly(n)

time.

After computing the optimal dual solution ~β∗, we need to develop sampling algorithms that

output strategy e with probability precisely θ∗e = αe∑
e′∈E αe′

. This process will depend on the

setting. However, it can usually be done efficiently given a generalized counting algorithm, which

is the case in all the settings we study.
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9.1.2 Why Maximizing Entropy?

As we mentioned before, the issue of information leakage arises due to the correlation among

the protection statues of targets, a phenomenon which we term the curse of correlation (CoC)

in Section 7.3. To deal with CoC, the ideal approach is to come up with an accurate model to

capture the attacker’s partial observation, i.e., an information leakage model, and then solve the

model to obtain the defender’s optimal defending strategy, as we did in Section 8.2. However, we

note that this approaches suffers from several drawbacks.

1. Unavailability of an Accurate Leakage Model. The attacker’s choice of target monitoring

depends on many hidden factors, and thus is highly unpredictable. Therefore, it is typically

very difficult to know which targets are leaking information — otherwise the defender

could have resolved the issue in the first place via other approaches. As a result, it is usually

not possible to obtain an accurate leakage model. As we will illustrates in our experiments,

optimizing over an inaccurate leakage model can even be harmful to the defender compared

to doing nothing.

2. Scalability and Computational Barriers. Even if the defender has an accurate leakage

model, computing the optimal defender strategy against the leakage model is intractable

generally. As we mentioned in Section 8.2, even in the simplest possible model — zero-

sum games, no scheduling constraints and a single target leaking information — we ex-

hibit evidence of intractability. The problem becomes even more difficult in more compli-

cated spatio-temporal settings with scheduling constraints, e.g., the motivating examples in

Chapter 7.

3. Vulnerability to Attacker’s Strategic Manipulations. Another concern about any op-

timal solution tailored to a specific leakage model is that such a solution may be easily

“gamed” by the attacker. In particular, the optimal solution naturally biases towards the

leaking targets by assigning more security forces to these targets. This, however, opens the

door for the attacker to strategically manipulate the defender’s belief on leaking targets,

e.g., by intentionally spreading misleading information, with the goal of shifting the de-

fense away from the attacker’s prime targets. As we show in our experiments, this could

cause significant loss to the defender.

Entropy maximization — a more robust solution. These barriers motivate our adoption of the

more robust (though inevitably more conservative) max-entropy approach, as illustrated in Sec-

tion 9.1.1. We propose to first compute the optimal defender strategy assuming no leakage and

then play the mixed strategy with maximum entropy subject to matching the desired marginal
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probabilities. Our choice of max entropy is due to at least three reasons. First, the max-entropy

strategy is the most random, and thus unpredictable, defender strategy. When the defender is

uncertain about which target is leaking information (the setting we are in), we believe that taking

the most random strategy is one natural choice. Second, the max-entropy distribution usually ex-

hibits substantial approximate stochastic independence among the protection statuses of targets1,

so that the protection status of any leaking target does not carry much information about that of

others. Third, as we will illustrate in the next few sections, the max entropy approach performs

well in comparisons with several other alternatives in simulated games; in fact, in some settings,

it achieves a solution quality that is even close to the optimal defender utility under no leakage!

Given such encouraging empirical results, we believe that entropy maximization stood out as a

powerful approach to address information leakage.

From a practical perspective, the max-entropy approach also enjoys several advantages. First,

it does not require a concrete leakage model. Instead, it seeks to reduce the overall correlation

among the statuses of all targets, and thus serves as a robust solution. Second, this approach

is easily “compatible” with any current deployed security systems since it does not require any

change to previously deployed algorithms while only adding randomness (in some sense, this

is a strictly better solution than previous ones). This is particularly useful in domains where

re-building a new security system is not feasible or too costly.

9.2 Security Settings with No Scheduling Constraints

As an instantiation of the above framework, we first consider the simple security game setting

with no scheduling constraints. In this case, a defender pure strategy is any subset of [n] of size

k. Such models have applications in real security systems like ARMOR for LAX airport and

GUARDS for port patrolling in general (Tambe, 2011).

9.2.1 A Polynomial-Time Max-Entropy Sampling Algorithm

In this section, we prove the following theorem.

Theorem 9.2.1. When there are no scheduling constraints, the distribution that maximizes en-

tropy subject to matching any given marginal x ∈ conv(E) can be sampled in poly(n) time.

The proof of Theorem 9.2.1 relies on the following two lemmas.

Lemma 20. When there are no scheduling constraints, the generalized counting problem over

E for any given weight admits a poly(n) time algorithm.2

1This is widely observed in practice, and also theoretically proved in some settings, e.g., matchings (Kahn & Kayll,
1997).

2The set system E is also known as the uniform matroid in this case.
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Proof. Let ~α = (α1, . . . , αn) be any given weight vector. Our goal is to compute the sum∑
e∈E αe where αe = Πi∈eαi.

We show that a dynamic program computes the sum
∑

e∈E αe in poly(n) time. Note that the

set of all pure strategies consists of all the subsets of [n] of cardinality k. We build the following

DP table T (i, j) =
∑

e:e⊆[j],|e|=i αe, which sums over all the subsets of [j] of cardinality i. Our

goal is to compute T (k, n) =
∑

e∈E e
−βe . We first initialize T (0, j) = 1 and T (1, j) = Πj

i=1αi

for any j. Then using the following update rule, we can build the DP table and compute T (k, n)

in poly(k, n) time.

T (i, j) = T (i, j − 1) + αjT (i− 1, j − 1).

This update rule is correct because T (i, j) is the sum of two parts. The first part contains

terms without element j. Therefore, these terms must sum up to T (i, j − 1). The second part

contains terms with element j and other i − 1 elements before j. These terms must sum up to

αjT (i− 1, j − 1).

Lemma 20, together with Theorem 9.1.1, shows that we can solve CP (9.2) in poly(n) time.

Our next lemma shows how to efficiently sample a pure strategy e from an exponentially large

support with probability θ∗e defined by Equation (9.3). The algorithm (Algorithm 7) simply goes

through each target and adds it to the pure strategy with a specifically designed probability until

exactly k targets are added.

Lemma 21. Given any input ~α ∈ [0,∞)n, Algorithm 7 runs in poly(n) time and correctly

samples a pure strategy e with probability θe = αe∑
e∈E αe

, where αe = Πi∈eαi.

Proof. Note that Table T (i, j) can be computed in poly(n). We first show that the “while”

loop in Algorithm 7 terminates within at most n steps. In fact, j decreases by 1 each step and

furthermore j ≥ i ≥ 0 always holds. This is because when j decreases until j = i, j will be

sampled with probability αjT (i−1,j−1)
T (i,j) = αiT (i−1,i−1)

T (i,i) = 1; then both j and i will decrease by 1

(Steps 6 − 9). This continues until i = 0. Furthermore, the algorithm terminates with |e| = k

because the cardinality of e always satisfies |e| = k − i by Steps 6 − 8 until the termination at

i = 0. Therefore, Algorithm 7 runs in poly(n) time.

Now we show that Algorithm 2 outputs e with probability θe. Let the output e = {i1, . . . , ik}
be sorted in decreasing order, i.e., i1 > i2 > . . . > ik. Notice that

T (i, j) = αjT (i− 1, j − 1) + T (i, j − 1).

Therefore, in the Sampling step (Step 5) of Algorithm 7, j is not included in e with probability

T (i, j − 1)/T (i, j). Therefore, to sample e = {i1, . . . , ik}, it must be the case that n, n −
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Algorithm 7: Max-entropy sampling in settings with no scheduling constraints

Input: : ~α ∈ [0,∞)n, k.
Output: : a pure strategy e with |e| = k.

1: Initialize: e = ∅; the DP table T (0, j) = 1 and T (j, j) = Πj
i=1αi for any j ∈ [n].

2: Compute T (i, j) =
∑

e:e⊆[j],|e|=i αe for any i, j satisfying i ≤ k, j ≤ n and 1 ≤ i ≤ j,
using the following update rule

T (i, j) = T (i, j − 1) + αjT (i− 1, j − 1).

3: Set i = k, j = n;
4: while i > 0 do
5: Sampling: independently add j to e with probability

pj =
αjT (i− 1, j − 1)

T (i, j)
;

6: if j was added to e then
7: i = i− 1;
8: j = j − 1;
9: return e.

1, . . . , i1 + 1 are not included, while i1 is included; i1 − 1, . . . , i2 + 1 are not included, while

i2 is included; and so on. In addition, the sampling in each of these steps is conditioned on all

its previous steps and the probability of each step is known. Therefore, by multiplying these

probabilities together, we have

P (s) =
T (k, n− 1)

T (k, n)
× T (k, n− 2)

T (k, n− 1)
. . .× αi1T (k − 1, i1 − 1)

T (k, i1)

×T (k − 1, i1 − 2)

T (k − 1, i1 − 1)
. . .

αikT (0, ik − 1)

T (1, ik)

=
Πt≤kαit
T (k, n)

= θe.

This gives precisely the probability we want.

9.2.2 A Linear-Time Heuristic Sampling Algorithm

Though the sampling algorithm in Section 9.2.1 provably runs in polynomial time, the order of the

polynomial may be large due to repeated calls to the counting oracle. This limits the scalability

of the algorithm in very large applications. In this section, we develop a linear-time heuristic

sampling algorithm, termed Uniform Comb Sampling (UniCS). UniCS is extremely efficient and,

as we will show, also performs well in practice.
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(Tsai et al., 2010) presented the Comb Sampling algorithm, which randomly samples a pure

strategy and achieves a given marginal in expectation. The algorithm can be elegantly described

as follows (also see Figure 9.1): thinking of k resources as k buckets with height 1 each, we then

put each target, the height of which equals precisely its marginal probability, one by one into the

buckets. If one bucket gets full when filling in a certain target, we move the “rest” of that target

to a new empty bucket. Continue this until all the targets are filled in, at which time we know

that all k buckets are full. The algorithm then takes a horizontal line with a uniformly randomly

chosen height from the interval [0, 1], and the k targets intersecting the horizontal line constitute

the sampled pure strategy. As easily observed, Comb Sampling achieves the marginal coverage

in expectation (Tsai et al., 2010).
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Figure 9.1: Comb sampling

However, is Comb Sampling robust against information leakage? We first observe that Comb

Sampling generates a mixed strategy with support size at most n + 1, which precisely matches

the upper bound of Carathéodory’s theorem.

Proposition 12. Comb Sampling generates a mixed strategy which mixes over at most n+1 pure

strategies.

Proof. In Figure 9.1, let the sample line move from height 0 to height 1 continuously. The

sampled pure strategy changes only when it meets a dotted line in any bucket. There are at most

n− 1 dotted lines (because there are n targets), so the total number of possible pure strategies is

(n− 1) + 2 = n+ 1.

Proposition 12 suggests that the mixed strategy sampled by Comb Sampling might be very

easy to explore. Therefore we propose a variant of the Comb Sampling algorithm. Our key
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observation is that Comb Sampling achieves the marginal coverage regardless of the order of the

targets. That is, the marginal is still obtained if we randomly shuffle the order of the targets each

time before sampling, and then fill them in one by one. Therefore, we propose the following

Uniform Comb Sampling (UniCS) algorithm:

1. Choose an order of the n targets uniformly at random;

2. Fill the targets into the buckets based on the random order, and then apply Comb Sampling.

This algorithm runs in linear time because: (1) a random permutation can be generated in linear

time, e.g., using the Knuth Shuffle (Knuth, 1997); (2) the Comb Sampling algorithm runs in linear

time. The property of UniCS is summarized in the following proposition.

Proposition 13. Uniform Comb Sampling (UniCS) runs inO(n) time and achieves the marginal

coverage probability.

9.2.3 Experiments

In this section, we experimentally study how traditional algorithms and our new algorithms per-

form in the presence of probabilistic or adversarial information leakage (i.e., the PRIL and ADIL

model in Section 8.1). Since we also have an algorithm that computes the exact optimal solution

in this setting (Section 8.3) (though it runs in exponential time), we will also compare our max-

entropy sampling (heuristic) approach with the exact optimal solution. In particular, we compare

the following five algorithms.

• Traditional: optimal marginal + comb sampling, the traditional way to solve security games

with no scheduling constraints (Kiekintveld et al., 2009; Tsai et al., 2010);

• OPT: the optimal algorithm for the PRIL or ADIL model (Section 8.1) using column gen-

eration with the defender oracle in Algorithm 6;

• indepSample: independent sampling without replacement (Section 8.3);

• MaxEntro: max entropy sampling (Algorithm 7);

• UniCS: uniform comb sampling.

All algorithms are tested on the following two sets of data:

Los Angeles International Airport (LAX) Checkpoint Data from (Pita et al., 2008b). This

problem was modeled as a Bayesian Stackelberg game with multiple adversary types in (Pita

et al., 2008b). To be consistent with our model, we instead only consider the game against one

particular type of adversary — the terrorist-type adversary, which is the main concern of the
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Figure 9.2: Comparisons on real LAX airport data.
airport. The defender’s rewards and costs are obtained from (Pita et al., 2008b) and the game is

assumed to be zero-sum in our experiments.

Simulated Game Payoffs. A systematic examination is conducted with simulated zero-sum

security games with no scheduling constraints, i.e., the basic setting we studied in Section 8.1.3

All generated games have 20 targets and 10 resources. The reward ri (cost ci) of each target i is

chosen uniformly at random from the interval [0, 10] ([−10, 0]). This corresponds to the covariant

random game generator (Nudelman et al., 2004), with covariance equal to −1.

In terms of running time, all the algorithms run efficiently as expected (terminate within

seconds using MATLAB) except the optimal algorithm OPT, which takes about 3 minutes per

simulated game on average. Therefore we mainly compare defender utilities. All the comparisons

are listed in Figure 9.2 (for LAX data) and Figure 9.3 (for simulated data). The line “Basis” is

the utility with no leakage and is listed as a basis for utility comparisons. The Y-axis is the

defender’s utility — the higher, the better. We examine the effect of the total probability of

leakage (i.e., the x-axis 1− p0) on the defender’s utility and consider 1− p0 = 0, 0.1, . . . , 1. For

probabilistic information leakage, we randomly generate the probabilities that each target leaks

information with the constraint
∑n

i=1 pi = 1−p0. For the case of leakage from small support (for

simulated payoffs only), we randomly choose a support of size 5. All the utilities are averaged

3Another rationale of focusing on zero-sum games is the following. Zero-sum games are strictly competitive;
therefore, any information leaking to the attacker will benefit the attacker and hurt the defender. The effects of the
curse of correlation (CoC) could be a mix of both good and bad aspects in general-sum security games because
“leaking” information to the attacker there could sometimes be beneficial to the defender. This has been studied in
Part I of these thesis on strategic information revelation in security games (Rabinovich et al., 2015; Guo et al., 2017).
In zero-sum security games, however, any information to the attacker will hurt the defender. In this sense, zero-sum
games serve as the best fit for studying harms of CoC. Previous work studying information leakage in normal-form
games (Alon et al., 2013) also focused on zero-sum games.
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Figure 9.3: Comparisons in Simulated Games.
over 50 random games except the ADIL model for LAX data. For the simulated payoffs, we also

consider a special case of uniform leakage probability of each target. The following observations

follow from the figures.

Observation 1. The gap between the line “Basis” and “OPT” shows that information leakage

from even one target may cause a dramatic utility decrease to the defender. Moreover, adversarial

leakage causes more utility loss than probabilistic leakage; leakage from a restricted small support

of targets causes less utility decrease than from full support.

Observation 2. The gap between the line “OPT” and “Traditional” demonstrates the neces-

sity of handling information leakage. The relative loss u(OPT ) − u(Basis) is approximately

half of the relative loss u(Traditional)− u(Basis) in Figure 9.3 (and 65% in Figure 9.2). Fur-

thermore, if leakage is from a small support (top-left panel in Figure 9.3), OPT is close to Basis.
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Observation 3. MaxEntro and UniCS have almost the same performance (overlapping in all

these figures). Both algorithms are almost optimal when the leakage support is the full set [n]

(they almost overlap with OPT in the top-right and bottom-left panels in Figure 9.3).

Observation 4. An interesting observation is that in all of these figures, IndepSample start to

outperform Traditional roughly at 1− p0 = 0.3 or 0.4, which is around 1
e ≈ 0.37. Furthermore,

the gap between IndepSample and OPT does not change much at different 1− p0.

Observation 5. From a practical view, if the leakage is from a small support, OPT is preferred

as it admits efficient algorithms (Section 8.3); if the leakage is from a large support, MaxEntropy

and UniCS are preferred as they can be computed efficiently and are close to optimality. From

a theoretical perspective, we note that the intriguing performance of IndepSample, MaxEntropy

and UniCS raises questions for future work.

9.3 The Air Marshal Scheduling Problem

In this section, we consider the problem of randomized air marshal scheduling, as illustrated in

Section 7.1. One important task faced by the Federal Air Marshal Service (FAMS) is to schedule

air marshals to protect international flights. In this setting, the schedule of each air marshal is a

round trip (Kiekintveld et al., 2009), which is what we focus on.

We start by formally defining the problem. FAMS seeks to allocate k homogeneous air mar-

shals to protect round-trip international flights originating from domestic cities to different outside

cities. These round-trip flights constitute a bipartite graph G = (A ∪ B,E) in which nodes in

A [B] correspond to all outbound [return] flights; e = (Ai, Bj) ∈ E iff e forms a consistent

round trip. We remind the reader that here we abuse notation since e is used to denote a pure

strategy and E is the set of all defender pure strategies. Figure 9.4 depicts the graph between one

domestic city and two outside cities, though in general we consider multiple domestic cities and

multiple outside cities. Note that G is a union of multiple isolated smaller bipartite graphs, each

containing all flights between two cities. This is because any flight from city a to city b can never

form a round trip with a flight from city c to city a. We will call each isolated bipartite graph

a component. Naturally, not any two flights Ai, Bj can form consistent round-trip flights. The

following are natural constraints on the structure of the graph G: (Ai, Bj) forms a compatible

round trip (i.e., (Ai, Bj) ∈ E) if (1) the destination city of Ai is the departure city of Bj ; (2) the

arrival time of Ai, denoted as arr(Ai), and the departure time of Bj , denoted as dep(Bj), satisfy

dep(Bj)−arr(Ai) ∈ [T1, T2] for constants T2 > T1 > 0. Moreover, we assume that in any pure

strategy, each flight is covered by at most one air marshal. This is a requirement that comes from

the US Transportation Security Administration to ensure maximum usage of valuable security

resources (Jain et al., 2010).
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Figure 9.4: Consistent round-trip flights between a domestic city and two outside cities.

Next, we will develop a provably polynomial-time algorithm for sampling the max-entropy

distribution as well as a fast heuristic sampling algorithm. Our exact algorithm crucially exploits

certain “order” structure of the air marshal’s schedules. The heuristic sampling algorithm can be

generalized to other security games as well so long as we can efficiently compute the defender’s

best response. We evaluate these algorithms experimentally at the end of this section.

9.3.1 A Polynomial-Time Max-Entropy Sampling Algorithm

We prove the following theorem in this section.

Theorem 9.3.1. In the federal air marshal scheduling problem with round trips, the distribution

that maximizes entropy subject to matching any given marginal x ∈ conv(E) can be sampled in

poly(n, k) time, where k is the number of air marshals and n = |A ∪ B| is the number of total

flights.

The proof of Theorem 9.3.1 has two steps:

• First, we design a poly(n, k) time algorithm for the generalized counting problem over

the set system E of defender pure strategies. By Theorem 9.1.1, this implies that we can

compute the optimal solution to CP (9.2) in poly(n, k) time.

• Second, we will design an efficient sampling algorithm that samples a pure strategy e from

an exponentially large support with probability θ∗e as defined by Equation (9.3).

Step 1

We start with the first task. Let G = (A ∪ B,E) denote the bipartite graph for the air marshal

scheduling problem, |A| = n1, |B| = n2. Recall that G is a union of multiple isolated compo-

nents, each containing all flights between two cities (see Figure 9.4). Within each component, we

sort the flights in A by their arrival time and flights in B by their departure time.

We now show that generalized counting over the set of defender pure strategies admits a

polynomial time algorithm. Our algorithm crucially exploits the following “order” structure.
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Definition 6. [Ordered Matching] In a bipartite graph G = (A ∪ B,E), a matching M =

{e1, . . . , ek} is called an ordered matching if for any edge e = (Ai, Bj) and e′ = (Ai′ , Bj′) in

M , either i > i′, j > j′ or i < i′, j < j′.

Visually, any two edges e, e′ in an ordered matching satisfy that e is either “above” or “below”

e′ — they do not cross.

Since each flight has at most one air marshal, any assignment of air marshals must corre-

spond to a matching in G. However, a pure strategy e — i.e., a set of covered flights — can be

accomplished by different matchings. For example, the set e = {A1, A2, B1, B2} in Figure 9.4

can be achieved by the matching {(A1, B1), (A2, B2)} or the matching {(A1, B2), (A2, B1)}.
However, only the matching {(A1, B1), (A2, B2)} is ordered. The following lemma shows that

pure strategies and ordered k-matchings are in one-to-one correspondence.

Lemma 22. In the air marshal scheduling problem, there exits an ordering of flights in A and B

so that pure strategies and size-k ordered matchings are in one-to-one correspondence.

Proof. It is easy to see that any ordered k-matching corresponds to one pure strategy. We prove

the converse. Given any pure strategy S consisting of 2k flights, let Ẽ = {e1, . . . , ek} be any

matching that results in S. We claim that if there exist two edges e, e′ ∈ Ẽ with e = (Ai, Bj)

and e′ = (Ai′ , Bj′) such that i > i′ and j < j′, then (Ai, Bj′) and (Ai′ , Bj) must also be edges

in E. Since e, e′ ∈ Ẽ, we must have T1 < dep(Bj) − arr(Ai) < T2 and T1 < dep(Bj′) −
arr(Ai′) < T2. Since flights in A are ordered increasingly by arrival time and flights in B are

ordered increasingly by departure time, we have arr(Ai) ≥ arr(Ai′) and dep(Bj) ≤ dep(Bj′).

These inequalities imply dep(Bj′) − arr(Ai) ≤ dep(Bj′) − arr(Ai′) ≤ T2 and dep(Bj′) −
arr(Ai) ≥ dep(Bj) − arr(Ai) ≥ T1; therefore (Ai, Bj′) ∈ E. Similarly, one can show that

(Aj , Bi′) ∈ E.

As a result, we can adjust the matching by using the edges (Ai, Bj′) and (Ai′ , Bj) instead.

Such adjustments can continue until the matching becomes ordered. The procedure will terminate

within a finite time by a simple potential function argument, with potential function f(Ẽ) =∑
e=(Ai,Bj)∈Ẽ |i − j|2. The above adjustment always strictly decreases the potential function

since |i− j|2 + |i′− j′|2 > |i− j′|2 + |i′− j|2 if i > i′ and j < j′. The adjustment will terminate

with an ordered matching and the ordered matching is unique, concluding our proof.

Lemma 22 provides a way to reduce generalized counting over the set of pure strategies

to generalized counting of size-k ordered matchings. Given any set of non-negative weights

α ∈ Rn1+n2
+ , we define edge weight we = αAiαBj for any e = (Ai, Bj) ∈ E. As a result, the

weight of any pure strategy equals the weight of the corresponding size-k ordered matching with

edge weights we’s.
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Next we show that generalized counting of size-k ordered matchings admits an efficient al-

gorithm. The main idea is to dynamically compute the generalized sum of size-k ordered match-

ings according to some “order” of the bipartite graphs. More specifically, define El,r ⊆ E

to be the set of edges that are “under” Al and Br, where Al ∈ A,Br ∈ B. Formally, any

e = (Ai, Bj) ∈ E is in El,r iff i ≤ l, j ≤ r. We build a dynamic programing table with terms

DP(l, r; d) =
∑

M :M⊆El,r,|M |=dwM , in which DP(l, r; d) is the sum of the weights of all size-d

ordered matchings with edges in El,r. Now, to compute DP(l, r; d), we only need to enumer-

ate all the possibilities of the uppermost edge in the ordered matching, given that DP(i, j; d)s

are known for i < l and j < r. This can be done by a dynamic program (Algorithm 8). The

correctness of Algorithm 8 follows by definition.

Algorithm 8: Generalized Counting of Ordered k-Matchings

Input: : G = (A ∪B,E); we ≥ 0 for any e ∈ E.
Output: :

∑
M : |M |=dwM % M is an ordered matching

1: Initialization: DP(l, r; 0) = 1 for l = 0, .., n1, r = 0, .., n2; DP(0, r; d) = DP(l, 0; d) = 0
for all d ≥ 1, l = 0, 1, , . . . , n1, r = 0, 1, . . . , n2.

2: Update: for d = 1, . . . , k, l = 2, . . . , n1, r = 2, . . . , n2:

DP(l, r; d) = T (l − 1, r − 1; d) +∑
e=(Ai,Bj)∈El,r

s.t. i=l or j=r

we ·DP(i− 1, j − 1; d− 1).

3: return DP(n1, n2; k).

Step 2

Let ~β∗ be the optimal solution of CP (9.2) for the air marshal scheduling problem. Invoking

Algorithm 8, we can compute ~β∗ in poly(n, k) time. Let αi = e−β
∗
i for all i ∈ A ∪B. Then the

following algorithm (Algorithm 9) efficiently samples a pure strategy e from an exponentially

large support with probability θ∗e defined by Equation (9.3). The correctness of Algorithm 9

follows a similar argument as the proof of Lemma 21; we thus will not repeat the details here.
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Algorithm 9: Max-entropy sampling in the air marshal scheduling problem
Input: : ~α ∈ [0,∞)n1+n2 , k.

Output: : a pure strategy e using k air marshals.

1: Initialize: e = ∅; build the DP table T (l, r; d) as in the previous part.

2: Set c = k, l = n1, r = n2;

3: while c > 0 do
4: Sampling: for any edge e = (i, j) ∈ El,r incident on l or r, add edge e to e with

probability

p =
αiαjT (i− 1, j − 1; k − 1)

T (l, r; k)
;

5: if e = (i, j) was added to e then
6: c = c− 1;

7: l = i− 1, r = j − 1

8: else
9: l = l − 1, r = r − 1

10: return e.

9.3.2 Scalability Challenges and A Heuristic Sampling Algorithm

Though the sampling algorithm in Section 9.3.1 provably runs in polynomial time, the order of

the polynomial is large due to repeated calls to the counting oracle. In fact, the algorithm can only

scale to a problem size of about 300 flights. However, FAMS needs to schedule about 30, 000

flights every day. Therefore, it is necessary to develop a much more efficient algorithm in order

to scale up to this real-world problem size.

In this section, we propose a heuristic sampling algorithm that matches any given marginal

vector x ∈ conv(E) and is expected to achieve high entropy. This algorithm works for general

security games (not only the air marshal scheduling problem), and is computationally efficient as

long as the underlying security game can be solved efficiently.

At a high level, our idea is to design a randomized implementation for the celebrated

Carathéodory’s theorem, which makes the following existence statement: for any bounded poly-

tope P ⊆ Rn and any x ∈ P , there exist (at most) n+ 1 vertices of P such that x can be written

as a convex combination of these vertices. Interpreting P as the convex hull of defender pure

strategies, this means that any defender mixed strategy, i.e., a point in P , can be decomposed

as a distribution over at most n + 1 pure strategies (n is the number of targets). We turn this

existence statement into an efficient randomized algorithm, named CArathéodory Randomized

Decomposition (CARD).
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Figure 9.5: CARD Decomposition.

Consider any polytope P = {z : Az ≤ b;Mz = c} explicitly represented by polyno-

mially many linear constraints, and any x ∈ P . We use Ai, bi to denote the i’th row of A

and b respectively; Aiz = bi is a facet of P . Geometrically, CARD randomly picks a vertex

v1 = arg maxz∈P〈a, z〉 for a linear objective a ∈ [0, 1]n chosen uniformly at random. CARD

then “walks along” the ray that originates from v1 and points to x, until it crosses a facet of

P , denoted by Aiz = bi, at some point v2 (see the illustration in Figure 9.5). Thus, x can be

decomposed as a convex combination of v1,v2. CARD then treats v2 as a new x and decom-

poses it within the facet Aiz = bi recursively until v2 becomes a vertex. Details are presented in

Algorithm 10.

Algorithm 10: CARD
Require: P = {z ⊆ Rn : Az ≤ b;Mz = c} and x ∈ P
Ensure: v1, . . . ,vk and p1, . . . , pk such that

∑k
i=1 pi · vi = x.

1: if rank(M ) = n then
2: Return the unique point v1 in P and p1 = 1.
3: else
4: Choose a ∈ [−1, 1]n uniformly at random.
5: Compute v1 = arg maxz∈P〈a, z〉.
6: Compute t = mini:Ai(x−v1)>0

bi−Aixi
Ai(x−v1) .

Let i∗ be the row achieving t, and P ′ = {z ∈ P : Ai∗z = bi∗}.
7: v2 = x + t(x− v1); p1 = t

t+1 , p2 = 1
1+t .

8: [V ′,p′] = CARD(v2,P ′).
9: return V = (v1, V

′) and p = (p1, p2 × p′).

A crucial ingredient of CARD is that each vertex v1 is the optimal vertex solution to a uni-

formly random linear objective. Recall that the max-entropy distribution over any given support

under no constraints is the uniform distribution. The intuition underlying CARD is that these

randomly selected vertices will inherit the high entropy of their linear objectives. Notice that the
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decomposition generated by CARD is different in each execution due to its randomness; therefore

the strategies generated by CARD are sampled from a very large support.

9.3.3 Experiments

We now experimentally compare MaxEn and CARD with traditional security game algorithms in

the air marshal scheduling problem. We are not aware of any previous algorithm that directly

computes the optimal defender strategy against a particular leakage model; therefore, the rig-

orously optimal solution is not available. We instead use a “harder” BaseLine which is the

attacker utility assuming no leakage. This is the best (i.e., smallest) possible attacker utility.

The most widely used approach for solving large-scale security games is the column generation

technique (a.k.a., strategy/constraint generation (Jain et al., 2010; Bosansky, Jiang, Tambe, &

Kiekintveld, 2015)). We compare MaxEn and CARD with ColG (the optimal mixed strategy

computed via column generation4 assuming no leakage). Note that without leakage, all three

algorithms achieve the same solution quality since they implement the same marginal vector. The

goal of this experiment is to test their robustness in the presence of information leakage.

Since it is impossible to obtain real-world data in this setting, all algorithms are thus tested

on simulated instances for the Federal Air Marshal Scheduling problem with round-trip flights

(FAMS). Like in the previous section, here we also generate zero-sum security games with reward

and cost drawn randomly from [0, 10] and [−10, 0], respectively. All results are averaged over

20 games. In the tested instances, we assume that the attacker can monitor two randomly chosen

outbound flights and seeks to attack one return flight.
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Figure 9.6: Utility comparisons in the FAMS domain (x-axis is the DtS ratio)
4The column generation technique is widely used in many security game algorithms. Though some security games

use a compact linear program to directly compute the optimal marginal vector, the ultimate generation of a deploy-
able mixed strategy still requires strategy generation techniques. In FAMS domain, ColG is precisely the ASPEN
algorithm (Jain et al., 2010) — the leading algorithm today for scheduling air marshals at scale.
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Figure 9.6 compares the defender utility obtained by different algorithms when there is in-

formation leakage. We vary the comparison on different deployment-to-saturation (DtS) ratios

(Jain, Leyton-Brown, & Tambe, 2012). The DtS ratio captures the fraction of targets that can be

covered in a pure strategy, which is 2k/n in the FAMS domain (n = 60 in Figure 9.6).

From Figure 9.6, we observe that MaxEn and CARD significantly outperforms ColG in our

simulations; CARD is usually slightly outperformed by MaxEn. In fact, the attacker utility of the

max-entropy approach is even close to the Baseline benchmark. This shows that the approach

performs really well since the Baseline is the lowest possible attacker utility. We observed that

the higher the DtS ratio is, the worse ColG performs. This is possibly because, with higher DtS,

ColG quickly converges to an optimal mixed strategy with very small support, since each pure

strategy covers many targets. Unfortunately, such a small-support strategy suffers severely from

the curse of correlation. We observed that in FAMS games with 100 targets, MaxEn, CARD,

ColG use 99997, 2199, 53 pure strategies on average, respectively (MaxEn samples 100,000

pure strategies in our experiments, and almost all of them are different).

9.4 The Design of Randomized Patrol Routes

In this section, we consider the problem of designing randomized patrol routes, as illustrated in

Section 7.2. This setting belongs to a broader class of games termed spatio-temporal security

games. These games are played out in space and time, and have applications in many domains,

e.g., wildlife protection, protection of mobile ferries, etc. (Basilico, Gatti, & Amigoni, 2009a;

Fang, Jiang, & Tambe, 2013; Yin, Xu, Gain, An, & Jiang, 2015). In these domains, the defender

needs to move patrollers as time goes on. Due to the inherent correlation among the patroller’s

consecutive moves, these games are more likely to suffer from information leakage.

We start with the formal definition of the problem. Like most previous work, we focus on

discretized spatio-temporal security games. Such games are described by a T ×N grid graph

time
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Figure 9.7: Structure of a spatio-temporal security game
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G = (V,E) indicating a problem with N cells and T time layers (see Figure 9.7). We use

vt,i to denote a grid node, representing cell i at time t. Each vt,i is treated as a target, so there

are n = T × N targets. The directed edges denote the patroller’s feasible moves between cells

within between consecutive time layers. Such feasibility usually incorporates speed limit, terrain

constraints, etc. Figure 9.7 depicts some feasible moves between time layers 1 and 2. A feasible

patrol path is a path in G starting from time 1 and ending at time T (e.g., the dashed path in

Figure 9.7). Note that there are exponentially many patrol paths. We assume that the defender

has k homogeneous patrollers, so a defender pure strategy corresponds to the set of nodes covered

by k feasible patrol paths.

Different from the cases in the previous two sections, we will prove that it is computationally

intractable in this setting to compute the distribution that maximizes entropy subject to matching

a given marginal vector. We will then develop a polynomial-time algorithm for a well-motivated

special case. Finally, we thoroughly evaluate the algorithm based on both synthetic and real-world

data.

9.4.1 Complexity Barriers

We prove the following theorem in this section.

Theorem 9.4.1. It is #P-hard to sample the max-entropy distribution for spatio-temporal security

games even when there are only two time layers (i.e., T = 2).

Proof. When there are two time steps, the game structure corresponds to a bipartite graph (T = 2

in Figure 9.7). It is important to notice that a pure strategy here does not simply correspond to

a bipartite matching of size k; therefore we cannot reduce from the problem of counting size-

k matchings. This is because the selected k edges are allowed to share nodes. Moreover, our

definition of a pure strategy is the set of covered targets, not the edges themselves. In fact,

sometimes one pure strategy can be achieved by different sets of k edges.

To prove the theorem, we reduce from the problem of counting bases of a transversal matroid,

which is known to be #P-complete (Colbourn, Provan, & Vertigan, 1995). Given any bipartite

graph G = (L∪R,E) with |L| = k, |R| = n and k ≤ n, any set T ⊆ R is an independent set of

the transversal matroidM(G) of G if there exists a matching of size |T | in the subgraph induced

by L ∪ T ; such a T is a base if |T | = |L| = k.

Given any bipartite graph G = (L ∪ R,E) with k = |L| ≤ |R| = n, we reduce counting

bases of the transversal matroidM(G) to computing the max-entropy distribution for the two-

time-layer spatio-temporal security game on graph G.5 Let S2k denote the set of pure strategies
5Though the definition of spatio-temporal security games requires that each time layer has the same number of

nodes, this requirement is not essential since one can always add isolated nodes to each time layer to equalize the
number of nodes.
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that cover exactly 2k nodes. We first reduce counting bases ofM(G) to counting S2k. This is

simply because if a pure strategy covers 2k nodes, it must cover all k nodes in L and another k

nodes in R, and these 2k nodes are matchable.Then elements in S2k andM(G) are in one-to-one

correspondence.

Since counting reduces to generalized counting, we finally reduce generalized counting over

the set S2k to computing the max-entropy distribution for the following special subset of marginal

vectors X2k = {x ∈ [0, 1]k+n : x1,i = 1,∀i ∈ L;
∑n

i=1 x2,i = k}. It is easy to see that any

mixed strategy that matches a marginal vector x ∈ X2k must have support in S2k. Therefore,

when considering the max-entropy distribution for any x ∈ X2k, we can w.l.o.g. restrict the set

of pure strategies to be S2k. By the computational equivalence between generalized counting

and max-entropy sampling (Singh & Vishnoi, 2013), generalized counting over S2k reduces to

computing the max-entropy distribution for any x ∈ X2k.

9.4.2 An Efficient Algorithm for a Restricted Setting

Theorem 9.4.1 suggests that it is unlikely that there is an efficient algorithm for sampling the

max-entropy distribution with given marginal probabilities in this setting. Moreover, there is no

known polynomial size compact formulation for sampling the max-entropy distribution. Thus we

cannot utilize state-of-the-art optimization software to tackle the problem neither.

Nevertheless, in this section, we show that the max-entropy approach can be efficiently im-

plemented in a well-motivated special setting where the defender only possesses a small number

of patrollers. For example, in wildlife protection, the defender usually has only one or two patrol

teams at each patrol post (Fang et al., 2016a); the US Coast Guard uses two patrollers to protect

Staten Island ferries (Fang et al., 2013). We show that when the number of patrollers is small

(i.e., a constant), the max entropy distribution can be sampled efficiently.

Theorem 9.4.2. When the number of patrollers is a constant, there is poly(N,T ) time algorithm

for sampling the distribution that maximizes entropy subject to matching any given marginal

vector in spatio-temporal security games.

Similar to the proof of Theorem 9.3.1, this proof also has two steps:

• First, we design a poly(N,T ) time algorithm for the generalized counting problem over

the set system E of defender pure strategies.

• Second, we will design an efficient sampling algorithm that samples a pure strategy e from

an exponentially large support with probability θ∗e defined by Equation (9.3).
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Step 1

For ease of presentation, our description focuses on the case with two patrollers, though it easily

generalizes to a constant number of patrollers. We propose a dynamic program (DP) that exploits

the natural chronological order of the targets along the temporal dimension.6

Let us call a pure strategy a 2-path, since each of the two patrollers takes a path onG. Our goal

is to compute the weighted count of all 2-paths in a grid graph G, each weighted by the product

of the node weights it traverses. Our goal is to compute the weighted count of combinations of

two paths in G (one for each patroller), where the weight is the product of the node weights that

the two paths traverse. Let {αt,i}t∈[T ],i∈[n] be any given weight set. Obviously, the counting

problem is easy if T = 1, i.e., only one time layer. Our key observation is that the solution for

T = t can be constructed by utilizing the solutions for T = t − 1. For any 1 ≤ i ≤ j ≤ N , we

use DP(i, j; t) to denote the solution to the counting problem restricted to the truncated graph

with only time layers 1, 2, · · · , t, satisfying that the two patroller must end at cells i, j at time

t. Observe that DP(i, j; 1) = α1,iα1,j when i 6= j and DP(i, i; 1) = α1,i. We then use the

following update rule for t ≥ 2:

DP(i, j; t) =

αt,iαt,j ·
∑

(i′,j′)∈pre(i,j) DP(i′, j′; t− 1) if i < j

αt,i ·
∑

(i′,j′)∈pre(i,j) DP(i′, j′; t− 1) if i = j
(9.4)

where pre = {(i′, j′) : i′ ≤ j′ s.t. vt−1,i′ , vt−1,j′ can reach vt,i, vt,j } is essentially the set of all

pairs of nodes that can reach vt,i, vt,j . Note that the solution to the generalized counting problem

is
∑

i≤j DP(i, j;T ). The correctness of the algorithm follows from the observation that if the two

patrollers are at vt,i and vt,j , they must come from vt−1,i′ and vt−1,j′ for certain (i′, j′) ∈ pre(i, j).

The updating rule simply aggregates all such choices. The algorithm runs in poly(N,T ) time.

Step 2

Let ~β∗ be the optimal solution of CP (9.2) in the spatio-temporal setting. Let αt,i = e−β
∗
t,i for

all t, i. Then the following algorithm efficiently samples a pure strategy e from an exponentially

large support with probability θ∗e defined by Equation (9.3). The correctness of Algorithm 11

follows from a similar argument as the proof of Lemma 21.
6Dynamic programming is widely used in counting problems. See, e.g., (Cryan & Dyer, 2002; Dyer, 2003) as well

as the remarks in (Valiant, 1979). The novel parts usually lie at careful analysis of the problem to uncover the proper
structure for DP.
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Algorithm 11: Max-Entropy Sampling In Spatio-Temporal Security Games

Input: : ~α ∈ [0,∞)(T+1)×(N+1).

Output: : a pure strategy e.

1: Initialize: e = ∅; build the DP table DP (i, j; t) according to Equation (9.4).

2: Sample two nodes (vi,T , vj,T ), with 0 ≤ i < j ≤ N , at time T with probability

p =
DP (i, j;T )∑N

i=0

∑N
j=iDP (i, j;T )

;

Let i∗, j∗ be the two sampled nodes; Add them to e.

3: Define a = i∗, b = j∗.

4: for t = T − 1 to 0 do
5: Sample nodes vt,i, vt,j , for (i, j) ∈ pred(a, b) and 0 ≤ i ≤ j ≤ N , with probability

p =
αt,iαt,jDP (i, j; t)

DP (a, b; t+ 1)

(
p =

αt,iDP (i, j; t)

DP (a, b; t+ 1)
if i = j

)
;

6: Let vt,i∗ , vt,j∗ be the sampled nodes above, and add vt,i∗ , vt,j∗ to e

7: Update a = i∗, b = j∗.

8: return e.

9.4.3 Experiments

9.4.3.1 Synthetic Data

We first experimentally compare MaxEn, CARD with traditional algorithms for spatio-temporal

security games. Like the setup in Section 9.3.3, we are not aware of any previous algorithm that

directly computes the optimal defender strategy against a particular leakage model. Instead we

use a “harder” BaseLine which is the attacker utility assuming no leakage. This is the best (i.e.,

smallest) possible attacker utility. We compare MaxEn and CARD with ColG (the optimal mixed

strategy computed via column generation assuming no leakage). Note that without leakage, all

three algorithms achieve the same solution quality since they implement the same marginal vector.

The goal of this experiment is to test their robustness in the presence of information leakage.

In this part, we will test all algorithms on simulated instances. All results are averaged over 20

zero-sum security games with utilities drawn randomly from [−10, 10]. In the tested instances,

unless specifically mentioned, we always assume that the attacker can monitor two randomly

chosen targets at the first time layer (i.e., t = 1) and seeks to attack one target at the last time

layer (i.e., t = T ).
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Figure 9.8: Utility comparisons in spatio-temporal security games.

Figure 9.8 compares the defender utility obtained by different algorithms when there is infor-

mation leakage. From the figure, it is easy to see that MaxEn and CARD significantly outperform

ColG; CARD is usually slightly outperformed by MaxEn. Moreover, the attacker utility that

the max-entropy approach induces is even close to the Baseline benchmark. This shows that the

approach performs very well in the simulated random games since the Baseline is the lowest

possible attacker utility.

Figure 9.8(a) compares the algorithms by varying the number of time layers T , but fixing

N = 9. When T increases, MaxEn and CARD approach the BaseLine, i.e., the lowest possible

attacker utility. This shows that in patrolling strategies of large entropy, the correlation between

a patroller’s initial and later moves gradually disappears as time goes on. This illustrates the

validity of the max-entropy approach for mitigating CoC. In Figure 9.8(b), we fix T = 9, N = 9,

and compare the algorithms by varying the number of monitored targets (#MoT). We observed

that even when the attacker can monitor 6 out of 9 targets at t = 1, MaxEn and CARD are still

close to BaseLine, while the performance of ColG gradually decrease as #MoT increases.

9.4.3.2 Real-World Data from the Queen Elizabeth National Park

Finally, we test our algorithm on a real-world wildlife crime dataset from Uganda’s Queen Eliza-

beth Protected Area (QEPA). QEPA spans approximately 2,520 square kilometers and is patrolled

by wildlife park rangers. While on patrol, they collect data on animal sightings and signs of ille-

gal human activity (e.g., poaching, trespassing). In addition to this observational data, the dataset

contains terrain information (e.g., slope, vegetation), distance data (e.g., nearest patrol post), ani-

mal density, and the kilometers walked by rangers in an area (i.e., effort).

There are 39 patrol posts at QEPA. We test the patrol design algorithm on the real data/model

at patrol posts 11, 19 and 24, which are the three posts that had the most attacks in the three

months of our testing. We divide the area around each patrol post into 1 square kilometer grid

cells and optimize the patrol route for that particular post based on the importance of each cell

estimated from several features (e.g., animal density, past captures, terrain, past effort). In our
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data, all posts have less than 100 cells/targets reachable from the post by a route of maximum

duration T = 12 (equivalently, a 12-cells long route).

We aim at comparing our patrol design algorithm with the real patrol routes adopted in the

past by park rangers. One major challenge in experimenting with this real data is the lack of

ground truth. In particular, for the past patrolling, we do not know what happened at those

cells that were not patrolled nor doe we know what would have happened if the rangers had

adopted our algorithm. Therefore, as an approximation, we use the state-of-the-art predictive

model in (Gholami, Ford, Fang, Plumptre, Tambe, Driciru, Wanyama, Rwetsiba, Nsubaga, &

Mabonga, 2017) to estimate the attacks at each cell. This is of course not perfect, but it is the best

comparison we could do currently since (Gholami et al., 2017) shows that this predictive model

outperforms all previous poaching prediction models and provides relatively accurate predictions

on the QEPA dataset.

The comparisons are conducted under the following criteria:

• #Detection: total number of detected attacks under the prediction model. Since the predic-

tion model we adopt is a 0-1 classification algorithm, in this case #Detection also equals

the number of cells at which the corresponding patrol routes result in detected attacks.

• #Routes: the number of different patrol routes in 90-day route samples (corresponding to

a 3-month patrolling period).

• Entropy: The entropy of the empirical distribution of the 90 samples.

The first criterion concerns the efficacy of the patrol routes while the last two criteria are used

to test the unpredictability of the patrol routes. For the #Detection criterion, a/b means that out

of the b cells with predicted attacks, a are patrolled. For example, in Table 9.1, the “15/19” means

the following: 19 cells are predicted to be attacked; the patrol route visits 15 of these 19 cells. A

higher value of #Routes means that the patroller has more choices of patrol routes, and thus less

explorable by the poacher; Entropy is a natural measure to quantify uncertainty.

Criteria
Post 11 Post 19 Post 24

MaxEn Past MaxEn Past MaxEn Past

#Detections 15/19 4/19 6/6 5/6 4/4 3/4

#Routes 61 4 22 33 34 5

Entropy 4.0 1.2 2.6 3 2.8 1.4

Table 9.1: Comparisons of different criteria at different patrol posts

The results are jointly presented in Table 9.1. As we can see, the patrol routes generated

by MaxEn clearly outperform past patrolling in terms of the #Detections criteria. The routes
149



we generate can detect most (if not all) of the predicted attacks. In terms of unpredictability,

past patrolling does not have stable performance. Particularly, it follows only a few routes at

posts 11 and 24 with low unpredictability but takes many different routes at post 19 with high

unpredictability. This is a consequence of various factors at different posts, e.g., the patroller’s

preferences, location of the patrol post (e.g., inside or at the boundary of the area), terrain features,

etc. On the other hand, MaxEn always comes with sufficient unpredictability. This shows the

advantage of MaxEn over the past patrolling.

150



Part IV

Conclusion

151



Chapter 10

Conclusions and Open Directions

This thesis seeks to understand how information affects agents’ decision making in strategic

interactions through a computational lens. It illustrates the double-edged role of information

through two threads of research: (1) how to utilize information to one’s own advantage in strategic

interactions; (2) how to mitigate losses resulting from information leakage to an adversary. We

conduct both theoretical study to understand the algorithmic foundations of these problems as

well as applied study to show how these problems can be modeled and solved in real-world

applications. Notably, algorithms from this thesis have been implemented and tested in the field

by security agencies. This shows the potential real-world impact of understanding the role of

information in decision making. Though the work of this thesis is primarily motivated by the

strategic interaction between security agencies and adversaries (i.e., security games), we believe

that the foundational economic models we studied and the basic tools we developed can find

applications in many other application domains as well.

We conclude with some future directions that are motivated by this thesis or are aligned with

its theme.

Future Direction I: How to optimally persuade receivers in more realistic, yet more

intricate, settings by taking into account, e.g., externalities among receivers, uncer-

tainties in receivers’ beliefs, and multi-round interactions between the sender and

receivers? Can we still design efficient algorithms for these problems?

In Section 5.2, we provide a thorough algorithmic analysis for two of the most foundational

models of persuasion, and consider the setting where there is either one receiver or multiple

receivers with binary actions and no externalities. However, in many settings, the receivers may

have externalities and their decisions affect each others’ payoffs. Examples include: (1) auction

settings where the auctioneer (the sender) may want to persuade bidders (receivers) about the

value of the item for sale; (2) traffic routing where certain recommendation systems like Google

Maps (the sender) may want to persuade drivers (receivers) about choices of routing paths; (3)
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voting settings where a principal (the sender) may want to persuade voters (receivers) regarding

which candidate to vote for. In all these applications, the receivers’ decisions will affect each

other’s payoffs. One fundamental problem is to understand the complexity of persuasion due to

such externalities.

One important concern about previous models of persuasion is that the sender and receivers

must share the same prior belief and the receivers must know precisely the signaling scheme.

However, in practice, these beliefs usually come from observations or data analysis, and thus

are rarely precise. To make these models more realistic, we have to understand how robust the

models or computation are to uncertain or imprecise player beliefs. Moreover, in many settings,

persuasion is done in a multi-round interaction between the sender and receiver. How to optimally

persuade receivers in a multi-round interaction and how would this change the complexity of the

problem?

Future Direction II: What are other roles that information could play in security

domains? How to improve security decision making by taking them into account?

This thesis initiates a computational study of the role of information in security decision

making and considers how to utilize the defender’s informational advantage and how to deal

with harms due to information leakage. This motivates the future study of many other possible

roles that information could play in security domains. For example, in security games we usu-

ally assume that the adversary will surveil the defender’s strategy and then strategically respond.

However, in many domains, the defender can also surveil the adversary by using surveillance

tools like closed-circuit televisions. One important question in these problems is how to inte-

grate such information into the defender’s decision making to improve the defense. This thesis

studies how the defender can utilize informational advantages to deceive the adversary. How-

ever, in practice, the adversary can also be deceptive and may provide misleading information

to the defender. Therefore, another interesting question is how to take such strategic adversary

behavior into account and how it would affect the defender’s decision making. This question is

particularly relevant in cybersecurity domains since the attackers there are usually more sophisti-

cated, and deceptive attacks have been frequently observed in practice (Rowe & Rothstein, 2004;

Rowe, 2006). These are just two examples, and there are many other questions pertaining to the

role of information in security domains that remain largely unexplored. More importantly, when

considering a particular application, how can we take into account various effects of information

together to make better decisions?

Future Direction III: Besides security domains, how does information affect the

decision making in other multi-agent systems and applications? How to model and

design efficient algorithms for these applications?
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This thesis is primarily motivated by strategic interactions in security domains. This, how-

ever, is just one particular example of multi-agent systems. In the future, it will be interesting to

study other systems with self-interested agents, and our work indicates that information can play

a crucial role in influencing the outcomes of these systems. This broad line of research is particu-

larly relevant in the digital age since the ubiquitous access to data and advances in data analytics

have made it much easier today to generate and communicate information. This is profoundly af-

fecting people’s decision making. Indeed, many of our decisions today (e.g., which route to take,

which restaurant to go to, which stock to invest in, which candidate to vote for, etc.) are affected

by, or even rely on, numerous information sources such as news, media, social networks, search

engines and various recommendation system applications (e.g., Google Maps, Yelp, etc.). This

brings tremendous opportunities for studying the effects of information in these domains and un-

derstanding how we can utilize these effects to improve decision making. Moreover, we believe

that the requirement of automated applications today makes it particularly suitable to develop

computational techniques and algorithms for solving these problems.
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Appendix A

Omitted Proofs From Section 5.2

A.1 Omissions from Section 5.2.2

A.1.1 Symmetry of the Optimal Scheme (Theorem 5.2.1)

To prove Theorem 5.2.1, we need two closure properties of optimal signaling schemes — with

respect to permutations and convex combinations. We use π to denote a permutation of [n], and

let SSn denote the set of all such permutations. We define the permutation π(θ) of a state of

nature θ ∈ [m]n so that (π(θ))j = θπ(j), and similarly the permutation of a signal σi so that

π(σi) = σπ(i). Given a signature M = {(Mσi , σi)}i∈[n], we define the permuted signature

π(M) = {(πMσi , π(σi))}i∈[n], where πM denotes applying permutation π to the rows of a

matrix M .

Lemma 23. Assume the action payoffs are i.i.d., and let π ∈ SSn be an arbitrary permutation. If

M is the signature of a signaling scheme ϕ, then π(M) is the signature of the scheme ϕπ defined

by ϕπ(θ) = π(ϕ(π−1(θ))). Moreover, if ϕ is persuasive and optimal, then so is ϕπ.

Proof. LetM = {(Mσ, σ)}σ∈Σ be the signature of ϕ, as given in the statement of the lemma.

We first show that π(M) = {(πMσ, π(σ))}σ∈Σ is realizable as the signature of the scheme ϕπ.
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By definition, it suffices to show that
∑

θ λ(θ)ϕπ(θ, π(σ))M θ = πMσ for an arbitrary signal

π(σ).∑
θ

λ(θ)ϕπ(θ, π(σ))M θ =
∑
θ

λ(θ)ϕ(π−1(θ), σ)M θ (by definition of ϕπ)

= π
∑
θ∈Θ

λ(θ)ϕ(π−1(θ), σ)(π−1M θ) (by linearity of permutation)

= π
∑
θ∈Θ

λ(θ)ϕ(π−1(θ), σ)Mπ−1(θ)

= π
∑
θ∈Θ

λ(π−1(θ))ϕ(π−1(θ), σ)Mπ−1(θ) (Since λ is i.i.d.)

= π
∑
θ′∈Θ

λ(θ′)ϕ(θ′, σ)M θ′ (by renaming π−1(θ) to θ′)

= πMσ (by definition of Mσ)

Now, assuming ϕ is persuasive, we check that ϕπ is persuasive by verifying the relevant

inequality for its signature.

ρ · (πMσi)π(i) − ρ · (πMσi)π(j) = ρ ·Mσi
i − ρ ·Mσi

j ≥ 0

Moreover, we show that the sender’s utility is the same for ϕ and ϕπ, completing the proof.

ξ · (πMσi)π(i) = ξ · (Mσi)i

Lemma 24. Let t ∈ [0, 1]. If A = (Aσ1 , . . . , Aσn) is the signature of scheme ϕA, and

B = (Bσ1 , . . . , Bσn) is the signature of a scheme ϕB , then their convex combination C =

(Cσ1 , . . . , Cσn) with Cσi = tAσi + (1 − t)Bσi is the signature of the scheme ϕC which, on

input θ, outputs ϕA(θ) with probability t and ϕB(θ) with probability 1− t. Moreover, if ϕA and

ϕB are both optimal and persuasive, then so is ϕC .

Proof. This follows almost immediately from the fact that the optimization problem in Figure 5.2

is a linear program, with a convex feasible set and a convex family of optimal solutions. We omit

the straightforward details.

Proof of Theorem 5.2.1

Given an optimal and persuasive signaling scheme ϕ with signature {(Mσi , σi)}i∈[n], we show

the existence of a symmetric optimal and persuasive scheme of the form in Definition 1. Accord-

ing to Lemma 23, for π ∈ SSn the signature {(πMσi , π(σi))}i∈[n] — equivalently written as
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{(πMσπ−1(i) , σi}i∈[n] — corresponds to the optimal persuasive scheme ϕπ. Invoking Lemma 24,

the signature

{(Aσi , σi)}i∈[n] = {( 1

n!

∑
π∈SSn

πM
σπ−1(i) , σi)}i∈[n]

also corresponds to an optimal and persuasive scheme, namely the scheme which draws a permu-

tation π uniformly at random, then signals according to ϕπ.

Observe that the ith row of the matrix πMσπ−1(i) is the π−1(i)th row of the matrix Mσπ−1(i) .

Expressing Aσii as a sum over permutations π ∈ SSn, and grouping the sum by k = π−1(i), we

can write

Aσii =
1

n!

∑
π∈SSn

[πM
σπ−1(i) ]i

=
1

n!

∑
π∈SSn

M
σπ−1(i)

π−1(i)

=
1

n!

n∑
k=1

Mσk
k ·

∣∣{π ∈ SSn : π−1(i) = k
}∣∣

=
1

n!

n∑
k=1

Mσk
k · (n− 1)!

=
1

n

n∑
k=1

Mσk
k ,

which does not depend on i. Similarly, the jth row of the matrix πMσπ−1(i) is the π−1(j)th row

of the matrix Mσπ−1(i) . For j 6= i, expressing Aσij as a sum over permutations π ∈ SSn, and

grouping the sum by k = π−1(i) and l = π−1(j), we can write

Aσij =
1

n!

∑
π∈SSn

[πM
σπ−1(i) ]j

=
1

n!

∑
π∈SSn

M
σπ−1(i)

π−1(j)

=
1

n!

∑
k 6=l

Mσk
l ·

∣∣{π ∈ SSn : π−1(i) = k, π−1(j) = l
}∣∣

=
1

n!

∑
k 6=l

Mσk
l · (n− 2)!

=
1

n(n− 1)

∑
k 6=l

Mσk
l ,
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which does not depend on i or j. Let

x =
1

n

n∑
k=1

Mσk
k ;

y =
1

n(n− 1)

∑
k 6=l

Mσk
l .

The signature {(Aσi , σi)}i∈[n] therefore describes an optimal, persuasive, and symmetric scheme

with s-signature (x,y).

A.1.2 The Optimal Scheme

Proof of Lemma 1

For the “only if” direction, ||x||1 = 1
n and x+ (n− 1)y = q were established in Section 5.2.2.

To show that τ is a realizable symmetric reduced form for an allocation rule, let ϕ be a signaling

scheme with s-signature (x,y). Recall from the definition of an s-signature that, for each i ∈ [n],

signal σi has probability 1/n, and nx is the posterior distribution of action i’s type conditioned

on signal σi. Now consider the following allocation rule: Given a type profile θ ∈ [m]n of the n

bidders, allocate the item to bidder i with probability ϕ(θ, σi) for any i ∈ [n]. By Bayes rule,

Pr[i gets item|i has type j] = Pr[i has type j|i gets item] · Pr[i gets item]

Pr[i has type j]

= nxj ·
1/n

qj
=
xj
qj

Therefore τ is indeed the reduced form of the described allocation rule.

For the “if” direction, let τ , x, and y be as in the statement of the lemma, and consider an

allocation rule A with symmetric reduced form τ . Observe that A always allocates the item,

since for each player i ∈ [n] we have Pr[i gets the item] =
∑m

j=1 qjτj =
∑m

j=1 xj = 1
n .

We define the direct signaling scheme ϕA by ϕA(θ) = σA(θ). Let M = (Mσ1 , . . . ,Mσn) be

the signature of ϕA. Recall that, for θ ∼ λ and arbitrary i ∈ [n] and j ∈ [m], Mσi
ij is the

probability that ϕA(θ) = σi and θi = j; by definition, this equals the probability that A allocates

the item to player i and her type is j, which is τjqj = xj . As a result, the signature M of

ϕA satisfies Mσi
i = x for every action i. If ϕA were symmetric, we would conclude that its

s-signature is (x,y) since every s-signature (x,y′) must satisfy x+ (n− 1)y′ = q (see Section

5.2.2). However, this is not guaranteed when the allocation rule A exhibits some asymmetry.

Nevertheless, ϕA can be “symmetrized” into a signaling scheme ϕ′A which first draws a random

permutation π ∈ SSn, and signals π(ϕA(π−1(θ))). That ϕ′A has s-signature (x,y) follows a

similar argument to that used in the proof of Theorem 5.2.1, and we therefore omit the details

here.
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Finally, observe that the description of ϕ′A above is constructive assuming black-box access

to A, with runtime overhead that is polynomial in n and m.

Proof of Lemma 2

By Lemma 1, we can re-write LP (5.2) as follows:

maximize nξ · x
subject to ρ · x ≥ ρ · y

x+ (n− 1)y = q

||x||1 = 1
n

(x1q1 , ....,
xm
qm

) is a realizable symmetric reduced form

(A.1)

From (Border, 1991, 2007; Cai et al., 2012; Alaei et al., 2012), we know that the family of all

the realizable symmetric reduced forms constitutes a polytope, and moreover that this polytope

admits an efficient separation oracle. The runtime of this oracle is polynomial in m and n, and as

a result the above linear program can be solved in poly(n,m) time using the Ellipsoid method.

A.1.3 A Simple (1− 1/e)-Approximate Scheme

Proof of Theorem 5.2.3

Given a binary signal σ = (o1, . . . , on) ∈ {HIGH,LOW}n, the posterior type distribution

for an action equals nx∗ if the corresponding component signal is HIGH, and equals ny∗ if

the component signal is LOW. This is simply a consequence of the independence of the action

types, the fact that the different component signals are chosen independently, and Bayes’ rule.

The constraint ρ · x∗ ≥ ρ · y∗ implies that the receiver prefers actions i for which oi = HIGH,

any one of which induces an expected utility of nρ ·x∗ for the receiver and nξ ·x∗ for the sender.

The latter quantity matches the optimal value of LP (5.3). The constraint ||x||1 = 1
n implies that

each component signal is HIGH with probability 1
n , independently. Therefore, the probability

that at least one component signal is HIGH equals 1 − (1 − 1
n)n ≥ 1 − 1

e . Since payoffs

are nonnegative, and since a rational receiver selects a HIGH action when one is available, the

sender’s overall expected utility is at least a 1− 1
e fraction of the optimal value of LP (5.3).
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A.2 Proof of Theorem 5.2.5

This section is devoted to proving Theorem 5.2.5. Our proof starts from the ideas of (Gopalan

et al., 2015), who show the #P-hardness for revenue or welfare maximization in several mecha-

nism design problems. In one case, (Gopalan et al., 2015) reduce from the #P -hard problem of

computing the Khintchine constant of a vector. Our reduction also starts from this problem, but is

much more involved: First, we exhibit a polytope which we term Khintchine polytope, and show

that computing the Khintchine constant reduces to linear optimization over the Khintchine poly-

tope. Second, we present a reduction from the membership problem for the Khintchine polytope

to the computation of optimal sender utility in a particularly-crafted instance of persuasion with

independent actions. Invoking the polynomial-time equivalence between membership checking

and optimization (see, e.g., (Grötschel et al., 1988)), we conclude the #P-hardness of our prob-

lem. The main technical challenge we overcome is in the second step of our proof: given a point

x which may or may not be in the Khintchine polytopeK, we construct a persuasion instance and

a threshold T so that points in K encode signaling schemes, and the optimal sender utility is at

least T if and only if x ∈ K and the scheme corresponding to x results in sender utility T .

The Khintchine Polytope

We start by defining the Khintchine problem, which is shown to be #P-hard in (Gopalan et al.,

2015).

Definition 7. (Khintchine Problem) Given a vector a ∈ Rn, compute the Khintchine constant

K(a) of a, defined as follows:

K(a) = E
θ∼{±1}n

[|θ · a|],

where θ is drawn uniformly at random from {±1}n.

To relate the Khintchine problem to Bayesian persuasion, we begin with a persuasion in-

stance with n i.i.d. actions. Moreover, there are only two action types,1 which we refer to as

type -1 and type +1. The state of nature is a uniform random draw from the set {±1}n, with

the ith entry specifying the type of action i. It is easy to see that these actions are i.i.d., with

marginal probability 1
2 for each type. We call this instance the Khintchine-like persuasion set-

ting. As in Section 5.2.2 , we still use the signature to capture the payoff-relevant features

of a signaling scheme. A signature for the Khintchine-like persuasion problem is of the form

M = (M1, ...,Mn) where M i ∈ Rn×2 for any i ∈ [n]. We pay special attention to signaling

1Recall from Section 5.2.2 that each type is associated with a pair (ξ, ρ), where ξ [ρ] is the payoff to the sender
[receiver] if the receiver takes an action of that type.
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maximize
∑n

i=1 ai(M
+
i,+1 −M+

i,−1)−∑n
i=1 ai(M

−
i,+1 −M−i,−1)

subject to (M+,M−) ∈ K(n)
(A.2)

Linear program for computing the Khintchine constant K(a) for a ∈ Rn

schemes which use only two signals, in which case we represent them using a two-signal signa-

ture of the form (M1,M2) ∈ Rn×2×Rn×2. Recall that such a signature is realizable if there is a

signaling scheme which uses only two signals, with the property that M i
jt is the joint probability

of the ith signal and the event that action j has type t. We now define the Khintchine polytope,

consisting of a convex family of two-signal signatures.

Definition 8. The Khintchine polytope is the family K(n) of realizable two-signal signatures

(M1,M2) for the Khintchine-like persuasion setting which satisfy the additional constraints

M1
i,1 +M1

i,2 = 1
2 ∀i ∈ [n].

We sometimes use K to denote the Khintchine polytope K(n) when the dimension n is clear

from the context. Note that the constraints M1
i,1 + M1

i,2 = 1
2 , ∀i ∈ [n] state that the first signal

should be sent with probability 1
2 (hence also the second signal). We now show that optimizing

over the Khintchine polytope is #P -hard by reducing the Kintchine problem to Linear program

(A.2).

Lemma 25. General linear optimization over the Khintchine polytope K is #P -hard.

Proof. For any given a ∈ Rn, we reduce the computation of K(a) – the Khintchine constant for

a – to a linear optimization problem over the Khintchine polytopeK. Since our reduction will use

two signals σ+ and σ− which correspond to the sign of θ · a, we will use (M+,M−) to denote

the two matrices in the signature in lieu of (M1, M2). Moreover, we use the two action types

+1 and −1 to index the columns of each matrix. For example, M+
i,−1 is the joint probability of

signal σ+ and the event that the ith action has type −1.

We claim that the Kintchine constant K(a) equals the optimal objective value of the

implicitly-described linear program (A.2). We denote this optimal objective value by

OPT (LP (A.2)). We first prove that K(a) ≤ OPT (LP (A.2)). Consider a signaling scheme

ϕ in the Kintchine-like persuasion setting which simply outputs σsign(θ·a) for each state of na-

ture θ ∈ {±1}n (breaking tie uniformly at random if θ · a = 0). Since θ is drawn uniformly

from {±1}n and sign(θ · a) = −sign(−θ · a), this scheme outputs each of the signals σ− and

σ+ with probability 1
2 . Consequently, the two-signal signature of ϕ is a point in K. Moreover,
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evaluating the objective function of LP (A.2) on the two-signal signature (M+,M−) of ϕ yields

K(a) = Eθ[|θ · a|], as shown below.

E
θ

[|θ · a|] = E
θ

[θ · a|σ+] ·Pr(σ+) + E
θ

[−θ · a|σ−] ·Pr(σ−)

=

n∑
i=1

aiE
θ

[θi|σ+] ·Pr(σ+)−
n∑
i=1

aiE
θ

[θi|σ−]×Pr(σ−)

=

n∑
i=1

(
ai[Pr(θi = 1|σ+)−Pr(θi = −1|σ+)] ·Pr(σ+)

)

−
n∑
i=1

(
ai[Pr(θi = 1|σ−)−Pr(θi = −1|σ−)] ·Pr(σ−)

)

=

n∑
i=1

(
ai[Pr(θi = 1, σ+)−Pr(θi = −1, σ+)]

)
−

n∑
i=1

(
ai[Pr(θi = 1, σ−)−Pr(θi = −1, σ−)]

)

=

n∑
i=1

ai[M
+
i,+1 −M+

i,−1]−
n∑
i=1

ai[M
−
i,+1 −M−i,−1]

This concludes the proof that K(a) ≤ OPT (LP (A.2)).

Now we prove K(a) ≥ OPT (LP (A.2)). Take any signaling scheme which uses only two

signals σ+ and σ−, and let (M+,M−) be its two-signal signature. Notice, however, that σ+ now

is only the “name” of the signal, and does not imply that θ · a is positive. Nevertheless, it is still

valid to reverse the above derivation until we reach
n∑
i=1

ai[M
+
i,+1 −M+

i,−1]−
n∑
i=1

ai[M
−
i,+1 −M−i,−1] = E

θ
[θ · a|σ+] ·Pr(σ+) + E

θ
[−θ · a|σ−] ·Pr(σ−).

Since θ · a and −θ · a are each no greater than |θ · a|, we have

E
θ

[θ · a|σ+] ·Pr(σ+) + E
θ

[−θ · a|σ−] ·Pr(σ−) ≤ E
θ

[|θ · a| | σ+] ·Pr(σ+) + E
θ

[|θ · a| | σ−] ·Pr(σ−)

= E
θ

[|θ · a|] = K(a).

That is, the objective value of LP (A.2) is upper bounded by K(a), as needed.

Before we proceed to present the reduction from the membership problem for K to optimal

persuasion, we point out an interesting corollary of Lemma 25.

Corollary 2. Let P be the polytope of realizable signatures for a persuasion problem with n i.i.d.

actions and m types (see Section 5.2.2). Linear optimization over P is #P -hard, and this holds

even when m = 2.

Proof. Consider the Khintchine-like persuasion setting. It is easy to see that the Khintchine

polytope K can be obtained from P by adding the constraints Mσi = 0 for i ≥ 3 and Mσ1
i,1 +
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Mσ1
i,2 = 1

2 for i ∈ [n], followed by a simple projection. Therefore, the membership problem forK
can be reduced in polynomial time to the membership problem for P , since the additional linear

constraints can be explicitly checked in polynomial time. By the polynomial-time equivalence

between optimization and membership, it follows that general linear optimization over P is #P -

hard.

Remark A.2.1. It is interesting to compare Corollary 2 to single item auctions with i.i.d. bidders,

where the problem does admit a polynomial-time separation oracle for the polytope of realizable

signatures via Border’s Theorem (Border, 1991, 2007) and its algorithmic properties (Cai et al.,

2012; Alaei et al., 2012). In contrast, the polytope of realizable signatures for Bayesian persua-

sion is #P-hard to optimize over. Nevertheless, in Section 5.2.2 we were indeed able to compute

the optimal signaling scheme and sender utility for persuasion with i.i.d. actions. Corollary 2

conveys that it was crucial for our algorithm to exploit the special structure of the persuasion

objective and the symmetry of the optimal scheme, since optimizing a general objective over P is

#P-hard.

Reduction

We now present a reduction from the membership problem for the Khintchine polytope to the

computation of optimal sender utility for persuasion with independent actions. As the output

of our reduction, we construct a persuasion instance of the following form. There are n + 1

actions. Action 0 is special – it deterministically results in sender utility ε and receiver utility

0. Here, we think of ε > 0 as being small enough for our arguments to go through. The other

n actions are regular. Action i > 0 independently results in sender utility −ai and receiver

utility ai with probability 1
2 (call this the type 1i), or sender utility −bi and receiver utility bi

with probability 1
2 (call this the type 2i). Note that the sender and receiver utilities are zero-sum

for both types. Notice that, though each regular action’s type distribution is uniform over its two

types, the actions here are not identical because the associated payoffs — specified by ai and bi
for each action i— are different for different actions. Since the special action is deterministic and

the probability of its (only) type is 1 in any signal, we can interpret any (M1,M2) ∈ K(n) as a

two-signal signature for our persuasion instance (the row corresponding to the special action 0 is

implied). For example,M1
i,2 is the joint probability of the first signal and the event that action i has

type 2i. Our goal is to reduce membership checking for K(n) to computing the optimal expected

sender utility for a persuasion instance with carefully chosen parameters {ai}ni=1, {bi}ni=1, and ε.

In relating optimal persuasion to the Khintchine polytope, there are two main difficulties:

(1) K consists of two-signal signatures, so there should be an optimal scheme to our persuasion

instance which uses only two signals; (2) To be consistent with the definition of K, such an
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optimal scheme should send each signal with probability exactly 1
2 . We will design specific

ε, ai, bi to accomplish both goals.

For notational convenience, we will again use (M+,M−) to denote a typical element in K
instead of (M1,M2) because, as we will see later, the two constructed signals will induce positive

and negative sender utilities, respectively. Notice that there are only n degrees of freedom in

(M+,M−) ∈ K. This is because M+ + M− is the all-1
2 matrix in Rn×2, corresponding to

the prior distribution of states of nature (by the definition of realizable signatures). Moreover,

M+
i,1 +M−i,2 = 1

2 for all i ∈ [n] (by the definition of K). Therefore, we must have

M+
i,1 = M−i,2 =

1

2
−M+

i,2 =
1

2
−M−i,1.

This implies that we can parametrize signatures (M+,M−) ∈ K by a vector x ∈ [0, 1
2 ]n, where

M+
i,1 = M−i,2 = xi and M+

i,2 = M−i,1 = 1
2 − xi for each i ∈ [n]. For any x ∈ [0, 1

2 ]n, letM(x)

denote the signature (M+,M−) defined by x as just described.

We can now restate the membership problem for K as follows: given x ∈ [0, 1
2 ]n, determine

whether M(x) ∈ K. When any of the entries of x equals 0 or 1
2 this problem is trivial,2 so

we assume without loss of generality that x ∈ (0, 1
2)n. Moreover, when xi = 1

4 for some

i, it is easy to see that a signaling scheme with signature M(x), if one exists, must choose

its signal independently of the type of action i, and therefore M(x) ∈ K(n) if and only if

M(x−i) ∈ K(n− 1). This allows us to assume without loss of generality that xi 6= 1
4 for all i.

Given x ∈ (0, 1
2)n with xi 6= 1

4 for all i, we construct specific ε and ai, bi for all i such

that we can determine whetherM(x) ∈ K by simply looking at the optimal sender utility in the

corresponding persuasion instance. We choose parameters ai and bi to satisfy the following two

equations.

xiai + (
1

2
− xi)bi = 0. (A.3)

(
1

2
− xi)ai + xibi =

1

2
. (A.4)

We note that the above linear system always has a solution when xi 6= 1
4 , which we assumed

previously. We make two observations about our choice of ai and bi. First, the prior expected

receiver utility 1
2(ai + bi) equals 1

2 for all actions i (by simply adding Equation (A.3) and (A.4)).

Second, ai and bi are both non-zero, and this follows easily from our assumption that xi ∈ (0, 1
2).

Now we show how to determine whetherM(x) ∈ K by only examining the optimal sender

utility in the constructed persuasion instance. We start by showing that restricting to two-signal

schemes is without loss of generality in our instance.
2If xi is 0 or 1

2
, thenM(x) ∈ K if and only if xj = 1

4
for all j 6= i. This is because the corresponding signaling

scheme must choose its signal based solely on the type of action i.
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Lemma 26. There exists an optimal persuasive signaling scheme which uses at most two signals:

one signal recommends the special action, and the other recommends some regular action.

Proof. Recall that an optimal persuasive scheme uses n+1 signals, with signal σi recommending

action i for i = 0, 1, ..., n. Fix such a scheme, and let αi denote the probability of signal σi. Signal

σi induces posterior expected receiver utility rj(σi) and sender utility sj(σi) for each action j.

For a regular action j 6= 0, we have sj(σi) = −rj(σi) for all i due to the zero-sum nature of our

construction. Notice that ri(σi) ≥ 0 for all regular actions i 6= 0, since otherwise the receiver

would prefer action 0 over action i. Consequently, for each signal σi with i 6= 0, the receiver

derives non-negative utility and the sender derives non-positive utility.

We claim that merging signals σ1, σ2, . . . , σn — i.e., modifying the signaling scheme to out-

put the same signal σ∗ in lieu of each of them — would not decrease the sender’s expected utility.

Recall that persuasiveness implies that ri(σi) = maxnj=0 rj(σi). Using Jensen’s inequality, we

get
n∑
i=1

αiri(σi) ≥
n

max
j=0

[
n∑
i=1

αirj(σi)

]
. (A.5)

If the maximum in the right hand side expression of (A.5) is attained at j∗ = 0, the receiver

will choose the special action 0 when presented with the merged signal σ∗. Recalling that

si(σi) is non-positive for i 6= 0, this can only improve the sender’s expected utility. Oth-

erwise, the receiver chooses a regular action j∗ 6= 0 when presented with σ∗, resulting in a

total contribution of
∑n

i=1 αirj∗(σi) to the receiver’s expected utility from the merged signal,

down from the total contribution of
∑n

i=1 αiri(σi) by the original signals σ1, . . . , σn. Recall-

ing the zero-sum nature of our construction for regular actions, the merged signal σ∗ contributes∑n
i=1 αisj∗(σi) = −∑n

i=1 αirj∗(σi) to the sender’s expected utility, up from a total contribution

of
∑n

i=1 αisi(σi) = −∑n
i=1 αiri(σi) by the original signals σ1, . . . , σn. Therefore, the sender is

not worse off by merging the signals. Moreover, interpreting σ∗ as a recommendation for action

j∗ yields persuasiveness.

Therefore, in characterizing the optimal solution to our constructed persuasion instance, it

suffices to analyze two-signal schemes of the the form guaranteed by Lemma 26. For such a

scheme, we denote the signal that recommends the special action 0 by σ+ (indicating that the

sender derives positive utility ε), and denote the other signal by σ− (indicating that the sender

derives negative utility, as we will show). For convenience, in the following discussion we use the

expression “payoff from a signal” to signify the expected payoff of a player conditioned on that

signal multiplied by the probability of that signal. For example, the sender’s expected payoff from

signal σ− equals the sender’s expected payoff conditioned on signal σ− multiplied by the overall

probability that the scheme outputs σ−, assuming the receiver follows the scheme’s (persuasive)
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recommendations. We also use the expression “payoff from an action in a signal” to signify the

posterior expected payoff of a player for that action conditioned on the signal, multiplied by the

probability that the scheme outputs the signal. For example, the receiver’s expected payoff from

action i in signal σ+ equals α+ · ri(σ+), where ri(σ+) is the receiver’s posterior expected payoff

from action i given signal σ+, and α+ is the overall probability of signal σ+.

Lemma 27. Fix a persuasive scheme with signals σ− and σ+ as described above. The sender’s

expected payoff from signal σ− is at most−1
2 . Moreover, if the sender’ expected payoff from σ− is

exactly −1
2 , then for each regular action i the expected payoff of both the sender and the receiver

from action i in signal σ+ equals 0.

Proof. Assume that signal σ+ [σ−] is sent with probability α+ [α−] and induces posterior ex-

pected receiver payoff ri(σ+) [ri(σ−)] for each action i. Recall from our construction that the

prior expected payoff of each regular action i 6= 0 equals 1
2ai+

1
2bi = 1

2 . Since the prior expecta-

tion must equal the expected posterior expectation, it follows that α+ · ri(σ+) +α− · ri(σ−) = 1
2

when i is regular. The receiver’s reward from the special action is deterministically 0, and

therefore persuasiveness implies that ri(σ+) ≤ 0 for each regular action i. It follows that

α− · ri(σ−) = 1
2 − α+ · ri(σ+) ≥ 1

2 for regular actions i. In other words, the receiver’s ex-

pected payoff from each regular action in signal σ− is at least 1
2 . By the zero-sum nature of our

construction, the sender’s expected payoff from each regular action in signal σ− is at most −1
2 .

Since σ− recommends a regular action, we conclude that the sender’s expected payoff from σ−

is at most −1
2 .

Now assume that the sender’s expected payoff from σ− is exactly −1
2 . By the zero-sum

property, persuasiveness, and the above-established fact that α− · ri(σ−) ≥ 1
2 for regular actions

i, it follows that the receiver’s expected payoff from each regular action in signal σ− is exactly 1
2 .

Recalling that α+ · ri(σ+) + α− · ri(σ−) = 1
2 when i is regular, we conclude that the receiver’s

expected payoff from a regular action in signal σ+ equals 0. By the zero-sum property for regular

actions, the same is true for the sender.

The key to the remainder of our reduction is to choose a small enough value for the parameter

ε — the sender’s utility from the special action — so that the optimal signaling scheme satisfies

the property mentioned in Lemma 27: The sender’s expected payoff from signal σ− is exactly

equal to its maximum possible value of −1
2 . In other words, we must make ε so small so that

the sender prefers to not sacrifice any of her payoff from σ− in order to gain utility from the

special action recommended by σ+. Notice that this upper bound of−1
2 is indeed achievable: the

uninformative signaling scheme which recommends an arbitrary regular action has this property.

We now show that a “small enough” ε indeed exists. The key idea behind this existence proof is
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the following: We start with a signaling scheme which maximizes the sender’s payoff from σ− at

−1
2 , and moreover corresponds to a vertex of the polytope of persuasive signatures. When ε > 0

is smaller than the “bit complexity” of the vertices of this polytope, moving to a different vertex

— one with lower sender payoff from σ− — will result in more utility loss from σ− than utility

gain from σ+. We show that ε > 0 with polynomially many bits suffices, and can be computed

in polynomial time.

Let P2 be the family of all realizable two-signal signatures (again, ignoring action 0). It is

easy to see that P2 is a polytope, and importantly, all entries of any vertex of P2 are integer mul-

tiples of 1
2n . This is because every vertex of P2 corresponds to a deterministic signaling scheme

which partitions the set of states of nature, and every state of nature occurs with probability 1/2n.

As a result, all vertices of P2 have O(n) bit complexity.

To ease our discussion, we use a compact representation for points in P2. In particular, any

point in P2 can be captured by n + 1 variables: variable p denotes the probability of sending

signal σ+, and variable yi denotes the joint probability of signal σ+ and the event that action i

has type 1i. It follows that joint probability of type 2i and signal σ+ is p−yi, and the probabilities

associated with signal σ− are determined by the constraint that M+ + M− is the all-1
2 matrix.

With some abuse of notation, we use M(p,y) = (M+,M−) to denote the signature in P2

corresponding to the probability p and n-dimensional vector y. Now we consider the following

two linear programs.

maximize pε+ u

subject to M(p,y) ∈ P2

yiai + (p− yi)bi ≤ 0, for i = 1, . . . , n.

u ≤ −[(1
2 − yi)ai + (1

2 − p+ yi)bi], for i = 1, . . . , n.

(A.6)

maximize u

subject to M(p,y) ∈ P2

yiai + (p− yi)bi ≤ 0, for i = 1, . . . , n.

u ≤ −[(1
2 − yi)ai + (1

2 − p+ yi)bi], for i = 1, . . . , n.

(A.7)

Linear programs (A.6) and (A.7) are identical except for the fact that the objective of LP (A.6)

includes the additional term pε. LP (A.6) computes precisely the optimal expected sender util-

ity in our constructed persuasion instance: The first set of inequality constraints are the per-

suasiveness constraints for the signal σ+ recommending action 0; The second set of inequality

constraints state that the sender’s payoff from signal σ− is the minimum among all actions, as

implied by the zero-sum nature of our construction; The objective is the sum of the sender’s pay-

offs from signals σ+ and σ−. Notice that the persuasiveness constraints for signal σ−, namely

(1
2−yi)ai+(1

2−p+yi)bi ≥ 0 for all i 6= 0, are implicitly satisfied because 1
2ai+

1
2bi = 1

2 by our
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construction and (1
2−yi)ai+(1

2−p+yi)bi = 1
2ai+

1
2bi− [yiai+(p−yi)bi] ≥ 1

2−0 > 0. On the

other hand, LP (A.7) maximizes the sender’s expected payoff from signal σ−. Observe that the

optimal objective value of LP (A.7) is precisely−1
2 because u ≤ −[(1

2−yi)ai+(1
2−p+yi)bi] ≤

−1
2 for all i 6= 0, and equality is attained, for example, at p = 0 and y = 0.

Let P̃2 be the set of all feasible (u,M(p,y)) for LP (A.6) (and LP (A.7)). Obviously, P̃2 is

a polytope. We now argue that all vertices of P̃2 have bit complexity polynomial in n and the

bit complexity of x ∈ (0, 1
2)n. In particular, denote the bit complexity of x by `. Since ai, bi

are computed by a two-variable two-equation linear system involving xi (Equations (A.3) and

(A.4)), they each have O(`) bit complexity. Consequently, all the explicitly described facets of

P̃2 have O(`) bit complexity. Moreover, since each vertex of P2 has O(n) bit complexity, each

facet of P2 then has O(n3) bit complexity, i.e., the coefficients of inequalities that determine

the facets have O(n3) bit complexity. This is due to the fact that facet complexity of a rational

polytope is upper bounded by a cubic polynomial of the vertex complexity and vice versa (see,

e.g., (Schrijver, 2003)). To sum up, any facet of polytope P̃2 has bit complexity O(n3 + `), and

therefore any vertex of P̃2 has O(n9`3) bit complexity.

Let the polynomial B(n, `) = O(n9`3) be an upper bound on the maximum bit complexity

of vertices of P̃2. Now we are ready to set the value of ε. LP (A.6) always has an optimal vertex

solution which we denote as (u∗,M∗). Recall that u ≤ −1
2 for all points (u,M(p,y)) in P̃2

and u = −1
2 is attainable at some vertices. Since all vertices of P̃2 have B(n, `) bit complexity,

(u∗,M∗) must either satisfy either u∗ = −1
2 or u∗ ≤ −1

2 − 2−B(n,`). Therefore, it suffices to

set ε = 2−n·B(n,`), which is a number with polynomial bit complexity. As a result, any optimal

vertex solution to LP (A.6) must satisfy u∗ = −1
2 , since the loss incurred by moving to any other

vertex with u < −1
2 can never be compensated for by the other term pε < ε.

With such a small value of ε, the sender’s goal is to send signal σ+ with probability as high as

possible, subject to the constraint that her utility from σ− is precisely −1
2 . In other words, signal

σ+ must induce expected receiver/sender utility precisely 0 for each regular action i 6= 0 (see

Lemma 27). This characterization of the optimal scheme now allows us to determine whether

M(x) ∈ K by inspecting the sender’s optimal expected utility. The following Lemma completes

our proof of Theorem 5.2.5.

Lemma 28. Given the small enough value of ε described above, the sender’s expected utility in

the optimal signaling scheme for our constructed persuasion instance is at least 1
2(ε − 1) if and

only ifM(x) ∈ K.

Proof. ⇐: If M(x) ∈ K, then by our choice of ai, bi (recall Equations (A.3) and (A.4)), the

signaling scheme implementing M(x) is persuasive, the sender’s payoff from signal σ+ is 1
2ε,

and her payoff from σ− is −1
2 . Therefore, the optimal sender utility is at least 1

2ε− 1
2 .
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⇒: LetM(p,y) be the signature of a vertex optimal signaling scheme in LP (A.6). By our

choice of ε we know that the sender payoff from signal σ− must be exactly −1
2 . Therefore, to

achieve overall sender utility at least 1
2ε − 1

2 , signal σ+ must be sent with probability p ≥ 1
2 ,

and the receiver’s payoff from each regular action i 6= 0 in signal σ+ is exactly 0. That is,

yiai + (p− yi)bi = 0. By construction, we also have that xiai + (0.5− xi)bi = 0 and ai, bi 6= 0,

which imply that yi
xi

= p−yi
0.5−xi and, furthermore, that yi ≥ xi since p ≥ 1

2 . Now let ϕ be a

signaling scheme with the signatureM(p,y). We can post-process ϕ so it has signatureM(x)

as follows: whenever ϕ outputs the signal σ+, flip a biased random coin to output σ+ with

probability 0.5
p and output σ− otherwise. By using the identity yi

xi
= p−yi

0.5−xi , it is easy to see that

this adjusted signaling scheme has signatureM(x).
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A.3 Omitted Proofs from Section 5.2.4

A.3.1 A Bicriteria FPTAS

Proof of Lemma 4

Fix ε,K, and λ, and let ϕ denote the resulting signaling scheme implemented by Algorithm 2. Let

θ ∼ λ denote the input to ϕ, and σ ∼ ϕ(θ) denote its output. First, we condition on the empirical

sample λ̃ = {θ1, . . . , θK} without conditioning on the index ` of the input state of nature θ,

and show that ε-persuasiveness holds subject to this conditioning. The principle of deferred

decisions implies that, subject to this conditioning, θ is uniformly distributed in λ̃. By definition

of linear program (5.4), the signaling scheme ϕ̃ computed in Step 3 is ε-persuasive scheme for

the empirical distribution λ̃. Since σ ∼ ϕ̃(θ) and θ is conditionally distributed according to λ̃,

this implies that all ε-persuasiveness constraints conditionally hold; formally, the following holds

for each pair of actions i and j:

E[ri(θ)|σ = σi, λ̃] ≥ E[rj(θ)|σ = σi, λ̃]− ε

Removing the conditioning on λ̃ and invoking linearity of expectations shows that ϕ is ε-

persuasive for λ, completing the proof.

Proof of Lemma 5

As in the proof of Lemma 4, we condition on the empirical sample λ̃ = {θ1, . . . , θK} and observe

that θ is uniformly distributed in λ̃ after this conditioning. The conditional expectation of sender

utility then equals
∑K

k=1

∑n
i=1

1
K ϕ̃(θk, σi)si(θk), where ϕ̃ is the signaling scheme computed in

Step 3 based on λ̃. Since this is precisely the optimal value of the LP (5.4) solved in Step 3,

removing the conditioning and invoking linearity of expectations completes the proof.

Proof of Lemma 6

Recall that linear program (5.1) solves for the optimal persuasive scheme for λ. It is easy to

see that the linear program (5.4) solved in step 3 is simply the instantiation of LP (5.1) for the

empirical distribution λ̃ consisting of K samples from λ. To prove the lemma, it would suffice

to show that the optimal persuasive scheme ϕ∗ corresponding to LP (5.1) remains ε-persuasive

and ε-optimal for the distribution λ̃, with high probability. Unfortunately, this approach fails

because polynomially-many samples from λ are not sufficient to approximately preserve the per-

suasiveness constraints corresponding to low-probability signals (i.e., signals which are output

with probability smaller than inverse polynomial in n). Nevertheless, we show in Claim 4 that

there exists an approximately optimal solution ϕ̂ to LP (5.1) with the property that every signal
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σi is either large, which we define as being output by ϕ̂ with probability at least ε
4n assuming

θ ∼ λ, or honest in that only states of nature θ with i ∈ argmaxj rj(θ) are mapped to it. It is easy

to see that sampling preserves persuasiveness exactly for honest signals. As for large signals,

we employ tail bounds and the union bound to show that polynomially many samples suffice to

approximately preserve persuasiveness (Claim 5).

Claim 4. There is a signaling scheme ϕ̂ which is persuasive for λ, induces sender utility

us(ϕ̂, λ) ≥ OPT − ε
2 on λ, and such that every signal of ϕ̂ is either large or honest.

Proof. Let ϕ∗ be the optimal persuasive scheme for λ— i.e. the optimal solution to LP (5.1). We

call a signal σ small if it is output by ϕ∗ with probability less than ε
4n , i.e. if

∑
θ∈Θ λθϕ

∗(θ, σ) <
ε

4n , and otherwise we call it large. Let ϕ̂ be the scheme which is defined as follows: on input θ,

it first samples σ ∼ ϕ∗(θ); if σ is large then ϕ̂ simply outputs σ, and otherwise it recommends an

action maximizing receiver utility in state of nature θ —- i.e., outputs σi′ for i′ ∈ argmaxi ri(θ).

It is easy to see that every signal of ϕ̂ is either large or honest. Moreover, since ϕ∗ is persuasive

and ϕ̂ only replaces recommendations of ϕ∗ with “honest” recommendations, it is easy to check

that ϕ̂ is persuasive for λ. Finally, since the total probability of small signals in ϕ∗ is at most ε
4 ,

and utilities are in [−1, 1], the sender’s expected utility from ϕ̂ is no worse than ε
2 smaller than

her expected utility from ϕ∗.

Claim 5. Let ϕ̂ be the signaling scheme from Claim 4. With probability at least 1 − ε
8 over the

sample λ̃, ϕ̂ is ε-persuasive for λ̃, and moreover us(ϕ̂, λ̃) ≥ us(ϕ̂, λ)− ε
4 .

Proof. Recall that ϕ̂ is persuasive for λ, and every signal is either large or honest. Since λ̃ is a set

of samples from λ, it is easy to see that persuasiveness constraints pertaining to the honest signals

continue to hold over λ̃. It remains to show that persuasiveness constraints for large signals, as

well as expected sender utility, are approximately preserved when replacing λ with λ̃.

Recall that persuasiveness requires that Eθ[ϕ̂(θ, σi)(ri(θ) − rj(θ))] ≥ 0 for each i, j ∈ [n].

Moreover, the sender’s expected utility can be written as Eθ[
∑n

i=1 ϕ̂(θ, σi)si(θ)]. The left hand

side of each persuasiveness constraint evaluates the expectation of a fixed function of θ with

range [−2, 2], whereas the sender’s expected utility evaluates the expectation of a function of θ

with range in [−1, 1]. Standard tail bounds and the union bound, coupled with our careful choice

of the number of samples K, imply that replacing distribution λ with λ̃ approximately preserves

each of these n2 + 1 quantities to within an additive error of ε2

4n with probability at least 1 − ε
8 .

This bound on the additive loss translates to ε-persuasiveness for the large signals, and is less than

the permitted decrease of ε
4 for expected sender utility.

The above claims, coupled with the fact that sender payoffs are bounded in [−1, 1], imply

that the expected optimal value of linear program (5.4) is at least OPT − ε, as needed.
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Rainy Sunny
Walk 1− δ 1
Drive 1 0

Table A.1: Receiver’s payoffs in rain and shine example
A.3.2 Information-Theoretic Barriers

Impossibility of Persuasiveness (Proof of Theorem 5.2.7 (a))

Consider a setting with two states of nature, which we will conveniently refer to as rainy and

sunny. The receiver, who we may think of as a daily commuter, has two actions: walk and drive.

The receiver slightly prefers driving on a rainy day, and strongly prefers walking on a sunny

day. We summarize the receiver’s payoff function, parametrized by δ > 0, in Table A.1. The

sender, who we will think of as a municipality with black-box sample access to weather reports

drawn from the same distribution as the state of nature, strongly prefers that the receiver chooses

walking regardless of whether it is sunny or rainy: we let swalk = 1 and sdrive = 0 in both states

of nature.

Let λr be the point distribution on the rainy state of nature, and let λs be such that

Prλs [rainy] = 1
1+2δ and Prλs [sunny] = 2δ

1+2δ . It is easy to see that the unique direct persua-

sive scheme for λr always recommends driving, and hence results in expected sender utility of 0.

In contrast, a simple calculation shows that always recommending walking is persuasive for λs,

and results in expected sender utility 1. If algorithm A is persuasive and c-optimal for a constant

c < 1, then A(λr) must never recommend walking whereas A(λs) must recommend walking

with constant probability at least (1 − c) overall (in expectation over the input state of nature

θ ∼ λs as well as all other internal randomness). Consequently, given a black box distribution

D ∈ {λr, λs}, evaluating A(D, θ) on a random draw θ ∼ D yields a tester which distinguishes

between λr and λs with constant probability 1− c.
Since the total variation distance between λr and λs is O(δ), it is well known (and easy to

check) that any black-box algorithm which distinguishes between the two distributions with Ω(1)

success probability must take Ω(1
δ ) samples in expectation when presented with one of these

distributions. As a consequence, the average-case sample complexity ofA on either of λr and λs
is Ω(1

δ ). Since δ > 0 can be made arbitrarily small, this completes the proof.

Impossibility of Optimality (Proof of Theorem 5.2.7 (b))

Consider a setting with three actions {1, 2, 3} and three corresponding states of nature θ1, θ2, θ3.

In each state θi, the receiver derives utility 1 from action i and utility 0 from the other actions.

The sender, on the other hand, derives utility 1 from action 3 and utility 0 from actions 1 and 2.
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Pr[θ1] Pr[θ2] Pr[θ3]
λ 1− 2δ 2δ 0
λ′ 1− 2δ δ δ

Table A.2: Two distributions on three actions
For an arbitrary parameter δ > 0, we define two distributions λ and λ′ over states of nature with

total variation distance δ, illustrated in Table A.2.

Assume algorithmA is optimal and c-persuasive for a constant c < 1
4 . The optimal persuasive

scheme for λ′ results in expected sender utility 3δ by recommending action 3 whenever the state

of nature is θ2 or θ3, and with probability δ
1−2δ when the state of nature is θ1. Some calculation

reveals that in order to match this expected sender utility subject to c-persuasiveness, signaling

scheme ϕ′ = A(λ′) must satisfy ϕ′(θ2, σ3) ≥ µ for µ = 1 − 4c > 0. In other words, ϕ′ must

recommend action 3 a constant fraction of the time when given state θ2 as input. In contrast,

since c < 1
2 it is easy to see that ϕ = A(λ) can never recommend action 3: for any signal, the

posterior expected receiver reward for action 3 is 0, whereas one of the other two actions must

have posterior expected receiver reward at least 1
2 . It follows that given D ∈ {λ, λ′}, a call to

A(D, θ2) yields a tester which distinguishes between λ and λ′ with constant probability µ. Since

λ and λ′ have statistical distance δ, we conclude that the worst case sample complexity of A on

either of λ or λ′ is Ω(1
δ ). Since δ > 0 can be made arbitrarily small, this completes the proof.
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Appendix B

Omissions From Section 6.2.3.1

B.1 Omitted Proofs

Proof of Lemma 12

The linear program for solving zero-sum SEGs can be written as follows, which is a slight modi-

fication to LP (6.6):

max u

s.t. u ≤ xiUd+(i) + wiU
d
−(i) + Udσ(π+

i , π
−
i ) ∀ i ∈ [n]∑

e∈E:ei=θ+
pe = xi ∀ i ∈ [n]∑

e∈E:ei=θs+
pe = yi ∀ i ∈ [n]∑

e∈E:ei=θs−
pe = zi ∀ i ∈ [n]

xi + yi + zi + wi = 1 ∀ i ∈ [n]∑
e∈E pe = 1

pe ≥ 0 ∀ e ∈ E
Udσ(π+

i , π
−
i ) ≤ 0 ∀ i ∈ [n]

(yi − π+
i )Ud+(i) + (zi − π−i )Ud−(i) ≥ 0 ∀ i ∈ [n]

0 ≤ π+
i ≤ yi, 0 ≤ π−i ≤ zi ∀ i ∈ [n]

(B.1)

We first prove a useful property of the optimal solution of LP (B.1). In particular, we show

that there always exists an optimal solution to LP (B.1) that satisfies π−i = zi ∀i ∈ [n].

First, we claim that it is without loss of generality to assume that the optimal solution satisfied

either yi = π+
i or zi = π−i . Otherwise, we can increase π+

i by ε
Ud+(i)

and π−i by ε
−Ud−(i)

without

violating constraints and changing the objective value. Once one of the π+
i , π

−
i reaches its upper

bound, we have yi = π+
i or zi = π−i and the solution remains optimal.

Now, if π−i = zi, then we are done. If π+
i = yi, we have 0 ≤ (yi − π+

i )Ud+(i) + (zi −
π−i )Ud−(i) = (zi − π−i )Ud−(i) ≤ 0, which implies zi = π−i or Ud−(i) = 0. In the later case, we

can arbitrary set π−i to be zi without affecting anything neither.
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Therefore, adding the constraint zi = π−i will not affect the optimal value of linear program

(B.1). Moreover, π+
i is always non-negative at the optimal solution. So relaxing π+

i to be a

real number will not affect the optimal value. Thus, the linear program B.1 is equivilent to the

following linear program:

max u

s.t. u ≤ xiUd+(i) + (1− xi − yi − zi)Ud−(i)

+π+
i U

d
+(i) + z−i U

d
−(i) ∀ i ∈ [n]∑

e∈E:ei=θ+
pe = xi ∀ i ∈ [n]∑

e∈E:ei=θs+
pe = yi ∀ i ∈ [n]∑

e∈E:ei=θs−
pe = zi ∀ i ∈ [n]∑

e∈E pe = 1

pe ≥ 0 ∀ e ∈ E
π+
i U

d
+(i) + ziU

d
−(i) ≤ 0 ∀ i ∈ [n]

π+
i ≤ yi ∀ i ∈ [n]

(B.2)

The dual of LP (B.2) is the following LP.

min
∑n

i=1 U
d
−(i)wi + r

s.t. r ≥ ∑
i:ei=θ+

αi +
∑

i:ei=θs+

βi +
∑

i:ei=θs−

γi ∀ e ∈ E

αi = [Ud+(i)− Ud−(i)]wi ∀ i ∈ [n]

βi = ϕi − wiUd−(i) ∀ i ∈ [n]

γi = −δiUd−(i) ∀ i ∈ [n]∑
e∈E pe = 1

ϕi = Ud+(i)wi − Ud+(i)δi ∀ i ∈ [n]∑n
i=1wi = 1

(B.3)

in which αi, βi, γi correspond to the constraints defining xi, yi, zi respectively. Note that

αi = [Ud+(i)− Ud−(i)]wi ≥ [Ud+(i)− Ud−(i)]wi − Ud+(i)δi = βi

Also, since ϕi ≥ 0 and Ud+(i) ≥ 0 too, so we have the implicit constraint wi ≥ δi ≥0. Therefore,

βi = [Ud+(i)− Ud−(i)]wi − Ud+(i)δi

≥ [Ud+(i)− Ud−(i)]δi − Ud+(i)δi

= −Ud−(i)δi = γi

Since γi = −Ud−(i)δi ≥ 0, this implies

αi ≥ βi ≥ γi ≥ 0
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Proof of Lemma 13

This is because when T is fixed, the weight of covering any target i by a sensor has been deter-

mined – either βi if i ∈ TN or γi if i ∈ T c. Therefore, to maximize the total weights, we simply

pick the largest m elements in {βi | i ∈ TN} ∪ {γi | i ∈ T c}.

Proof of Theorem 6.2.2

The proof follows from the following two lemmas.

Lemma 29. When αi ≥ βi ≥ γi ≥ 0,∀i ∈ [n], function g(T ) is nonnegative, monotone increas-

ing and submodular.

Proof of Lemma 29. It is easy to see that g(T ) ≥ 0 and is monotone increasing in T . We only

prove its submodularity. Since
∑

i∈T αi is a modular function of T , we only need to prove that

function f ′(T ) = Σm
max

(
{βi | i ∈ TN ∪ T} ∪ {γi | i ∈ T c}

)
is submodular in T . The key step

is to prove that the following function is submodular:

W (S) =
∑m

max({βi|i ∈ S} ∪ {γi|i ∈ S})

where βi ≥ γi for all i ∈ [n] and S = [n]−S is the complement of S. Notice thatW (T ) 6= f ′(T )

(instead W (TN ∪ T ) = f ′(T )), so they are two different functions despite the similarity.

Pick any sets S ⊂ T ⊆ [n] and j 6∈ T . Following the standard definition of submodularity,

we prove the following inequality:

W (S ∪ {j})−W (S) ≥W (T ∪ {j})−W (T ).

This follows a case analysis. For convenience, we will say “βj [γj] contributes to W (S)” if βj
[γj] is among the largestm weights of {βi|i ∈ S}∪{γi|i ∈ S}; Moreover, we denote set S∪{j}
by S+j .

• βj contributes to W (T+j). Then we must have that βj also contributes to W (S+j) since

S ⊂ T . In this case, W (S+j)−W (S) equals βj minus the smallest weight that contributes

to W (S). On the other hand, W (T+j) − W (T ) equals βj minus the smallest weight

that contributes to W (T ). Since S ⊂ T , the smallest weight contributing to W (T ) is

larger than the smallest weight contributing to W (S). This implies W (S+j) −W (S) ≥
W (T+j)−W (T ).

• βj does not contribute to W (T+j). In this case W (T+j) − W (T ) = 0 and W (S+j) −
W (S) ≥ 0. Therefore, W (S+j)−W (S) ≥W (T+j)−W (T ).
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As a result, W (S) is submodular. We now show that f ′(T ) is submodular by proving

f ′(S+j)− f ′(S) ≥ f ′(T+j)− f ′(T )

for any S ⊂ T ⊆ [n] and j 6∈ T . Let A = TN+j ∪T+j \ (TN ∪T ) and B = SN+j ∪S+j \ (SN ∪S).

Note that A ⊆ B since S ⊂ T . Therefore

f ′(S+j)− f ′(S) = W (SN+j ∪ S+j)−W (SN ∪ S)

= W (SN ∪ S ∪B)−W (SN ∪ S)

≥ W (SN ∪ S ∪A)−W (SN ∪ S)

≥ W (TN ∪ T ∪A)−W (TN ∪ T )

= f ′(T+j)− f ′(T ),

where the first inequality follows from monotonicity of function W (S) and the second inequality

follows from submodularity of W (S). This proves that f ′(T ), thus f(T ), is submodular.

Lemma 30. When αi ≥ βi ≥ γi ≥ 0, ∀i ∈ [n], Algorithm 5 outputs a 1
2(1 − 1

e )-approximation

for the slave problem.

Proof of Lemma 30. Let T ∗g and T ∗f be the optimal solution to maximizing g(T ) and f(T )

subject to |T | ≤ k, respectively. Let T̂ be the set generated by the greedy process (step 2 – 5) in

Algorithm 5. Our goal is to prove f(T̂ ) ≥ 1
2(1− 1

e )f(T ∗f ). The key step is to show the following

relations:

f(T ) ≤ g(T ) ≤ 2f(T ), ∀T ⊆ [n].

Since the Σm
max operator in g(T ) acts on a larger set than that in f(T ), this implies g(T ) ≥ f(T ).

We now prove g(T ) ≤ 2f(T ). Since T, TN , T c are mutually disjoint, the weights that contribute

to f(T ) are all indexed by different vertices. However, since T ⊆ TN ∪T , there may exist vertex

i ∈ T such that both αi and βi contribute to g(T ). Let A ⊆ T be all such i’s. We have∑
i∈A

βi ≤
∑
i∈A

αi ≤
∑
i∈T

αi ≤ f(T ). (B.4)

Moreover, if we remove the portion of
∑

i∈A βi from g(T ), then the left weights are all indexed

by different vertices and their total weights are at most f(T ). That is,

g(T )−
∑
i∈A

βi ≤ f(T ) (B.5)

Combining Inequalities (B.4) and (B.5) yields that g(T ) ≤ f(T )+
∑

i∈A βi ≤ 2f(T ), as desired.

By the monotone submodularity of g(T ) (Lemma 29), we have g(T̂ ) ≥ (1− 1
e )g(T ∗g ). Since

g(T ∗g ) ≥ g(T ∗f ) ≥ f(T ∗f ) and 2f(T̂ ) ≥ g(T̂ ), this implies f(T̂ ) ≥ 1
2(1− 1

e )f(T ∗f ).
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B.2 Counter Example to Submodularity of f(T )

Recall that
f(T ) =

∑
i∈T αi + Σm

max

(
{βi | i ∈ TN} ∪ {γi | i ∈ T c}

)
Consider a simple line graphGwith 5 vertices, as in Figure B.1. Let τ = 1 andm = 2. Moreover,

αi = βi = 1 while γi = 0 for all i = 1, .., 5.

1

2

3

4

5

Figure B.1: Graph G for the counter example .

Consider S = {2}, T = {2, 4} and j = 1 6∈ T . We have f(S) = 3, f(S ∪ {j}) = 3, f(T ) =

4 and f(T ∪ {j}) = 5. Therefore,

f(T ∪ {j})− f(T ) = 1 > 0 = f(S ∪ {j})− f(S).

So f(T ) is not submodular in T .
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Appendix C

Omitted Proofs From Section 6.3

C.1 Proof of Proposition 5

First, notice that Usig(G) ≥ UBSSE(G) for any BSG G (not necessarily zero-sum). This is

because the leader policy of playing the BSSE leader mixed strategy and sending only one signal

to each attacker type degenerates to the BSSE. We now show that Usig(G) ≤ UBSSE(G). Let

(x∗, p) be the optimal leader policy computed by LP (6.10). Note that, if the leader plays the

optimal leader policy (x∗, p), but the follower type θ “irrationally” ignores any signal and simply

reacts to x∗ by taking the best response (to x∗) action j∗, then, the follower of type θ gets utility∑
i x
∗
i b
θ
ij∗ . We claim that this utility is less than the utility of best responding to each signal

separately, as shown below∑
j

∑
i

pθijb
θ
ij ≥

∑
j

∑
i

pθijb
θ
ij∗ =

∑
i

x∗i b
θ
ij∗

where the inequality is due to second set of constraints in LP (6.10) and the equality is due to the

first set of constraints in LP (6.10). Since this is a zero-sum game, the leader will be better off if

the follower of type θ ignores signals. Let U be the defender utility when all the attacker types

best respond to x∗ by ignoring signals, then U ≥ Usig(G). However, U is simply the defender

utility in this BSG by committing to the mixed strategy x∗ without any signaling, therefore is

upper bounded by UBSSE(G). As a result, UBSSE(G) ≥ U ≥ Usig(G), as desired.

C.2 Proof of Propositions in Section 6.3.2.2

Proof of Proposition 7

This is a slight modification from a proof of the hardness of Bayesian Stackelberg games (Theo-

rem 2 in (Li et al., 2016)). We provide it only for completeness.

The reduction is from 3-SAT. Given an instance of 3-SAT with n variables and m clauses,

we create a security game with 2n + 2 targets and n resources. For each variable, there is a
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target corresponding to taht variable and its negation (call these variable targets), as well as a

punishment and a reward target.

There are m + 3n types of attacker. m of these are clause types, one per clause. Each

of these types are interested in attacking all targets corresponding to literals appearing in the

corresponding clause, or the reward target. For any literal contained in the clause, this type gets

-1 payoff for attacking when the target is covered and 0 when it is uncovered. Any clause type

attacker gets 0 payoff for attacking the punishment target, whether or not it is covered. Note

that if a clause type believes that at least one of the literal targets is covered with probability 1,

then they will attack that target (breaking ties favorably). Otherwise, they attack the punishment

target.

There is one pair type for each variable. These types are not interested in any literal target that

does not correspond to the relevant variable, or the reward target. For the two literal targets they

are interested in, they get -1 payoff for attacking a covered target and 0 for an uncovered target.

They get 0 for attacking the punishment target. Again, a pair type target will only not attack the

punishment target if they believe that both literal targets are covered with non-zero probability.

Lastly there are 2n counting types, one per literal. Each of these types is not interested in any

literal target other than the one corresponding to them, or the punishment node. If they attack

the relevant literal node and it is covered they get 0 payoff, and if it is uncovered they get 1.

They get 0 payoff for attacking the reward target, regardless of whether it is covered. Note that

each of these types attacks the reward target if they believe that the literal target is covered with

probability 1.

The defender gets 0 payoff whenever a literal target is attacked, regardless of whether it is

covered and -1 payoff whenever the punishment target is attacked. If any attacker attacks the

reward target the defender gets payoff (note that the only attacker types that will ever attack the

reward target are the counting types).

Each type occurs with equal probability.

We show that the defender can obtain a utility of n
m+3n if and only if the instance of 3-SAT is

satisfiable.

If the instance is satisfiable, then we simply cover the variable targets corresponding to a

satisfying assignment, and signal as such. Then all clauses are satisfied, so no clause type attacks

the punishment node, no variable has both its positive and negative literals covered with positive

probability, and n counting types are sure that their literal is covered, so they attack the reward

node. This results in an expected utility of n
m+3n for the defender.

Now suppose the instance of 3-SAT is not satisfiable. Note that whenever there is any uncer-

tainty for the attacker they take an undesirable action, therefore the defender optimally signals
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truthfully about their chosen action. Since the instance is unsatisfiable, for any allocation of re-

sources either a clause type or pair type will be incentivized to attack the punishment target. The

defender can get payoff 1 at most n
m+3n of the time (from exactly n counting types, as the de-

fender can cover only n variable targets at a time), and gets -1 payoff from the pair/clause type

that attacks the punishment target. Therefore the defender gets less than n
m+3n expected utility.

Proof of Proposition 8

For convenience, let target 0 denote the common coverage-invariant target. By assumption, let iθ
denote the only type-specific target for the attacker of type θ. Notice that, our signaling scheme

only needs two signals for the attacker of type θ, recommending either target iθ or target 0 for

attack, since he is not interested in other targets. Therefore, for each attacker type θ, we define

four variables: pθc,j [pθu,j] is the probability that type θ’s specific target iθ is covered [uncovered]

and action j is recommended to the attacker, where j ∈ {iθ, 0} is either to attack iθ, or stay home.

Notice that, we can define these variables because our signaling scheme for type θ only depends

on the coverage status of target iθ as the utility of the common target 0 is coverage-invariant. This

is crucial, since otherwise, the optimal signaling scheme may depend on all the targets that type θ

is interested, and this makes the problem much harder (as shown in Proposition 9). The following

linear program, with variables pθc,j and x, computes the optimal defender utility.

maximize
∑

θ∈Θ λθ
∑

s∈{c,u} p
θ
s,iθ
Udx (iθ; θ)

subject to
∑

j∈{0,iθ} p
θ
c,j = xiθ , for θ ∈ Θ.∑

j∈{0,iθ} p
θ
u,j = 1− xiθ , for θ ∈ Θ.∑

s∈{c,u} p
θ
s,jU

a
s (j; θ) ≥∑s∈{c,u} p

θ
s,jU

a
s (j′; θ), for θ ∈ Θ.

x ∈ P

(C.1)

where: the first two constraints mean that the signaling scheme should be consistent with the

true marginal probability that i is covered (first constraint) or uncovered (second constraint). The

third constraint is the incentive compatibility constraint which guarantees that the attacker prefers

to follow the recommended action. The last constraint ensures that the marginal distribution x is

implementable ( P is the set of all implementable marginals.)

Proof of Proposition 9

LP Formulation of the Problem and Its Dual

Using similar notations as Section 6.3.3, we equivalently regard each pure strategy as a vector

e ∈ {0, 1}n, and E is the set of all pure strategies. We consider the case where the defender does

not have any scheduling constraints, i.e., e is any vector with at most k 1’s, and show that the
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defender oracle in this basic setting is already NP-hard. To describe a mixed strategy, let pe be

the probability of taking pure strategy e. Then

x = E(e) =
∑
e∈S

e× pe (C.2)

is the marginal coverage probability corresponding to this pure strategy {pe}e∈S . Notice that

x ∈ Rn.

Since n signals are need for each attacker type in the optimal scheme. Therefore, let pθs,i be

the probability that pure strategy s is taken and the attacker of type θ is recommended to take

action i. Then αθi =
∑

e∈E p
θ
e,i is the probability that attacker of type θ is recommended to take

action i, while

xθi =
∑
e∈E

e× pθe,i

is the corresponding posterior belief (absent by a normalization factor 1/αθi ) of marginal cov-

erage when the attacker of type θ is recommended action i. Then the following optimization

formulation computes the defender’s optimal mixed strategy as well as signaling scheme.1

maximize
∑

θ,i λθ
[
xθiiU

c
d(i; θ) + (αθi − xθii)Uud (i; θ)

]
subject to xθiiU

c
a(i, θ) + (αθi − xθii)Uua (i, θ) ≥
xθijU

c
a(j, θ) + (αθi − xθij)Uua (j, θ), for i, j, θ.

αθi =
∑

e∈E p
θ
e,i, for i, θ.∑

e∈E e× pθe,i = xθi , for i, θ.∑n
i=1 p

θ
e,i = pe, for e, θ.∑

s∈E pe = 1

pθe,i ≥ 0, pe ≥ 0, for e, i, θ.

(C.3)

where xθi ∈ Rn, ps ∈ R, pθs,i ∈ R are variables.

We now take the dual of LP (C.3). Instead of providing the exact dual program, we abstractly

represent the dual by highlighting the non-trivial part, as follows:

minimize γ

subject to poly(n, |Θ|) linear constraints on yθi , β
θ
i

−βθi + e · yθi + qθe ≥ 0, for i, e, θ.∑
θ −qθe + γ ≥ 0, for e.

(C.4)

where βθi , q
θ
e , γ ∈ R, yθi ∈ Rn are variables. We now analyze the dual program (C.4). Notice that

the first (implicitly described) constraint does not depend on γ, qθe . So the last constraint, together

1We only consider the case with no IC constraints for incentivizing attacker’s type report. Adding IC constraint
will result in the same defender oracle, thus is omitted here.
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with the “min” objective, yields that γ = maxe∈E
∑

θ q
θ
e at optimality. The middle constraint,

together with the “min” objective, yields that qθe = maxi[β
θ
i − e · yθi ] at optimality. As a result,

the dual program can be re-written in the following form:

max
e∈E

[∑
θ

max
i

(βθi − e · yθi )
]

s.t. poly(n, |Θ|) linear constraints on yθi , β
θ
i .

Notice that, this is still a convex program – the objective can be viewed as maximizing a convex

function.

The Defender Oracle

The defender oracle problem is precisely to evaluate the function

f(yθi , β
θ
i ) = max

e∈E

[∑
θ

max
i

(βθi − e · yθi )
]

(C.5)

for any given input yθi , β
θ
i . When the attacker of type θ is only interested in a small number of

targets, say a subset S of targets. Then in LP (C.3), the third constraint on xθi ∈ Rn only needs

to be restricted to the targets in S, since the attacker of type θ does not care about the coverage of

other targets at all. That is, there is no constraints for xθi for all i 6∈ S; Moreover, for those i ∈ S,

the constraint on xθi can be restricted to only the entries in S. This simplification is reflected in

the defender oracle problem in the following way: the input yθi are non-zeros vectors only for

those i ∈ S; moreover, the non-zero yθi only has non-zeros at those entries corresponding to S.

Hardness of the Defender Oracle

We now prove that the defender oracle problem is NP-hard, even when each attacker type θ is

only interested in 2 targets. In other words, we prove that evaluating function f(yθi , β
θ
i ) is NP-

hard, even when only two yθi ’s are non-zero vectors for each θ and each of these two yθi ’s only

has two non-zero entries.

We reduce from max-cut. Given any graph G = (V,Θ) with node set V and edge set Θ.

Construct a security game with V as targets and Θ as attacker types. The attacker type θ = (i, j)

is interested in only targets i, j. For any type θ = (i, j), define yθi as follows: yθii = 1, yθij = −1

and yθik = 0 for any k 6= i, j; define yej as follows: yθji = −1, yθjj = 1 and yθjk = 0 for any

k 6= i, j. Let βθi = 0 for any i, θ. We will think of each pure strategy e as a cut of size k, with all

value-1 nodes on one side and value-0 nodes on another side. Let

c(e) =
∑
θ∈Θ

max
k

(βθk − e · yθk) =
∑

θ=(i,j)∈Θ

max(−e · yθi ,−e · yθj ).
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Note that max(−e · yθi ,−e · yθj ) = 1 if and only if edge θ is cut by strategy e (in which case

e · yθi , e · yθj equals 1,−1 respectively). Otherwise max(−e · yθi ,−e · yθj ) = 0. Therefore, c(e)

equals precisely the cut size induced by e. Note that evaluating function f defined in Equation

(C.5) is to maximize c(e) over e ∈ E, which is precisely to compute the Max k-Cut, a well-

known NP-hard problem. Therefore the defender oracle is NP-hard, even when each attacker

type is only interested in two targets.

C.3 Proof of the Polytope Transformation Lemma

In this section, we prove Lemma 15.

Part 1: This is standard, and can be found, e.g., in (Boyd & Vandenberghe, 2004). We

provide a proof for completeness. Consider any two elements (x, p) and (y, q) from P̃ . So there

exists a,b ∈ P such that x = p · a and y = q · b. To prove the convexity, we need to show

α · (x, p) + β · (y, q) ∈ P̃ for any α ∈ (0, 1) and α + β = 1. If p = q = 0, this is obvious;

Otherwise, we have

α · (x, p) + β · (y, q) = α(p · a, p) + β(q · b, q)

=
(

[αp+ βq] · αp · a + βq · b
αp+ βq

, αp+ βq
)

Notice that αp·a+βq·b
αp+βq ∈ P due to the convexity of P , therefore α · (x, p) + β · (y, q) ∈ P̃ . So P̃

is convex.

Part 2: First, it is easy to see that any element from P̃ satisfies Ax ≤ pb and p ≥ 0. We

prove the other direction. Namely, for any (x, p) satisfies Ax ≤ pb and p ≥ 0, (x, p) ∈ P̃ . It

is easy to see that this is true for p > 0 since x/p ∈ P . The non-trivial part is when p = 0, in

which case (x, p) ∈ P̃ if and only if x = 0. We need to prove the only x satisfying Ax ≤ 0 is

the all-zero vector 0. Here we need the condition that P is bounded. If (by contradiction) there

exists x0 6= 0 satisfying Ax0 ≤ 0, then for any x ∈ P , we must have x + αx0 ∈ P for any

α > 0, which contradicts the fact that P is bounded.

Part 3: If P has a separation oracle O, then the following is a separation oracle for P̃ . Given

arbitrary (x0, p0) ∈ Rn+1,

case 1: If p0 < 0, return “no” and separation hyperplane p0 = 0;

case 2: If p0 > 0, first check whether x0/p0 ∈ P . If this is true, return “yes”; otherwise,

find a violated constraint, using oracle O, such that aT · x0
p0
> b but aT · x′ ≤ b for any x′ ∈ P .

We claim that aT · x− bp = 0 is a hyperplane separating (x0, p0) from P̃ . In particular, for any

(x, p) ∈ P̃ with p > 0, ∃x′ ∈ P such that x/p = x′. Note that aT · x′ ≤ b since x′ ∈ P , so

aT · x ≤ pb (also holds when p = 0 in which case x = 0) . However aT · x0 > p0b. Therefore,

aT · x− pb = 0 is a separation hyperplane.
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case 3: If p0 = 0, return “yes” if x0 = 0. Otherwise, return “no”, and find a separation

hyperplane as follows. Since P is bounded, we can find some L0 > 0 large enough such that

y0 = L0x0 6∈ conv(P, 0), where conv(P, 0) is the convex hull of P and the origin 0 (thus

contains P), and is introduced for technical convenience. Let a ·y = b be a hyperplane separating

y0 from conv(P, 0). That is a·y0 > b and a·y ≤ b for any y ∈ conv(P, 0), in particular, for any

y ∈ P . Similarly to the argument in case 2, we know that a·x ≤ pb for any (x, p) ∈ P̃ . Note that,

since 0 ∈ conv(P, 0), we have b ≥ a · 0 = 0 is non-negative. As a result, a ·Lx0 = L
L0

a ·y0 > b

for any L ≥ L0. That is, a ·x0 >
1
Lb for any L ≥ L0. Therefore, we must have a ·x0 ≥ 0 = p0b

since p0 = 0. As a result, the hyperplane a · x = pb separates (x0, p0) from P̃ .
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