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Algorithmic Persuasion with No Externalities
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We study the algorithmics of information structure design — a.k.a. persuasion or signaling — in a funda-

mental special case introduced by Arieli and Babichenko: multiple agents, binary actions, and no inter-agent

externalities. Unlike prior work on this model, we allow many states of nature. We assume that the principal’s

objective is a monotone set function, and study the problem both in the public signal and private signal models,

drawing a sharp contrast between the two in terms of both e�cacy and computational complexity.

When private signals are allowed, our results are largely positive and quite general. First, we use linear

programming duality and the equivalence of separation and optimization to show polynomial-time equivalence

between (exactly) optimal signaling and the problem of maximizing the objective function plus an additive

function. �is yields an e�cient implementation of the optimal scheme when the objective is supermodular or

anonymous. Second, we exhibit a (1− 1/e )-approximation of the optimal private signaling scheme, modulo an

additive loss of ϵ , when the objective function is submodular. �ese two results simplify, unify, and generalize

results of [3, 4], extending them from a binary state of nature to many states (modulo the additive loss in the

la�er result). �ird, we consider the binary-state case with a submodular objective, and simplify and slightly

strengthen the result of [4] to obtain a (1 − 1/e )-approximation via a scheme which (i) signals independently

to each receiver and (ii) is “oblivious” in that it does not depend on the objective function so long as it is

monotone submodular.

When only a public signal is allowed, our results are negative. First, we show that it is NP-hard to

approximate the optimal public scheme, within any constant factor, even when the objective is additive.

Second, we show that the optimal private scheme can outperform the optimal public scheme, in terms of

maximizing the sender’s objective, by a polynomial factor.

Additional Key Words and Phrases: Bayesian Persuasion; Signaling; Information Structure.

1 INTRODUCTION
Information structure design studies how beliefs in�uence behavior, both of individuals and of

groups, and how to shape those beliefs in order to achieve desired outcomes. �e key object of

study here is the information structure, which describes “who knows what” about the parameters

governing the payo� function of a game of incomplete information. �ese parameters, collectively

termed the state of nature, encode uncertainty in the environment, and their prior distribution

together with the information structure determine agents’ equilibrium behavior.

When studied descriptively, information structures lend structural insight into the space of

potential equilibria of a game of incomplete information (termed Bayes correlated equilibria in [6]),

and can provide answers to comparative statics questions regarding the provision or withholding
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1:2 Shaddin Dughmi and Haifeng Xu

of information. �e associated prescriptive questions are fundamentally algorithmic, and are o�en

termed persuasion or signaling. Persuasion is the task faced by a principal — call her the sender
— who has privileged access to the state of nature, and can selectively provide information to

the agent(s) in the game — call him/them the receiver(s) — in order to further her own objectives.

Such a sender e�ectively designs the information structure, and faces the algorithmic problem of

selecting which of her information to reveal, to whom, and whether and how to add noise to this

information. As in much of the prior work in this area, when we think of the information structure

as an algorithm implemented by the sender, we call it a signaling scheme.
Both descriptive and prescriptive questions in this space have enjoyed an explosion of research

interest of late, in particular at the intersection of economics and computer science. Our discussion

can not do justice to the large literature in this area, including the wealth of work on related models.

We therefore refer the curious reader to the recent survey by [16] and the references therein. �e

model we focus on in this paper, and for which we provide a thorough exploration through the

algorithmic lens, is the fundamental special case of the multi-agent persuasion problem when

restricted to binary actions and no externalities.

Our Model and its Significance
Our technical and conceptual starting point, and arguably the most in�uential model in this area,

is the Bayesian persuasion model of [22]. Here the sender faces a single receiver, and her task is

to persuade the receiver to take an action which is more favored by the sender. As in persuasion

more generally, the sender’s “leverage” is her informational advantage — namely, access to the

realization of the state of nature, which determines the payo�s of the actions to both the receiver

and the sender. �e receiver, in contrast, a-priori knows nothing about the state of nature besides

its prior distribution (the common prior). Kamenica and Gentzkow [22] assume that the sender can

commit to her policy for revealing the information prior to realization of the state of nature, and

study how and when this signaling scheme can increase the sender’s utility.

�e model we use is one recently proposed by Arieli and Babichenko [3], both generalizing and

restricting aspects of the model of [22]. Here the sender interacts with multiple receivers, each

of whom is restricted to a binary choice of actions. Without loss, we denote these actions by 1

and 0. As mentioned in [3, 4], se�ings like this arise when a manager seeks to persuade investors

to invest in a project, or when a principal persuades opinion leaders in a social network with the

goal of maximizing social in�uence. Each receiver’s utility depends only on his own action and the

state of nature, but crucially not on the actions of other receivers — the no externality assumption.

�e sender’s utility, on the other hand, depends on the state of nature as well as the pro�le of

receiver actions — since actions are binary, the sender’s utility can be viewed as a set function on

receivers. As in [22], the state of nature is drawn from a common prior, and the sender can commit

to a policy of revealing information regarding the realization of the state of nature. Since there are

multiple receivers, this policy — the information structure — is more intricate, since it can reveal

di�erent, and correlated, information to di�erent receivers. As made clear in [3], such �exibility is

crucial to the sender unless receivers are homogeneous and the sender’s utility function highly

structured (for example, additively separable across receivers). In particular, if restricted to a public
communication channel, the sender is limited in her ability to discriminate between receivers and

correlate their actions, whereas a private communication channel provides more �exibility.

Our results, and the models of Kamenica and Gentzkow [22] and Arieli and Babichenko [3], are

crucially underlied by the assumption that the sender has the power of commitment to a signaling

scheme. �e commitment assumption is not as unrealistic as it might �rst sound, and a number

of arguments to that e�ect are provided in [16, 22, 24]. We mention one of those arguments here:
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Algorithmic Persuasion with No Externalities 1:3

commitment arises organically at equilibrium if the sender and receiver(s) interact repeatedly over

a long horizon, in which case commitment can be thought of as a proxy for “establishing credibility.”

If one permits commitment by the sender, restricts a�ention to a common prior distribution, and

postulates that receiver(s) are not privately informed through channels not controlled by the sender,

then the model of [22] is the special case of persuasion for a single receiver, and the model of [3]

is the special case of persuasion for multiple receivers with binary actions and no externalities.

Viewed this way, both are fundamental special cases of the general information structure design

problem, meaningfully restricted. It is thus only ��ing that they be thoroughly explored via an

algorithmic lens, en-route to a more general understanding of the algorithmics of information in

multi-agent se�ings. A computational study of the single-receiver Bayesian persuasion model of

[22] was undertaken by Dughmi and Xu [18]. As for multi-agent persuasion with binary actions

and no externalities, a partial algorithmic understanding is provided by [3, 4] in the special case of

a binary state of nature, and this paper picks up there.

Context: Private and Public Persuasion
At their most general, signaling schemes can reveal di�erent information to di�erent receivers,

through private communication channels. Such schemes play a dual role: they inform receivers,

possibly asymmetrically, and they coordinate their behavior by correlating the information provided.

In some se�ings, however, such private communication channels are unrealistic, and the sender

is constrained to a public communication channel. Work on both descriptive and prescriptive

questions regarding information structure design in multi-agent se�ings can be classi�ed along

these lines, and the extent to which a public communication channel limits the sender’s powers of

persuasion is a fundamental question which has not been thoroughly explored.

Much of the earlier work on information structure design, in particular its computational aspects,

focused on public signaling models. �is includes work on signaling in auctions [8, 17, 19, 21],

voting [2], routing [7], and abstract game models [7, 14, 15, 25]. �e work of [14] is relevant to this

paper, in that they identify conditions under which public persuasion problems are tractable to

approximate, and prove impossibility results in some cases where those conditions are violated.

Our hardness proof in Section 6 is in part based on some of their ideas.

Private persuasion has been less thoroughly explored, particularly through the computational

lens. �e space of (private channel) information structures is studied by Bergemann and Morris [6],

who observe that these information structures and their associated equilibria form a generalization

of correlated equilibria, and term the generalization the Bayes Correlated Equilibrium (BCE). �e

space of BCEs is characterized in two-agent two-action games by [26]. Moreover, recent work

explores private persuasion in the context of voting [5, 13, 27].

Arieli and Babichenko [3] pose the model we consider in this paper, with the goal of studying

private persuasion. We believe that their model wisely simpli�es the general multi-agent persuasion

problem by removing the most thorny aspect limiting progress in the study of private schemes:

externalities. Speci�cally, by assuming that receivers only in�uence each others’ payo�s through

the choices of the sender, they sidestep the equilibrium selection and computation concerns which

would arise in more general se�ings. Assuming a binary state of nature, Arieli and Babichenko [3]

provide explicit characterizations of the optimal private signaling scheme for three of the most

natural classes of sender objective functions: viewing the sender’s objective as a set function on

receivers, those are supermodular, anonymous monotone submodular, and supermajority functions.

In all three cases, their characterization can be easily converted to an e�cient algorithm. Moreover

Arieli and Babichenko [3] provide necessary and su�cient conditions under which public signaling

schemes match the performance of private signaling schemes. In follow-up work, Babichenko and
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1:4 Shaddin Dughmi and Haifeng Xu

Barman [4] also consider the binary state se�ing, and reduce the private persuasion problem to the

problem of computing the concave closure of the sender’s utility function. �is connection yields a

(1 − 1

e − ϵ )-approximate private signaling scheme for monotone submodular utility functions, and

an optimal private scheme for anonymous utility functions. Moreover, they show that the former

approximation result is almost tight, assuming P , NP .

Our Results and Techniques
In Section 3, we examine private signaling in our model in the presence of many states of nature.

When the sender’s set-function objective is monotone non-decreasing, and the prior distribution is

given as input, we show the polynomial-time equivalence of optimal (private) persuasion and the

algorithmic problem of maximizing the sender’s objective function plus an additive function (subject

to no constraints).
1

�e proof relies on a linear programming formulation of private persuasion,

LP duality, and the equivalence of separation and optimization. �is leads to polynomial-time

persuasion algorithms when the sender’s objective is anonymous or supermodular. Our results

here are similar to the line of research on optimal mechanism design [9–11], in that both relate

economic design problems with Bayesian incentive constraints to purely algorithmic problems.

However, our techniques are di�erent from those in [9–11].

Next, we consider a sender with a monotone submodular objective, and e�ciently compute

a private signaling scheme which is (1 − 1

e )-approximately optimal for the sender, modulo an

arbitrarily small additive ϵ . �is generalizes the result of [4] from two states of nature to many

states, modulo the additive loss. �e techniques used in [4] do not appear to help in the presence

of many states of nature, since they are tied to several structural properties which only hold in the

case of a binary state. �erefore, our algorithm uses a di�erent approach, and crucially relies on

a new structural property of (approximately) optimal private signaling schemes. Speci�cally, we

prove that there always exists an ϵ-optimal “simple” private signaling scheme which is a uniform

mixture of polynomially many deterministic schemes, i.e., a scheme that deterministically sends a

signal to each receiver upon receiving a state of nature. Notably, this property only depends on

the monotonicity of the sender’s utility function, and does not rely on submodularity. Using this

property, we then use ideas from the literature on submodular function optimization to compute a

(1 − 1

e )-approximation to the best “simple” scheme.

We note that our algorithmic results from Sections 3 and 4 can be approximately extended

to the sample oracle model, in which our algorithm is only given sample access to the prior

distribution, using ideas from [18]. �e resulting schemes su�er an arbitrarily small additive loss in

the sender’s objective and in persuasiveness of their recommendations, and this loss is unavoidable

for information theoretic reasons.

In Section 5, we examine private signaling in the special case with two states of nature and a

monotone submodular objective. We give a simple and explicit construction of a polynomial-time

private signaling scheme that serves as a (1 − 1

e )-approximation to the optimal scheme, which is

the best possible assuming P , NP as shown by [4]. �is result simpli�es, and slightly strengthens,

a result of [4]. Moreover, the constructed private scheme has the following distinctive properties:

(i) it is independent in that it signals independently to each receiver in each of the two states of

nature; (ii) it is oblivious in the sense that it does not depend on the sender’s utility function, and

the approximation ratio is guaranteed so long as the function is monotone submodular. To obtain

this result, we �rst use the idea of the correlation gap [1] to argue that there always exists an

independent signaling scheme which is a (1 − 1

e ) approximation to the optimal private scheme. We

1
We mention that the reduction from our persuasion problem to the set function maximization problem does not require

monotonicity, but the opposite reduction does.
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Algorithmic Persuasion with No Externalities 1:5

then exploit the fact that there are two states of nature to argue that our scheme is the optimal

independent scheme, simultaneously for all monotone objectives. We then show two respects in

which this result cannot generalize to many states of nature. First, we show that it is NP-hard to

obtain a (1 − 1

e )-approximation to the best independent signaling scheme in multi-state se�ings.

Second, we show that oblivious schemes cannot guarantee more than a
1√
m−1

fraction of the optimal

sender utility wherem > 1 is the number of states of nature.

Finally, in Section 6, we consider public signaling in our model, and present two negative results.

First, we show via a simple example that the optimal private scheme can outperform the optimal

public scheme, in terms of maximizing the sender’s objective, by a polynomial factor. Second, we

employ a reduction from an NP-hard graph coloring promise problem to rule out an algorithm for

approximating the optimal public scheme to within any constant factor, and also to rule out an

additive PTAS for the problem.

2 PRELIMINARIES
2.1 Basic Setup
As in [3], we consider the special case of multi-agent persuasion with binary actions, no inter-agent

externalities, and a monotone objective function. Here, we adopt the perspective of sender facing n
receivers. Each receiver has two actions, which we denote by 0 and 1. �e receiver’s payo� depends

only on his own action and a random state of nature θ supported on Θ. In particular, we use ui (θ , 1)
and ui (θ , 0) to denote receiver i’s utility for action 1 and action 0, respectively, at the state of nature

θ ; as shorthand, we use ui (θ ) = ui (θ , 1) − ui (θ , 0) to denote how much receiver i prefers action 1

over action 0 given state of nature θ . Note that ui (θ ) may be negative. �e sender’s utility (our

objective) is a function of all the receivers’ actions and the state of nature θ . We use fθ (S ) to denote

the sender’s utility when the state of nature is θ and S is the set of receivers who choose action 1.

We assume throughout the paper that fθ is a monotone non-decreasing set function for every θ .

For convenience in stating our approximation guarantees, we assume without loss of generality

that fθ is normalized so that fθ (∅) = 0 and fθ (S ) ∈ [0, 1] for all θ ∈ Θ and S ⊆ [n].

As is typical in information structure design, we assume that θ is drawn from a common prior

distribution λ, that the sender has access to the realized state of nature, and that the sender can

publicly commit to a policy— termed a signaling scheme — for mapping the realized state of nature

to a signal for each receiver. �e signaling scheme may be randomized, and hence reveals noisy

partial information regarding the state of nature. �e order of events is as follows: (1) �e sender

commits to a signaling scheme φ; (2) Nature draws θ ∼ λ; (3) Signals (σ1, . . . ,σn ) ∼ φ (θ ) are drawn,

and each receiver i receives the signal σi ; (4) Receivers select their actions.

A general signaling scheme permits sending di�erent signals to di�erent receivers through

a private communication channel — we term these private signaling schemes to emphasize this

generality. We also study the special case of public signaling schemes — these are restricted to a

public communication channel, and hence send the same signal to all receivers. We discuss these

two signaling models in Sections 2.2 and 2.3, including the equilibrium concept and the induced

sender optimization problem for each. In both cases, we are primarily interested in the optimization

problem faced by the sender in step (1), the goal of which is to maximize the sender’s expected

utility. When φ yields expected sender utility within an additive [multiplicative] ϵ of the best

possible, we say it is ϵ-optimal [ϵ-approximate] in the additive [multiplicative] sense.

2.2 Private Signaling Schemes
A private signaling scheme φ is a randomized map from the set of states of nature Θ to a set of signal
pro�les Σ = Σ1 × Σ2... × Σn , where Σi is the signal set of receiver i . We use φ (θ ,σ ) to denote the
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1:6 Shaddin Dughmi and Haifeng Xu

probability of selecting the signal pro�le σ = (σ1, . . . ,σn ) ∈ Σ given a state of nature θ . �erefore,∑
σ ∈Σ φ (θ ,σ ) = 1 for every θ . With some abuse of notation, we use φ (θ ) to denote the random

signal pro�le selected by the scheme φ given the state θ . Moreover, for each θ ∈ Θ, i ∈ [n], and

σi ∈ Σi , we use φi (θ ,σi ) = Pr[φi (θ ) = σi ] to denote the marginal probability that receiver i receives

signal σi in state θ . An algorithm implements a signaling scheme φ if it takes as input a state of

nature θ , and samples the random variable φ (θ ).
Given a signaling scheme φ, each signal σi ∈ Σi for receiver i is realized with probability

Pr(σi ) =
∑
θ ∈Θ λ(θ )φi (θ ,σi ). Upon receiving σi , receiver i performs a Bayesian update and infers a

posterior belief over the state of nature, as follows: the realized state is θ with posterior probability

λ(θ )φi (θ ,σi )/Pr(σi ). Receiver i then takes the action maximizing his posterior expected utility. In

case of indi�erence, we assume ties are broken in favor of the sender (i.e., in favor of action 1).

�erefore, receiver i chooses action 1 if

1

Pr(σi )

∑
θ ∈Θ

λ(θ )φi (θ ,σi )ui (θ , 1) ≥
1

Pr(σi )

∑
θ ∈Θ

λ(θ )φi (θ ,σi )ui (θ , 0),

or equivalently ∑
θ ∈Θ

λ(θ )φi (θ ,σi )ui (θ ) ≥ 0,

where ui (θ ) = ui (θ , 1) − ui (θ , 0).
A simple revelation-principle style argument [3, 22] shows that there exist an optimal private

signaling scheme which is direct and persuasive. By direct we mean that signals correspond

to actions — in our se�ing Σi = {0, 1} for each receiver i — and can be interpreted as action

recommendations. A direct scheme is persuasive if the strategy pro�le where all receivers follow

their recommendations forms an equilibrium of the resulting Bayesian game.
2

Due to the absence

of inter-receiver externalities in our se�ing, such an equilibrium would necessarily also satisfy the

stronger property of being a dominant-strategy equilibrium — i.e., each receiver i maximizes his

posterior expected utility by following the recommendation, regardless of whether other receivers

follow their recommendations.

When designing private signaling schemes, we restrict a�ention (without loss) to direct and

persuasive schemes. Here, a signal pro�le can be equivalently viewed as a set S ⊆ [n] of receivers

— namely, the set of receivers who are recommended action 1. Using this alternative representation,

a scheme can be speci�ed by variables φ (θ , S ) for all θ ∈ Θ, S ⊆ [n]. We can now encode the

sender’s optimization problem of computing the optimal scheme using the following exponentially-

large linear program; note the use of auxiliary variables xθ,i to denote the marginal probability of

recommending action 1 to receiver i in state θ .

maximize

∑
θ ∈Θ λ(θ )

∑
S ⊆[n]

φ (θ , S ) fθ (S )
subject to

∑
S :i ∈S φ (θ , S ) = xθ,i , for i ∈ [n],θ ∈ Θ.∑
θ ∈Θ λ(θ )xθ,iui (θ ) ≥ 0, for i = 1, ...,n.∑
S ⊆[n]

φ (θ , S ) = 1, for θ ∈ Θ.
φ (θ , S ) ≥ 0, for θ ∈ Θ; S ⊆ [n].

(1)

�e second set of constraints in LP (1) are persuasiveness constraints, and state that each receiver

i should maximize his utility by taking action 1 whenever that action 1 is recommended. Note that

the persuasiveness constraints for action 0, which can be wri�en as

∑
θ ∈Θ λ(θ ) (1 − xθ,i )ui (θ ) ≤ 0

for each i ∈ [n], are intentionally omi�ed from this LP. �is omission is without loss when fθ is a

2
Persuasiveness has also been called incentive compatibility or obedience in prior work.
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Algorithmic Persuasion with No Externalities 1:7

non-decreasing set function for each θ : any solution to the LP in which a receiver prefers action 1

when recommended action 0 can be improved by always recommending action 1 to that receiver.

2.3 Public Signaling Schemes
A public signaling scheme π can be viewed as a special type of private signaling schemes in which

each receiver must receive the same signal, i.e., only a public signal is sent. Overloading the notation

of Section 2.2, we use Σ to denote the set of public signals and σ ∈ Σ to denote a public signal. A

public signaling scheme π is fully speci�ed by {π (θ ,σ )}θ,σ , where π (θ ,σ ) denotes the probability

of sending signal σ at state θ . Upon receiving a signal σ , each receiver performs the same Bayesian

update and infers a posterior belief over the state of nature, as follows: the realized state is θ
with probability λ(θ )π (θ ,σ )/Pr(σ ), where Pr(σ ) =

∑
θ ∈Θ π (θ ,σ ). �is induces a subgame for each

signal σ , one in which all receivers share the same belief regarding the state of nature.

Whereas in more general se�ings than ours receivers may play a mixed Nash equilibrium in

each subgame, our restriction to a se�ing with no externalities removes this complication. Given a

posterior distribution on states of nature (say, one induced by a signal σ ), our receivers face disjoint

single-agent decision problems, each of which admits an optimal pure strategy. We assume that

receivers break ties in favor of the sender (speci�cally, in favor of action 1), which distinguishes

a unique pure response for each receiver. �erefore, our solution concept here distinguishes a

unique action pro�le for each posterior distribution, and hence for each signal. A simple revelation-

principle style argument then allows us to conclude that there is an optimal public signaling

schemes which is direct, meaning that the public signals are action pro�les, and persuasive, meaning

that in the subgame induced by signal σ = (σ1, . . . ,σn ) each receiver i’s optimal decision problem

(which breaks ties in favor of action 1) solves to action σi .
Restricting a�ention to direct and persuasive public signaling schemes, each signal can also be

viewed as a subset S ⊆ [n] of receivers taking action 1. �e sender’s optimization problem can then

be wri�en as the following exponentially-large linear program.

maximize

∑
θ ∈Θ λ(θ )

∑
S ⊆[n]

π (θ , S ) fθ (S )
subject to

∑
θ ∈Θ λ(θ )π (θ , S ) · ui (θ ) ≥ 0, for S ⊆ [n] with i ∈ S .∑
S ⊆[n]

π (θ , S ) = 1, for θ ∈ Θ.
π (θ , S ) ≥ 0, for θ ∈ Θ; S ⊆ [n].

(2)

�e �rst set of constraints are persuasiveness constraints corresponding to action 1. Note that

the persuasiveness constraints for action 0, which can be wri�en as

∑
θ ∈Θ λ(θ )π (θ , S ) · ui (θ ) ≤ 0

for each S ⊆ [n] and i < S , are intentionally omi�ed from this LP. �is omission is without loss

when fθ is non-decreasing for each state θ : if signal S with i < S is such that receiver i prefers

action 1 in the resulting subgame, then we can replace it with the signal S ∪ i without degrading

the sender’s utility. We remark that LP (2) and LP (1) only di�er in their persuasiveness constraints.

2.4 Input Models
We distinguish two input models for describing persuasion instances in this paper. �e �rst is

the explicit model, in which the prior distribution λ is given explicitly as a probability vector. �e

second is the sample oracle model, where Θ and λ are provided implicitly through sample access

to λ. In both models, we assume that given a state of nature θ , we can e�ciently evaluate ui (θ )
for each i ∈ [n] and fθ (S ) for each S ⊆ [n]. In the explicit input model, by computing a signaling

scheme φ (whether private or public) we mean that we explicitly list the non-zero variables φ (θ , S )
on which the scheme is supported. In the implicit model, computing a signaling scheme φ (whether
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1:8 Shaddin Dughmi and Haifeng Xu

private or public) amounts to providing an algorithm which takes as input a state of nature θ , and

samples the random variable φ (θ ).

2.5 Set Functions and Submodularity
Given a �nite ground set X , a set function is a map f : 2

X → R. Such a function is nonnegative if

f (S ) ≥ 0 for all S ⊆ X , monotone non-decreasing (or monotone for short) if f (S ) ≤ f (T ) for all S ⊆ T .

Most importantly, f is submodular if for any S,T ⊆ X , we have f (S ∪T ) + f (S ∩T ) ≤ f (S ) + f (T ).
We also consider continuous functions G from the solid hypercube [0, 1]

X
to the real numbers.

Such a function is nonnegative if G (x ) ≥ 0 for all x , monotone non-decreasing (or monotone for

short) if G (x ) ≤ G (y) whenever x � y (coordinate wise), and smooth submodular (in the sense of

[12]) if its second partial derivatives exist and are non-positive everywhere.

�eMultilinear Extension of a Set Function. Given any set function f : 2
X → R, the multilin-

ear extension of f is the continuous function F : [0, 1]
X → R de�ned as follows:

F (x ) =
∑
S ⊆X

f (S )
∏
i ∈S

xi
∏
i<S

(1 − xi ), (3)

Notice that, F (x ) can be viewed as the expectation of f (S ) when the random set S independently

includes each element i with probability xi . In particular, let pIx denote the independent distribution
with marginals x , de�ned by pIx (S ) =

∏
i ∈S xi

∏
i<S (1 − xi ), then F (x ) = ES∼p Ix f (S ). If f is

nonnegative/monotone then so is F . Moreover, if f is submodular then F is smooth submodular.

For our results, we will need to maximize F (x ) subject to a set of linear constraints on x . �is

problem is NP-hard in general, yet can be approximated by the continuous greedy process of Calinescu

et al. [12] for fairly general families of constraints. Note that though we cannot exactly evaluate

F (x ) in polynomial time, it is su�cient to approximate F (x ) within a good precision in order to

apply the continuous greedy process. By an additive FPTAS evaluation oracle for F , we mean an

algorithm that evaluates F (x ) within additive error ϵ in poly(n, 1

ϵ ) time.

Theorem 2.1 (Adapted form [12]). Let F : [0, 1]
n → [0, 1] be a non-negative, monotone, smooth

submodular function. Let P ⊆ [0, 1]
n be a down-monotone polytope3, speci�ed explicitly by its linear

constraints. Given an additive FPTAS evaluation oracle for F , there is a poly(n, 1

ϵ ) time algorithm that
outputs x ∈ P such that F (x ) ≥ (1 − 1

e )OPT − ϵ , where OPT = maxx ∈P F (x ).

Correlation Gap. A general de�nition of the correlation gap can be found in [1]. For our results,

the following simple de�nition will su�ce. Speci�cally, for any x ∈ [0, 1]
X

, let D (x ) be the set of

all distributions p over 2
X

with �xed marginal probability PrS∼p (i ∈ S ) = xi for all i . Let pIx , as

de�ned above, be the independent distribution with marginal probabilities x . Note that pIx ∈ D (x ).
For any set function f (S ), the correlation gap κ is de�ned as follows:

κ = max

x ∈[0,1]
X

max

p∈D (x )

ES∼p f (S )

ES∼p Ix f (S )
. (4)

Loosely speaking, the correlation gap upper bounds the “loss” of the expected function value over

a random set by ignoring the correlation in the randomness.

Theorem 2.2 ([1]). �e correlation gap κ is upper bounded by e
e−1

for any non-negative monotone
non-decreasing submodular function.

3
A polytope P ⊆ Rn+ is called down-monotone if for all x, y ∈ Rn+ , if y ∈ P and x � y (coordinate-wise) then x ∈ P .
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Algorithmic Persuasion with No Externalities 1:9

3 EQUIVALENCE BETWEEN PRIVATE SIGNALING AND OBJECTIVE MAXIMIZATION
In this section, we relate the computational complexity of private persuasion to the complexity of

maximizing the sender’s objective function, and show that the optimal private signaling scheme

can be computed e�ciently for a broad class of sender objectives. Let F denote any collection of

monotone set functions. We use I (F ) to denote the class of all persuasion instances in our model

in which the sender utility function fθ is in F for all states of nature θ . We restrict a�ention to the

explicit input model for most of this discussion, though discuss how to extend our results to the

sample oracle model, modulo an arbitrarily small additive loss in both the sender’s objective and

the persuasiveness constraints, at the end of this section.

�e following theorem establishes the polynomial-time equivalence between computing the

optimal private signaling scheme and the problem of maximizing the objective function plus an

additive function. Note that although the number of variables in LP (1) is exponential in the number

of receivers, a vertex optimal solution of this LP is supported on O (n |Θ|) variables.

Theorem 3.1. Let F be any collection of monotone set functions. �ere is a polynomial-time
algorithm which computes the optimal private signaling scheme given any instance in I (F ) if and
only if there is a polynomial time algorithm for maximizing f (S ) +

∑
i ∈S wi given any f ∈ F and

any set of weightswi ∈ R.

Proof. We �rst reduce optimal private signaling to maximizing the objective function plus

an additive function, via linear programming duality. In particular, consider the following dual

program of LP (1) with variables wθ,i ,αi ,yθ .

minimize

∑
θ ∈Θ yθ

subject to

∑
i ∈S wθ,i + yθ ≥ λ(θ ) fθ (S ), for S ⊆ [n],θ ∈ Θ.

wθ,i + αiλ(θ )ui (θ ) = 0, for i = 1, ...,n.
αi ≥ 0, for i ∈ [n].

(5)

We can obtain a separation oracle for LP (5) given an algorithm for maximizing fθ (S ) plus an

additive function. Given any variables wθ,i ,αi ,yθ , separation over the �rst set of constraints

reduces to maximizing the set function дθ (S ) = fθ (S ) −
1

λ (θ )
∑

i ∈S wθ,i for each θ ∈ Θ. �e other

constraints can be checked directly in linear time. Given the resulting separation oracle, we can

use the Ellipsoid method to obtain a vertex optimal solution to both LP (5) and its dual LP (1) in

polynomial time [20].

We now prove the converse. Namely, we construct a polynomial-time Turing reduction from the

problem of maximizing f plus an additive function to a private signaling problem in I (F ). At a

high level, we �rst reduce the set function maximization problem to a certain linear program, and

then prove that solving the dual of the linear program reduces to optimal private signaling for a set

of particularly constructed instances in I (F ).
Given f ∈ F and weightsw , our reduction concerns the following linear program, parameterized

by a = (a1, ...,an ) and b, with variables z = (z1, ..., zn ) and v .

minimize

∑
i ∈[n]

aizi + bv
subject to

∑
i ∈S zi +v ≥ f (S ), for S ⊆ [n].

(6)

Let P denote the feasible region of LP (6). As the �rst step of our reduction, we reduce maximizing

the set function дw (S ) = f (S ) +
∑

i ∈S wi to the separation problem for P. Let zi = −wi for each i .
Notice that (z,v ) is feasible (i.e., in P) if and only if v ≥ maxS ⊆[n] f (S ) −

∑
i ∈S zi . �erefore, we

can binary search for a value ṽ such that (z, ṽ ) is almost feasible, but not quite. More precisely,

let B denote the bit complexity of the f (S )’s and the wi ’s, then binary search returns the exact

optimal value of the set function maximization problem a�er O (B) steps. We then set ṽ to equal
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1:10 Shaddin Dughmi and Haifeng Xu

that value minus 2
−B

. Feeding (z, ṽ ) to the separation oracle, we obtain a violated constraint which

must correspond to the maximizer of f (S ) +
∑

i ∈S wi .

As the second step of our reduction, we reduce the separation problem for P to solving LP (6)

for every choice of objective coe�cients a and b. �is polynomial-time Turing reduction follows

from the equivalence of separation and optimization [20].

�ird, we reduce solving LP (6) for arbitrary a and b to the special case where a ∈ [0, 1]
n

and

b = 1. �e reduction involves a case analysis. (a) If any of the objective coe�cients are negative,

then the fact that P is upwards closed implies that LP (6) is unbounded. (b) If b = 0 and ai > 0 for

some i , then the LP is unbounded since we can make v arbitrarily small and zi arbitrarily large.

Normalizing by dividing by b, we have reduced the problem to the case when b = 1 and a � 0

(coordinate-wise). (c) Now suppose that ai > 1 = b for some i; the LP is unbounded by making zi
arbitrarily small and v arbitrarily large. �is analysis leaves the case of b = 1 and a ∈ [0, 1]

n
.

Fourth, we reduce LP (6) with parameters a ∈ [0, 1]
n

and b = 1 to its dual shown below, with

variables pS for S ⊆ [n].

maximize

∑
S ⊆[n]

pS f (S )
subject to

∑
S :i ∈S pS ≤ ai , for i ∈ [n].∑
S ⊆[n]

pS = 1

pS ≥ 0, for S ⊆ [n].

(7)

We note that LP (7) is not the standard dual of LP (6); in particular the �rst set of constraints are

inequality rather than equality constraints. It is easy to see that LP (7) is equivalent to the standard

dual when f is monotone non-decreasing, and that an optimal solution to one of the two duals can

be easily converted to an optimal solution of the other.

�e ��h and �nal step of our reduction will reduce LP (7) to a private signaling problem in I (F ).
�ere are n receivers and two states of nature θ0,θ1 with λ(θ0) = λ(θ1) = 1/2. De�ne ui (θ1) = 1

and ui (θ0) = −
1

ai
(−∞ if ai = 0) for all i . �e sender’s utility function satis�es fθ1

= fθ0
= f . Let φ∗

be an optimal signaling scheme, in particular an optimal solution to the instantiation of LP (1) for

our instance. Note that all receivers prefer action 1 in state θ1; therefore, it is easy to see that φ∗ can

be weakly improved, without violating the persuasiveness constraints, by modifying it to always

recommend action 1 to all receivers when in state θ1. A�er this modi�cation, φ∗ is an optimal

solution to the following LP, which optimizes over all signaling schemes satisfying φ (θ1, [n]) = 1.

maximize
1

2
f ([n]) + 1

2

∑
S ⊆[n]

φ (θ0, S ) f (S )
subject to

∑
S :i ∈S φ (θ0, S ) = xθ0,i , for i ∈ [n].

xθ0,i ≤ ai , for i = 1, ...,n.∑
S ⊆[n]

φ (θ0, S ) = 1

φ (θ0, S ) ≥ 0, for θ ∈ Θ; S ⊆ [n].

(8)

It is now easy to see that se�ing pS = φ
∗ (θ0, S ) yields an optimal solution to LP (7) �

As an immediate corollary of �eorem 3.1, the optimal private signaling scheme can be computed

e�ciently when the sender’s objective function is supermodular or anonymous. Recall that a set

function f : 2
[n] → R is anonymous if there exists a function д : Z→ R such that f (S ) = д( |S |).

Corollary 3.2. �ere is a polynomial time algorithm for computing the optimal private signaling
scheme when the sender objective functions are either supermodular or anonymous.

Proof. Since a supermodular function plus an additive function is still supermodular, and the

problem of unconstrained supermodular maximization can be solved in polynomial time, �eorem

3.1 implies that the optimal private signaling scheme can also be computed in polynomial time. As

for anonymous objectives, there is a simple algorithm for maximizing an anonymous set function
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plus an additive function. In particular, consider the problem of maximizing f (S ) +
∑

i ∈S wi where

f (S ) = д( |S |). Observe that �xing |S | = k , the optimal set Sk corresponds to the k highest-weight

elements in w . Enumerating all k and choosing the best Sk yields the optimal set. �

Finally, we make two remarks on �eorem 3.1, particularly on the reduction from optimal private

signaling to set function maximization. First, we note that the assumption of monotonicity is

not necessary to the reduction from signaling to optimization. In other words, even without the

monotonicity assumption for the sender’s objective function, one can still e�ciently compute the

optimal private signaling scheme for instances in I (F ) given access to an oracle for maximizing

f (S ) +
∑

i ∈S wi for any f ∈ F and weight vector w . �is can be veri�ed by adding back the

persuasiveness constraints for action 0 to LP (1) and examining the corresponding dual, which has

similar structure to LP (5). We omit the trivial details here. Consequently, Corollary 3.2 applies to

non-monotone supermodular or anonymous functions as well.

Second, our reduction assumes that the prior distribution λ over the state of nature is explicitly

given. �is can be generalized to the sample oracle model. In particular, when our only access to λ
is through random sampling, we can implement an ϵ-optimal and ϵ-persuasive

4
private signaling

scheme in poly (n, 1

ϵ ) time using an idea from [18] (assuming ui (θ ) ∈ [−1, 1]). �e algorithm is as

follows: given any input state θ , we �rst take poly (n, 1

ϵ ) samples from λ, and then solve LP (1) on

the empirical distribution of the samples plus θ , with relaxed (by ϵ) persuasiveness constraints.

Finally, we signal for θ as the solution to the LP suggests. �e analysis of this algorithm is very

similar to that in [18], thus is omi�ed here. Moreover, the bi-criteria loss is inevitable in this oracle

model due to information theoretic reasons [18].

4 PRIVATE SIGNALINGWITH SUBMODULAR OBJECTIVES
In this section we consider optimal private signaling for submodular sender objectives, and show

that there is a polynomial time (1 − 1

e )-approximation scheme, modulo an additive loss of ϵ . �is is

almost the best possible: Babichenko and Barman [4] show that even in the special case of two

states of nature, it is NP-hard to approximate the optimal private signaling scheme within a factor

be�er than (1 − 1

e ) for monotone submodular sender objectives.

Theorem 4.1. Consider private signaling with monotone submodular sender objectives. Let OPT
denote the optimal sender utility. For any ϵ > 0, a private signaling scheme achieving expected sender
utility at least (1 − 1

e )OPT − ϵ can be implemented in poly(n, |Θ|, 1

ϵ ) time.

�e main technical challenge in proving �eorem 4.1 is that a private signaling scheme may

have exponentially large support, as apparent from linear program (1). To overcome this di�culty,

we prove a structural characterization of (approximately) optimal persuasive private schemes, i.e.,

solutions to LP (1). Roughly speaking, we show that LP (1) always has an approximately optimal

solution with polynomial-sized support and nicely structured distributions. �is greatly narrows

down the solution space we need to search over. Recall that for any θ , φ (θ ) is a random variable

supported on 2
[n]

. We say φ (θ ) is K-uniform if it follows a uniform distribution on a multiset of size

K . �e following lemma exhibits a structural property regarding (approximately) optimal solutions

to LP (1). Notably, this property only depends on monotonicity of the sender’s objective functions

and does not depend on submodularity. Its proof is postponed to the end of this section.

4
�is is the natural relaxation of persuasiveness. In our se�ing, a receiver approximately maximizes his posterior expected

payo�, to within an additive ϵ , by following the scheme’s recommendation. �is is regardless of the actions of other

receivers.
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1:12 Shaddin Dughmi and Haifeng Xu

Lemma 4.2. Let fθ be monotone for each θ . For any ϵ > 0, there exists an ϵ-optimal persuasive
private signaling scheme φ such that φ (θ ) is K-uniform for every θ , where K = 108n log(2n |Θ |)

ϵ 3
.

By Lemma 4.2, we can, without much loss, restrict our design of φ (θ ) to the special class of

K-uniform distributions. Note that a K-uniform distribution φ (θ ) can be described by variables

x jθ,i ∈ {0, 1} for i ∈ [n], j ∈ [K], where x jθ,i denotes the recommended action to receiver i in the

j’th pro�le in the support of φ (θ ). Relaxing our variables to lie in [0, 1], this leads to optimization

problem (9), where Fθ (x ) =
∑

S ⊆[n]
fθ (S )

∏
i ∈S xi

∏
i<S (1 − xi ) is the multi-linear extension of fθ .

maximize

∑
θ ∈Θ

λ (θ )
K
∑K

j=1
Fθ (x

j
θ )

subject to

∑
θ ∈Θ

λ (θ )
K
∑K

j=1
x jθ,iui (θ ) ≥ 0, for i = 1, ...,n.

0 ≤ x jθ,i ≤ 1, for i = 1, ...,n;θ ∈ Θ.

(9)

As a high level, our algorithm �rst approximately solves Program (9) and then signals according to

its solution. Details are in Algorithm 1, which we instantiate with ϵ > 0 andK =
108n log(2n |Θ |)

ϵ 3
. Since

Fθ (x ) = ES∼p Ix f (S ) where pIx is the independent distribution over 2
[n]

with marginal probability

x , the expected sender utility induced by the signaling scheme in Algorithm 1 is precisely the

objective value of Program (9) at the obtained solution. �eorem 4.1 then follows from two claims:

1. �e optimal objective value of Program (9) is ϵ-close to the optimal sender utility (Claim 4.3

); 2. �e continuous greedy process [12] can be applied to Program (9) to e�ciently compute a

(1 − 1/e )-approximate solution, modulo a small additive loss (Claim 4.4). We remark that �eorem

4.1 can be generalized to the sample oracle model, but with an additional ϵ-loss in persuasiveness

constraints (assuming ui (θ ) ∈ [−1, 1]), using the idea from [18].

Algorithm 1 Private Signaling Scheme for Submodular Sender Objectives

Parameter: ϵ > 0

Input: Prior distribution λ supported on Θ
Input: ui (θ )’s and value oracle access to the sender utility fθ (S )
Input: State of nature θ
Output: A set S ⊆ [n] indicating the set of receivers who will be recommended action 1.

1: Approximately solve Program (9). Let {x̃ jθ,i }θ ∈Θ,i ∈[n], j ∈[K ] be the returned solution.

2: Choose j from [K] uniformly at random; For each receiver i , add i to S independently with

probability x̃ jθ,i .
3: Return S .

Claim 4.3. When K = 108n log(2n |Θ |)
ϵ 3

, the optimal objective value of Program (9) is at least OPT − ϵ ,
where OPT is the optimal sender utility in private signaling.

Proof. By Lemma 4.2, there exists a private signaling scheme φ such that: (i) φ achieves sender

utility at least OPT − ϵ ; (ii) for each θ , there exists K sets S1

θ , ...,S
K
θ ⊆ [n] such that φθ is a uniform

distribution over {S1

θ , ..., S
K
θ }. Utilizing φ, we can construct a feasible solution x to Program (9) with

objective value at least OPT − ϵ . In particular, let x jθ ∈ {0, 1}
n

be the indicator vector of the set S jθ ,

formally de�ned as follows: x jθ,i = 1 if and only if i ∈ S jθ . By referring to the feasibility of φ to LP

(1), it is easy to check that x jθ,i ’s are feasible to Program (9). Moreover, since Fθ (x
j
θ ) = fθ (S

j
θ ), the

objective value of Program (9) at the solution x equals the objective value of Program (1) at the
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solution φ, which is at least OPT − ϵ . �erefore, the optimal objective value of Program (9) is at

least OPT − ϵ , as desired. �

Claim 4.4. �ere is an algorithm that runs in poly(n, |Θ|,K , 1

ϵ ) time and computes a (1 − 1/e )-
approximate solution, modulo an additive loss of ϵ/e , to Program (9).

Proof. �e objective function of Program (9) is a linear combination, with non-negative coe�-

cients, of multilinear extensions of monotone submodular functions, thus is smooth, monotone and

submodular. Moreover, the function value can be evaluated within error ϵ by poly(n, 1

ϵ ) random

samples, thus in poly(n, 1

ϵ ) time. To apply �eorem 2.1, we only need to prove that the feasible

region is a down-monotone polytope. Observe that there always exists an optimal solution to

Program (9) such that xθ,i = 1 for any θ , i such that ui (θ ) ≥ 0. �erefore, w.l.o.g., we can pre-set

these variables to be 1 and view the program as an optimization problem over xθ,i ’s for all θ , i such

that ui (θ ) < 0. It is easy to check that these xθ,i ’s form a down-monotone polytope determined by

polynomially many constraints, as desired. �

Proof of Lemma 4.2
Our proof is based on the probabilistic method. Recall that the optimal private signaling scheme

can be computed by solving the exponentially-large LP (1). Roughly speaking, given any optimal

private scheme φ∗, we will take polynomially many samples from φ∗ (θ ) for each θ , and prove that

with strictly positive probability the corresponding empirical distributions form a solution to LP (1)

that is close to optimality. However, the sampling approach usually su�ers from ϵ-loss in both the

objective and persuasiveness constraints. It turns out that the ϵ-loss to persuasiveness constraints

can be avoided in our se�ing with carefully designed pre-processing steps.

At a high level, to get rid of the ϵ-loss in persuasiveness constraints, there are two main technical

barriers. �e �rst is to handle the estimation error in the receiver’s utilities, which is inevitable

due to sampling. We address this by adjusting the φ∗ to strengthen the persuasiveness constraints

so that a small estimation error would still preserve the original persuasiveness constraints. �e

second barrier arises when some x∗θ,i ’s are smaller than inverse polynomial of the precision ϵ , then

poly ( 1

ϵ ) samples cannot guarantee a good multiplicative estimate of x∗θ,i . We deal with this issue

by making “honest” recommendation, i.e., action 0, at these cases, and show that such modi�cation

will not cause much loss to our objective.

We �rst introduce some convenient notations. For any receiver i , let set Θ+i = {θ : ui (θ ) ≥ 0}

be the set of states at which receiver i (weakly) prefers action 1; Similarly, Θ−i = {θ : ui (θ ) < 0}

be the set of states at which receiver i prefers action 0. Moreover, for any state of nature θ , let

I+θ = {i : ui (θ ) ≥ 0} be the set of receivers who (weakly) prefer action 1 at state θ . It would be

convenient to think of {Θ+i }i ∈[n] and {I+θ }θ ∈Θ as two di�erent partitions of the set {(θ , i ) : ui (θ ) ≥ 0}.

Observe that by monotonicity there always exists an optimal signaling scheme φ∗ such that

x∗θ,i = 1 for every θ ∈ Θ+i . Let φ∗ be such an optimal signaling scheme and OPT denote the optimal

sender utility. We now adjust the scheme φ∗ such that they do not degrade the objective value by

much but is more suitable for applying concentration bounds for our probabilistic argument.

Adjustment 1: Always Recommend Action 0 When x∗θ,i <
ϵ

3n

Note that x∗θ,i <
ϵ

3n only when θ ∈ Θ−i , i.e., action 0 is the best action for receiver i conditioned

on θ . We �rst adjust φ∗ to obtain a new scheme φ̃, as follows: φ̃ is the same as φ∗ except that for

every θ , i such that x∗θ,i <
ϵ

3n , φ̃ always recommends action 0 to receiver i given the state of nature

θ . As a result, x̃θ,i equals x∗θ,i whenever x∗θ,i ≥
ϵ

3n and equals 0 otherwise. Note that the signaling

scheme still satis�es the persuasiveness constraints.
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Naturally, each adjustment above, corresponding to θ , i satisfying x∗θ,i <
ϵ

3n , could decrease the

objective value since the marginal probability of recommending action 1 decreases. Nevertheless,

this loss, denoted as L(θ , i ), can be properly bounded as follows:

L(θ , i ) = λ(θ ) ·

[ ∑
S :i ∈S

φ∗ (θ , S ) fθ (S ) −
∑
S :i ∈S

φ∗ (θ , S ) fθ (S \ {i})

]

≤ λ(θ ) ·

[ ∑
S :i ∈S

φ∗ (θ , S )

]

= λ(θ )x∗θ,i ≤
λ(θ )ϵ

3n
.

As a result, the aggregated loss of all the adjustments made in this step can be upper bounded by∑
θ ∈Θ
∑n

i=1

λ (θ )ϵ
3n = ϵ

3
. �at is, the objective value of φ̃ is at least OPT − ϵ

3
.

Adjustment 2: Strengthen the Persuasive Constraints by Scaling Down xθ,i ’s
We now strengthen the persuasiveness constraints by further adjusting the φ̃ obtained from above

so that a small estimation error due to sampling will still maintain the original persuasiveness

constraints. For any θ , we de�ne φ ′(θ , S ) = 3

3+ϵ φ̃ (θ , S ) for all S , I+θ , and de�ne φ ′(θ , I+θ ) =

1 −
∑

S,I+θ
φ ′(θ , S ). Obviously, φ ′θ is still a distribution over 2

[n]
. Moreover, we claim that x ′θ,i =

ES∼φ ′θ I(i ∈ S ) = 1 whenever x̃θ,i = 1, i.e., θ ∈ Θ+i . �at is, given state θ , any receiver i ∈ I+θ will

still aways be recommended action 1. �is is because, to construct φ ′θ , we moved some probability

mass from all other sets S to the set I+θ , therefore the marginal probability of recommending action

1 to any receiver i ∈ I+θ will not decrease. However, this marginal probability is originally 1 in the

solution of φ̃. �erefore, x ′θ,i still equals 1 for any i ∈ I+θ , or equivalently, for any θ ∈ Θ+i . Similarly,

we also have x ′θ,i = 0 whenever x̃θ,i = 0.

Let Val (φ) denote the objective value of a scheme φ. We claim that Val (φ ′) ≥ OPT − 2ϵ
3

and φ ′

satis�es x ′θ,i =
3

3+ϵ x̃θ,i for every θ ∈ Θ−i . For any i ∈ [n],θ ∈ Θ−i (which means i < I+θ ), we have

x ′θ,i =
∑
S :i ∈S

φ ′(θ , S ) =
3

3 + ϵ

∑
S :i ∈S

φ̃ (θ , S ) =
3

3 + ϵ
x̃θ,i ,

since the summation excludes the term φ ′(θ , I+θ ). We now prove the guarantee of the objective

value. Observe that φ ′(θ , I+θ ) ≥
3

3+ϵ φ̃ (θ , I
+
θ ) also holds in our construction. �erefore, we have

Val (φ ′) =
∑
θ ∈Θ

λ(θ )
∑
S ⊆[n]

φ ′(θ , S ) fθ (S )

≥
3

3 + ϵ

∑
θ ∈Θ

λ(θ )
∑
S ⊆[n]

φ̃ (θ , S ) fθ (S )

=
3

3 + ϵ
·Val (φ̃)

≥ OPT −
2ϵ

3

,

where we used the upper bound Val (φ̃) ≤ 1.

Existence of An ϵ-Optimal Solution of Small Support.
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�e above two steps of adjustment result in a feasible
2ϵ
3

-optimal solutionφ ′ to LP (1) that satis�es

the following properties: (i) x ′θ,i = x∗θ,i = 1 whenever ui (θ ) ≥ 0; (ii) x ′θ,i =
3

3+ϵ x̃θ,i =
3

3+ϵ x
∗
θ,i ≥

ϵ
4n

when x∗θ,i ≥
ϵ

3n and θ ∈ Θ−i ; (iii) x ′θ,i = 0 when x∗θ,i <
ϵ

3n and θ ∈ Θ−i . Utilizing such a φ ′ we show

that there exists an ϵ-optimal solution φ to LP (1) such that the distribution φθ is a K-uniform

distribution for every θ , where K =
108n log(2n |Θ |)

ϵ 3
.

Our proof is based on the probabilistic method. For each θ , independently take K =
108n log(2n |Θ |)

ϵ 3

samples from random variable φ ′(θ ), and let φθ denote the corresponding empirical distribution.

Obviously, φθ is a K-uniform distribution. We claim that with strictly positive probability over the

randomness of the samples, φ is feasible to LP (1) and achieves utility at leastVal (φ ′)− ϵ
3
≥ OPT −ϵ .

We �rst examine the objective value. Observe that the objective value Val (φ ′) can be viewed as

the expectation of the random variable

∑
θ ∈Θ λ(θ ) fθ (Sθ ) ∈ [0, 1], where Sθ follows the distribution

of φ ′(θ ). Our sampling procedure generates K samples for the random variable {Sθ }θ ∈Θ, therefore

by the Hoe�ding bound, with probability at least 1 − exp(−2Kϵ2/9) > 1 − 1/(2n |Θ|), the empirical

mean is at least Val (φ ′) − ϵ/3.

Now we only need to show that all the persuasiveness constraints are preserved with high

probability. First, observe that if x ′θ,i = 0, then xθ,i induced by φ also equals 0. �is is because

x ′θ,i = ES∼φ ′ (θ ) I(i ∈ S ) = 0 implies that i is not contained in any S from the support of φ ′(θ ),

therefore, also not contained in any sample. Similarly, x ′θ,i = 1 implies xθ,i = 1. To show that all the

persuasiveness constraints hold, we only need to argue that xθ,i ≤ x∗θ,i for every θ ∈ Θ−i satisfying

x∗θ,i ≥
ϵ

3n . �is holds with high probability by tail bounds. In particular, x ′θ,i = ES∼φ ′ (θ ) I(i ∈ S ) and

we take K samples from φ ′(θ ). By the Cherno� bound, with probability at least

1 − exp(−
Kϵ2x ′θ,i

27

) ≥ 1 − exp(−
Kϵ3

108n
) > 1 −

1

2n |Θ|
,

the empirical mean xθ,i is at most (1 + ϵ/3)x ′θ,i = x∗θ,i .

Note that there are at most n |Θ| choices of such θ , i . By union bound, with probability at least

1 − (n |Θ| + 1)/(2n |Θ|) > 0, φ satis�es all the persuasiveness constraints thus is feasible to LP (1),

and achieves objective value at leastVal (φ ′)− ϵ
3
≥ OPT −ϵ . So there must exist a feasible ϵ-optimal

solution φ to LP (1) such that φθ is K-uniform for every θ . �is concludes our proof of Lemma 4.2.

5 AN OBLIVIOUS PRIVATE SCHEME FOR BINARY-STATE SETTINGS
In this section, we consider the special case with two states of nature, denoted by θ0 and θ1, and

submodular sender utility functions. We show that a (1− 1

e )-approximate private signaling scheme

can be explicitly constructed. �e approximation ratio is tight by [4]. Moreover, the constructed

signaling scheme has the following distinctive properties: (i) it signals independently to each

receiver, which we term an independent signaling scheme; (ii) it is oblivious in the sense that it does

not depend on the sender’s utility function so long as it is monotone submodular. All proofs in this

section are omi�ed due to space constraints, and can be found in the full version on arXiv.

In particular, we consider the independent signaling scheme φI that simply maximizes the

probability of recommending action 1 to each receiver i independently. Such a scheme can be easily

constructed by alway recommending action 1 to receiver i whenever ui (θ ) ≥ 0, and recommend

action 1 with probability as high as possible subject to the persuasiveness constraints. We refer the

reader to the Appendix for an explicit construction. Notice that φI is determined by the receiver’s

payo�s, and does not depend on the sender’s payo� function fθ (S ). Nevertheless, the following

theorem shows that φI is approximately optimal.
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1:16 Shaddin Dughmi and Haifeng Xu

Theorem 5.1. In the binary-state se�ing with monotone submodular sender objectives, the scheme
φI is a (1 − 1

e )-approximate private signaling scheme.

�eorem 5.1 follows from the following two lemmas. �e proof of Lemma 5.2 employs the idea

of the correlation gap from the robust stochastic optimization literature [1].

Lemma 5.2. In the multiple-state se�ing with monotone submodular sender objectives, the optimal
independent signaling scheme is a (1 − 1

e )-approximation to the optimal private signaling scheme.

Lemma 5.3. In the binary-state se�ing with monotone sender objectives, the φI de�ned above is the
optimal independent signaling scheme.

We conclude this section with two negative results regarding generalizing �eorem 5.1 to many

states of natures. We �rst show that it is NP-hard to approximate the optimal independent signaling

scheme within a factor be�er than (1 − 1

e ) when there are multiple states of nature (Proposition

5.4). We then prove that the best oblivious scheme can perform poorly in terms of the sender utility

when there are multiple states (Proposition 5.5).

Proposition 5.4. In the multiple-state se�ing with monotone submodular sender objectives, it
is NP-hard to compute an independent signaling scheme that (1 − 1/e )-approximates the optimal
independent scheme.

Proposition 5.5. For any integerm > 1, there exists an instance withm states of nature such that
any oblivious private scheme can achieve at most 1

b
√
m−1c

fraction of the optimal sender utility.

6 INEFFICACY AND HARDNESS OF PUBLIC PERSUASION
In this section, we turn our a�ention to the design of optimal public signaling schemes, and show

a stark contrast with private signaling, both in terms of their e�cacy at optimizing the sender’s

utility, and in terms of their computational complexity.

We start with an example illustrating how the restriction to public signaling can drastically

reduce the sender’s expected utility. �e example is notably simple: two states of nature, and a

binary sender utility function which is independent of the state of nature. We show a multiplicative

gap of Ω(n), and an additive gap of 1 − 1

Ω(n) , between the expected sender utility from the optimal

private and public signaling schemes, where n is the number of receivers.

Example 6.1 (Ine�cacy of Public Signaling Schemes). Consider an instance with n identical

receivers and two states of nature Θ = {H, L}. Each receiver has the same utility function, de�ned

as follows: ui (H) = 1 and ui (L) = −1, for all i . �e state of nature H occurs with probability
1

n+1
,

and L occurs with probability
n

n+1
. �e sender’s utility function is fθ (S ) = f (S ) = min( |S |, 1). In

other words, the sender gets utility 1 precisely when at least one receiver takes action 1.

�e persuasiveness constraints imply that each receiver can take action 1 with probability no

more than
2

n+1
. �is is achievable by always recommending action 1 to the receiver in state H, and

recommending action 0 with probability
1

n in state L. �e sender’s expected utility depends on how

these recommendations are correlated.

�e optimal private scheme anti-correlates the receivers’ recommendations in order to guarantee

that at least one receiver takes action 1 always, which achieves an expected sender utility of 1,

the maximum possible. Speci�cally, in state H the scheme always recommends action 1 to every

receiver, and in state L the scheme chooses one receiver uniformly at random and recommends

action 1 to that receiver, and action 0 to the other receivers.

We argue that no public scheme can achieve sender utility more than
2

n+1
. Indeed, since receivers

are identical, our solution concept implies that they choose the same action for every realization
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of a public signal. �erefore, the best that a public scheme can do is to recommend action 1 to

all receivers simultaneously with probability
2

n+1
in aggregate, and recommend action 0 with the

remaining probability, yielding an expected sender utility of
2

n+1
. �is is achievable: in state H

the scheme always recommends action 1 to every receiver, and in state L the scheme recommends

action 1 to all receivers with probability
1

n , and action 0 to all receivers with probability 1 − 1

n .

Our next result illustrates the computational barrier to obtaining the optimal public signaling

scheme, even for additive sender utility functions. Our proof is inspired by a reduction in [14]

for proving the hardness of computing the best posterior distribution over Θ, a problem termed

mixture selection in [14], in a voting se�ing. �at reduction is from the maximum independent set

problem. Since a public signaling scheme is a combination of posterior distributions, one for each

signal, we require a more involved reduction from a graph-coloring problem to prove our result.

Theorem 6.2. Consider public signaling in our model, with sender utility function fθ (S ) = f (S ) =
|S |
n . It is NP-hard to approximate the optimal sender utility to within any constant multiplicative
factor. Moreover, there is no additive PTAS for evaluating the optimal sender utility, unless P = NP.

Proof. We prove by reducing from the following NP-hard problem. In particular, [23] prove

that for any positive integer k , any integer q such that q ≥ 2
k + 1, and an arbitrarily small constant

ϵ > 0, given an undirected graph G, it is NP-hard to distinguish between the following two cases:

• Case 1: �ere is a q-colorable induced subgraph of G containing a (1 − ϵ ) fraction of all

vertices, where each color class contains a
1−ϵ
q fraction of all vertices.

• Case 2: Every independent set in G contains less than a
1

qk+1
fraction of all vertices.

Given graph G with vertices [n] = {1, . . . ,n} and edges E, we will construct a public persuasion

instance so that the desired algorithm for approximating the optimal sender utility can be used to

distinguish these two cases. Our construction is similar to that in [14]. We let there be n receivers,

and let Θ = [n]. In other words, both receivers and states of nature correspond to vertices of the

graph. We �x the uniform prior distribution over states of nature — i.e., the realized state of nature

is a uniformly-drawn vertex in the graph. We de�ne the receiver utilities as follows: ui (θ ) =
1

2
if

i = θ ; ui (θ ) = −1 if (i,θ ) ∈ E; and ui (θ ) = −
1

4n otherwise. We de�ne the sender’s utility function,

with range [0, 1], to be fθ (S ) = f (S ) = |S |n . �e following claim is proven in [14].

Claim 6.3 ([14]). For any distribution x ∈ ∆Θ, the set S = {i ∈ [n] :

∑
θ ∈Θ xθui (θ ) ≥ 0} is an

independent set of G.

Claim 6.3 implies that upon receiving any public signal with any posterior distribution x over Θ,

the players who take action 1 always form an independent set of G. �erefore, if the graph G is

from Case 2, the sender’s expected utility in any public signaling scheme is at most
1

qk+1
.

Now supposing that G is from Case 1, we �x the corresponding coloring of (1 − ϵ )n vertices

with colors k = 1, . . . ,q, and we use this coloring to construct a public scheme achieving expected

sender utility at least
(1−ϵ )2
q . �e scheme uses q + 1 signals, and is as follows: if θ has color k then

deterministically send the signal k , and if θ is uncolored then deterministically send the signal 0.

Given signal k > 0, the posterior distribution on states of nature is the uniform distribution over

the vertices with color k — an independent set Sk of size
1−ϵ
q n. It is easy to verify that receivers

i ∈ Sk prefer action 1 to action 0, since

∑
θ ∈Sk

1

|Sk |
ui (θ ) =

1

|Sk |
( 1

2
−
|Sk |−1

4n ) > 1

4 |Sk |
≥ 0. �erefore,

the sender’s utility is f (Sk ) =
|Sk |
n = 1−ϵ

q whenever k > 0. Since signal 0 has probability ϵ , we

conclude that the sender’s expected utility is at least
(1−ϵ )2
q , as needed.
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1:18 Shaddin Dughmi and Haifeng Xu

Since distinguishing Case 1 and Case 2 is NP-hard for arbitrarily large constants k and q, we

conclude that it is NP-hard to approximate the optimal sender utility to within any constant factor.

Moreover, by se�ing k = 1,q = 3, we conclude that the sender’s utility cannot be approximated

additively to within (1 − ϵ )2/3 − 1/32 > 1/9, and thus there is no additive PTAS, unless P=NP.

�
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