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Abstract
Traditional security games concern the optimal randomized
allocation of human patrollers, who can directly catch attack-
ers or interdict attacks. Motivated by the emerging applica-
tion of utilizing mobile sensors (e.g., UAVs) for patrolling,
in this paper we propose the novel Sensor-Empowered secu-
rity Game (SEG) model which captures the joint allocation
of human patrollers and mobile sensors. Sensors differ from
patrollers in that they cannot directly interdict attacks, but
they can notify nearby patrollers (if any). Moreover, SEGs
incorporate mobile sensors’ natural functionality of strategic
signaling. On the technical side, we first prove that solving
SEGs is NP-hard even in zero-sum cases. We then develop
a scalable algorithm SEGer based on the branch-and-price
framework with two key novelties: (1) a novel MILP formu-
lation for the slave; (2) an efficient relaxation of the problem
for pruning. To further accelerate SEGer, we design a faster
combinatorial algorithm for the slave problem, which is prov-
ably a constant-approximation to the slave problem in zero-
sum cases and serves as a useful heuristic for general-sum
SEGs. Our experiments demonstrate the significant benefit of
utilizing mobile sensors.

Introduction
The past decade has seen significant interest in security
games, which concern the allocation of limited security
resources to protect critical targets from attack. This is
driven in part by many real-world security applications
(Tambe 2011; Yin et al. 2016; Rosenfeld and Kraus 2017;
Bucarey et al. 2017). The security resources in most of these
models and applications are human patrollers, who can di-
rectly interdict attacks. Recent advances in technology have
stimulated the rapidly growing trend of utilizing automated
sensors for patrolling and monitoring. Among these, Un-
manned Aerial Vehicles (UAVs) – or more generally, mo-
bile sensors – are perhaps the most widely used. Indeed,
the UAV market is estimated at USD 13 billions in 2016
and the law enforcement/patrolling segment of the market
is expected to account for the largest share (Market Report
2016). The advantage of mobile sensors is that they can au-
tomatically detect attacks with advanced image processing
techniques (Ren et al. 2015; Bondi et al. 2017), thus serv-
ing as effective monitoring tools. Moreover, sensors can be
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more cost-effective additions than hiring new patrollers (all
sensors in this paper will refer to mobile sensors, unless oth-
erwise specified). However, the drawback of sensors is that
they usually cannot directly interdict attacks in applications
of interest in our work for law enforcement and wildlife pro-
tection – these sensors can only notify patrollers. This raises
the natural question that we intend to address in this paper:
how to incorporate the advantages of patrollers and sensors
to improve security?

Particularly, we generalize the classical security game
model and consider a defender with both patrollers and sen-
sors. Only patrollers can directly interdict attacks. Sensors
can only detect attacks and then notify nearby patrollers (if
any) to come to intervene. So the interdiction effect of sen-
sors relies on whether there are patrollers nearby. Moreover,
we assume that sensors can strategically send signals (e.g.,
by making noise or shining lights) to deter attacks. Our goal
is to compute the globally optimal defender policy, which
includes the joint allocation of patrollers and sensors as well
as the signaling schemes for sensors. Addressing this goal
involves two key challenges. The first is to optimally coor-
dinate the allocation of patrollers and sensors since sensors
cannot interdict attacks independently. The second challenge
is to design signaling schemes on top of the resource alloca-
tion, inducing a bi-level optimization problem.
Our Contributions. In this paper, we propose the novel
Sensor-Empowered security Game (SEG) model, which nat-
urally extends classical security games to capture the emerg-
ing application of utilizing UAVs to empower human pa-
trolling. Our model integrates perhaps the most natural two
functionalities of sensors for security, i.e., monitoring and
signaling. On the technical side, we first prove that it is
NP-hard to compute the optimal defender strategy even in
zero-sum SEGs. We then propose SEGer, a scalable algo-
rithm based on the branch and price framework with two
novel ingredients: 1. a compact mixed integer linear program
(MILP) formulation that exactly solves the NP-hard slave
problem; 2. an efficient relaxation of the problem for branch-
and-bound pruning. To further accelerate SEGer, we de-
sign a novel polynomial time algorithm that is provably a
1
2 (1 − 1

e )-approximation to the slave problem in zero-sum
cases while it serves as a useful heuristic for solving general-
sum SEGs. Finally, we experimentally justify the advantage
of utilizing sensors for security as well as the scalability of



our new algorithms.
Related Work. This work is related to several lines of re-
search on security, and we discuss how we differ from each
separately. The first line of research concerns UAV plan-
ning to optimize certain information gathering or monitoring
objective (Stranders et al. 2013; Mersheeva and Friedrich
2015). These works consider (only) UAV planning and are
usually in non-strategic settings. In contrast, our work con-
cerns joint allocation of different types of resources and
falls in a game-theoretic setting. Another interesting line
of research studies adversarial patrolling games with alarm
systems (Basilico, De Nittis, and Gatti 2017; Basilico et
al. 2017), which also utilizes sensors (i.e., alarms) to as-
sist patrollers. The sensors in all these works are static
(staying at fixed locations) and do not strategically sig-
nal. Sensors in our model, however, can strategically sig-
nal and are mobile. Such mobility gives us the extra flex-
ibility to optimize their (possibly randomized) allocation.
Finally, our work is also related to the recent work on
utilizing strategic signaling/deception to improve the de-
fender utility in security games (Zhuang and Bier 2011;
Xu et al. 2015; Rabinovich et al. ; Talmor and Agmon 2017;
Guo et al. 2017). These works focus on security games with
human patrollers, while our model optimizes the joint allo-
cation of patrollers and signaling devices (i.e., sensors).

An Illustrative Example
To illustrate the basic idea, we start with a concrete ex-
ample concerning the protection of conservation areas
(Fang et al. 2016). Consider the problem where a de-
fender needs to protect 8 conservation areas whose under-
lying geographic structure is captured by a cycle graph
depicted in Figure 1 (e.g., they are the border areas of
the park): each vertex represents an area. Edges indi-
cate the adjacency relation among these areas. There is
a poacher who seeks to attack one area. For simplic-
ity, assume that these 8 areas are of equal importance.

Figure 1: Cycle Graph.

Particularly, if the poacher
is caught by a patroller
at any area, the defender
[poacher] gets utility 1 [−1];
If the poacher successfully
attacks an area, the de-
fender [poacher] gets utility
−5 [1.25]. The defender has
only one patroller, who can
protect any area in the graph.
Since areas are symmetric, it
is easy to see that the optimal patrolling strategy here simply
assigns the only patroller to each area with equal probability
1/8. As a result, the poacher attacks an arbitrary area, result-
ing in expected defender utility 1 · 1

8 + (−5) · 7
8 = −17/4.

Now consider that the defender is assisted by 4 UAVs
(e.g., an NGO named Air Shepherd [http://airshepherd.org/]
provides such UAVs for conservation). Each UAV can be as-
signed to patrol any area. When the poacher visits any area
i, he will be caught right away if there is a patroller at i. If
there is neither a patroller nor a UAV at area i, the poacher

successfully attacks the target. Now if there is a UAV at i,
since UAVs are usually visible by the poacher from a dis-
tance, the poacher has a chance of choosing to attack or not
attack, based on his rational judgment, upon seeing the UAV.
If he chooses to attack, the attack will fail if there is a pa-
troller at any neighbor of area i, since the UAV can notify
the patroller to come to catch the poacher (e.g., this is how
air Shepherd operates). Otherwise, the attack succeeds (de-
spite the presence of the UAV). The poacher can also choose
to not attack, in which case both players get utility 0.

We are interested in the defender’s optimal strategy for
allocating these resources. By symmetry of the problem,
it is natural to consider the following randomized strategy.
The defender first chooses an area i uniformly at random
to place the patroller, and then uses two UAVs to cover
the left two neighbors of i and another two to cover the
right two neighbors. The pattern is also illustrated in Fig-
ure 1 where the thick dark vertex for placing the patroller
is chosen uniformly at random. Under such allocation, each
vertex is assigned the patroller with probability 1/8 and is
assigned a UAV with probability 4/8. By symmetry, the
poacher still chooses an arbitrary area to visit. With prob-
ability 1/8, the poacher will be caught by the patroller right
away; with probability 3/8, the poacher encounters neither
the patroller nor the UAVs, thus will successfully conduct
an attack. With the remaining 4/8 probability, the poacher
will see a UAV and need to make a choice of attacking or
not attacking. It is easy to verify that conditioned on a UAV
showing up at an area, with probability 0.5 there is a pa-
troller at its neighboring area. This is because out of the
four areas covered by UAVs, two of them are neighbors of
the patroller-covered area. Therefore, the rational poacher
will update his expected utility of committing an attack, as
(−1)·0.5+1.25·0.5 = 0.125 which is greater than the utility
of not attacking. So the poacher will attack the area, result-
ing in expected defender utility 1 · 0.5 + (−5) · 0.5 = −2.
Taking expectation over all possible situations, the defender
derives expected utility 1 · 18 +(−5) · 38 +(−2) · 48 = −11/4,
which is an improvement over her previous utility −17/4.

If the defender only optimizes the allocation of these re-
sources without extra tactics, it turns out that −11/4 is
the maximum utility that she could possibly achieve. In-
terestingly, we show that the defender can further improve
her utility via strategic signaling, which is a natural func-
tionality of UAVs. Such improvement is possible when the
poacher visits an area i covered by a UAV. In particular, let
θs+ [θs−] denote the random event that there is a patroller
[no patroller] at some neighbor of area i. As mentioned be-
fore, conditioned on seeing a UAV at i, the poacher infers
P(θs+) = P(θs−) = 0.5. However, the UAV will know the
precise state of i through communications with the defender.
The UAV could strategically signal the state of area i to the
attacker with the goal of deterring his attack. This may sound
counter-intuitive at first, but it turns out that strategic signal-
ing does help. In particular, the following signaling scheme
with two signals improves the defender’s utility:

P(alert|θs+) = 1 P(quiet|θs+) = 0;

P(alert|θs−) = 0.8 P(quiet|θs−) = 0.2.



That is, when there is a patroller near area i (state θs+), the
UAV always sends an alert signal; when there is no patroller
near i (state θs−), 80% percent of the time the UAV still
sends an alert signal while keeps quiet otherwise.

We assume that the poacher is aware of the signal-
ing scheme and will best respond to each signal. If he
receives an alert signal, which occurs with probability:
P(alert) = P(alert|θs+)P(θs+) + P(alert|θs−)P(θs−) =
0.9, the poacher infers a posterior distribution on the state
by Bayes rule: P(θs+|alert) = P(alert|θs+)P(θs+)

P(alert) = 5
9

and P(θs−|alert) = 4
9 . This posterior results in expected

poacher utility 5
9 · (−1) + 4

9 · 1.25 = 0, which is the same
as not attacking. We assume that the poacher breaks tie in
favor of the defender (see justifications later) and, in this
case, chooses to not attack. This results in utility 0 for both
players. On the other hand, if the poacher receives a quiet
signal, he knows for sure that there is no patroller nearby
thus chooses to attack, resulting in defender utility −5. As
a result, the above signaling scheme (which occurs when-
ever a poacher encounters a UAV) results in defender utility
0 ·0.9+(−5) ·0.1 = −0.5. Overall, the defender’s expected
utility is further improved to 1· 18 +(−5)· 38 +(−0.5)· 48 = −2,
which is less than half of the original loss −17/4.
Remark. A signal takes effect only through its underlying
posterior distribution over Θs. In the above example, the at-
tack would not have been deterred if the UAV always sends
an alert signal since in that case the poacher would ignore
the signal and act based on his prior belief. However, the
signals could be deceptive in the sense that an alert may be
issued even when there is no patroller nearby. The poacher
still prefers to not attack even he is aware of the deception!

SEGs: Sensor-Empowered Security Games

Basic Setup. Consider a security game played between a de-
fender (she) and an attacker (he). The defender possesses k
human patrollers and m mobile sensors. She aims to protect
n targets, whose underlying geographic structure is captured
by an undirected graph G. We use [n] to denote the set of
all targets, i.e., all vertices. The attacker seeks to attack one
target. Let Ud/a+/−(i) denote the defender/attacker (d/a) pay-
off when the defender successfully protects/fails to protect
(+/−) the attacked target i. Assume Ud+(i) ≥ 0 > Ud−(i)
and Ua+(i) ≤ 0 < Ua−(i) for any i. Sensors cannot directly
interdict an attack, however they can inform patrollers to
come when detecting the attacker at a target. Particularly,
let integer τ > 0 be the intervention distance such that a
sensor-informed patroller within distance τ to the attacked
target can successfully come to intervene in the attack. If
there is no patroller within distance τ to the attacked target,
the target is not protected despite being covered by a sen-
sor. So a target covered by some resource (i.e., sensors) is
not necessarily protected, which is a key difference between
SEGs and classical security games. We assume that sensors
are visible. Therefore, the attacker knows whether a target is
covered by a sensor or not, upon visiting the target.

Defender’s Action Space of Resource Allocation. We as-

sume that any patroller or sensor can be assigned to cover
any target on G without scheduling restrictions. Therefore,
a defender pure strategy covers an arbitrary subset of k ver-
tices with patrollers and another subset of m vertices with
sensors. For convenience, we call both patrollers and sen-
sors resources. W.l.o.g., we assume that the defender never
places more than one resource at any target (otherwise, real-
locating one resource to any uncovered target would only
do better). Observe that targets in SEGs have 4 possible
states: (1) covered by a patroller (state θ+); (2) uncovered
by any resource (state θ−); (3) covered by a sensor and at
least one patroller is within distance τ (state θs+); (4) cov-
ered by a sensor but no patroller is within distance τ (state
θs−). Note that only state θ+, θs+ mean successful defense.
Let Θ = {θ+, θ−, θs+, θs−} denote the set of all states. Any
resource allocation uniquely determines the state for each
target and vice versa. Therefore we can equivalently use a
state vector e ∈ Θn to denote a defender pure strategy. Let
ei ∈ Θ denote the state of target i ∈ [n] and E ⊆ Θn de-
note the set of defender pure strategies. A defender mixed
strategy is a distribution over the exponentially large set E .

Mobile Sensor Signaling. Another novel ingredient of
SEGs is that they naturally integrate the sensor functional-
ity of strategic signaling, which can be easily implemented
for most sensors (e.g., UAVs). Particularly, let Σ denote the
set of possible signals that a sensor could send (e.g, noise,
warning lights, etc.). Let Θs = {θs+, θs−} denote the set of
possible states when a sensor covers the target. A signaling
scheme, w.r.t. target i, is a randomized map

πi : Θs
r n d−→ Σ,

which is characterized by variables {πi(ei, σi)}ei∈Θs,σi∈Σ.
Here πi(ei, σi) is the joint probability that target i is at state
ei ∈ Θs and signal σi ∈ Σ is sent. So

∑
σi∈Σ πi(ei, σi)

must equal P(ei), the marginal probability that target i is at
state ei. A sensor at target i first determines its state ei ∈ Θs

and then sends a signal σi with probability πi(ei, σi)/P(ei).
We assume that the defender commits to a signaling scheme
and the rational attacker is aware of the commitment.

Upon observing signal σi, the attacker updates his belief
on the target state: P(θs+|σi) = πi(θs+,σi)

πi(θs+,σi)+πi(θs−,σi)
and

P(θs−|σi) = 1− P(θs+|σi), and derives expected utility
AttU(σi) = Ua+(i) · P(θs+|σi) + Ua−(i) · P(θs−|σi).

The attacker will attack target i if AttU(σi) > 0. When
AttU(σi) < 0, the rational attacker chooses to not attack,
in which case both players get utility 0. We assume that the
attacker breaks tie in favor of the defender when AttU(σi) =
0. This is without loss of generality because the defender can
always slightly tune the probabilities to favor her preferred
attacker action. The following lemma shows that the optimal
signaling scheme needs not to use more than two signals.
Lemma 1. [Adapted from (Kamenica and Gentzkow 2011)]
There exists an optimal signaling scheme (w.r.t. a target) that
uses at most two signals, each resulting in an attacker best
response of attacking and not attacking, respectively.

The proof of Lemma 1 tracks the following intuition: if
two signals result in the same attacker best response, merg-
ing these signals into a single one would not change any



player’s utility. In our previous example, an alert signal re-
sults in not attacking while a quiet signal result in attacking.

Attacker’s Action Space. We assume that the defender
commits to a mixed strategy (i.e., randomized resource al-
location) and signaling schemes. The attacker is aware of
the defender’s commitment, and will rationally respond. In
particular, the attacker first chooses a target to visit. If he ob-
serves a sensor at the target, the attacker then makes a second
decision and determines to attack or not, based on the signal
from the sensor. If the attacker chooses to not attack, both
players get utility 0. The attacker will choose actions that
maximize his utility.

Justification of Commitment and Other Assumptions.
Commitment to mixed strategies is a common assumption in
security games, and has been well-justified (Tambe 2011).
The commitment to signaling schemes is natural and real-
istic in our setting because these schemes need to be im-
plemented as software in the sensor. Once the code is fi-
nalized and deployed, the defender is committed to use the
signaling scheme prescribed by the code. We also assume
that the attacker is aware of the signaling scheme and will
best respond to each signal. This is because by interacting
with the system, e.g., choosing to attack regardless of the
signal, the attacker can gradually learn each signal’s pos-
terior which is simply a Bernoulli distribution. This is par-
ticularly true in “green security” domains which generally
involve limited penalty for being caught (Carthy et al. 2016;
Fang et al. 2016). Moreover, there is a community of attack-
ers who can learn these probabilities by sharing knowledge.

Solving SEGs is Hard
We are interested in solving SEGs, by which we mean com-
puting the globally optimal defender commitment consisting
of the mixed strategy and signaling schemes. We first prove
that solving SEGs is NP-hard even in zero-sum cases. Then
we formulate the problem using the multiple-LP approach
(Conitzer and Sandholm 2006). Note that all proofs in the
main body are illustrated with sketches or explanations. For-
mal proofs can be found in the appendix.

Theorem 2. Computing the optimal defender commitment
is NP-hard even in zero-sum SEGs.

Proof Sketch. The proof is by a reduction from the domi-
nating set problem. Particularly, given any graph G with n
vertices, we construct a zero-sum SEG instance with k pa-
trollers and m = n − k sensors. Let τ = 1 and Ud+(i) =

Ua+(i) = 0, Ud−(i) = −1 = −Ua−(i) for every i. That is
the defender receives utility 0 for successfully protecting a
target and utility −1 for failing to protect a target. The key
step of the proof is to argue that G has a dominating set of
size k if and only if the optimal defender utility is 0 in the
constructed SEG.

A Formulation with Exponential-Size LPs
The main challenge of solving SEGs is its nature as a bi-
level optimization problem since signaling schemes are built

on top of the mixed strategy. We show that the problem can
be formulated as multiple (exponential-size) LPs.

We first formulate the signaling process w.r.t. target i. For
convenience, let yi = P(ei = θs+) and zi = P(ei = θs−)
denote the marginal probabilities of state θs+, θs−, respec-
tively. Thanks to Lemma 1, we can w.l.o.g. restrict to sig-
naling schemes with two signals σ1, σ0 that result in the at-
tacker best response of attacking and not attacking, respec-
tively. Define variables π+

i = πi(θs+, σ1) ∈ [0, yi] and
π−i = πi(θs−, σ1) ∈ [0, zi]. To guarantee that σ1, σ0 re-
sult in the desired attacker best responses, we need two con-
straints: Uaσ1

(π+
i , π

−
i ) = π+

i · Ua+(i) + π−i · Ua−(i) ≥ 0 and
Uaσ0

(π+
i , π

−
i , yi, zi) = (yi−π+

i )Ua+(i)+(zi−π−i )Ua−(i) ≤
0. Under these constraints, the defender’s expected utility
from σ1 is Udσ1

(π+
i , π

−
i ) = π+

i · Ud+(i) + π−i · Ud−(i).
Recall that the defender utility from σ0 is 0. Crucially,
Uaσ1

, Udσ1
, Uaσ0

are all linear functions of π+
i , π

−
i , yi, zi.

With these representations of defender and attacker util-
ities from different signals, we are ready to present LPs to
compute the optimal defender mixed strategy. In particu-
lar, for any fixed target t we exhibit an LP that computes
the optimal defender strategy, subject to that visiting tar-
get t is the attacker’s best response. Details are given in
the following linear program with variables {pe}e∈E and
xi, yi, zi, wi, π

+
i , π

−
i for all i ∈ [n].

max xtU
d
+(t) + wtU

d
−(t) + Udσ1

(π+
t , π

−
t )

s.t. xtU
a
+(t) + wtU

a
−(t) + Uaσ1

(π+
t , π

−
t ) ≥

xiU
a
+(i) + wiU

a
−(i) + Uaσ1

(π+
i , π

−
i ) ∀ i 6= t∑

e∈E:ei=θ+
pe = xi ∀ i ∈ [n]∑

e∈E:ei=θs+
pe = yi ∀ i ∈ [n]∑

e∈E:ei=θs−
pe = zi ∀ i ∈ [n]

xi + yi + zi + wi = 1 ∀ i ∈ [n]∑
e∈E pe = 1

pe ≥ 0 ∀ e ∈ E
Uaσ1

(π+
i , π

−
i ) ≥ 0 ∀ i ∈ [n]

Uaσ0
(π+
i , π

−
i , yi, zi) ≤ 0 ∀ i ∈ [n]

0 ≤ π+
i ≤ yi, 0 ≤ π−i ≤ zi ∀ i ∈ [n]

(1)
In LP (1), variable pe is the probability of pure strategy e
and xi, yi, zi, wi are the marginal probabilities of different
states. Note that Program (1) is an LP since Udσ1

, Uaσ1
, Uaσ0

are all linear functions. The last three sets of constraints
guarantee that {π+

i , π
−
i } is a feasible signaling scheme at

each target i. The first set of constraints enforce that visit-
ing target t is an attacker best response. The remaining con-
straints define various marginal probabilities. It is easy to
see that LP (1) computes the optimal defender commitment,
subject to that visiting target t is an attacker best response.

The optimal commitment can be computed by solving LP
(1) for each t and picking the solution with maximum objec-
tive. A scalable algorithm for solving SEGs is given next.

SEGer– A Branch and Price Approach
The challenge of solving SEGs are two-fold. First, LP (1)
has exponentially many variables. Second, we have to solve
LP (1) for each t ∈ [n], which is very costly. In this section,



we propose SEGer (SEGs engine with LP relaxations) – a
branch and price based algorithm – to solve SEGs. We omit
the standard description of branch and price (see, e.g., (Barn-
hart et al. 1998)) but highlight how SEGer instantiates the
two key ingredients of this framework: (a) an efficient relax-
ation of LP (1) for branch-and-bound pruning; (b) a column
generation approach for solving LP (1). We will describe the
column generation step first.

Column Generation & An MILP for the Slave
Our goal is to efficiently solve the exponential-size LP (1).
The idea of column generation is to start by solving a re-
stricted version of LP (1), where only a small subset E ′ ⊂ E
of pure strategies are considered. We then search for a pure
strategy e ∈ E \E ′ such that adding e to E ′ improves the op-
timal objective value. This procedure iterates until no pure
strategies in E \ E ′ can improve the objective, which means
an optimal solution is found. The restricted LP (1) is called
the master, while the problem of searching for a pure strat-
egy e ∈ E\E ′ is referred to as the slave problem. The slave is
derived from the dual program of LP (1), particularly, from
the dual constraints corresponding to primal variable pes.
We omit its textbook derivation here (see, e.g., (Tambe 2011)
for details), while only directly describe the slave problem in
our setting as follows.
Slave Problem: Given different weights αi, βi, γi ∈ R for
each i, solve the following weight maximization problem:

maximizee∈E
∑

i:ei=θ+

αi +
∑

i:ei=θs+

βi +
∑

i:ei=θs−

γi. (2)

We mention that αi, βi, γi in the slave are the optimal dual
variables for the constraints that define xi, yi, zi respectively
in LP (1). The slave is an interesting resource allocation
problem with multiple resource types (i.e., patrollers and
sensors) which affect each other. Using a reduction from
dominant set, it is not difficult to prove the follows.

Lemma 3. The slave problem is NP-hard.

Next we propose a mixed integer linear program (MILP)
formulation for the slave problem. Our idea is to use three bi-
nary vectors v1,v2,v3 ∈ {0, 1}n to encode for each target
whether it is in state θ+, θs+, θs− respectively. For example,
target i is at state θs+ if and only if v2

i = 1. The main chal-
lenge then is to properly set up linear (in)equalities of these
vectors to precisely capture their constraints and relations.

The capacity for each resource type results in two natu-
ral constraints:

∑
i∈[n] v

1
i ≤ k and

∑
i∈[n](v

2
i + v3

i ) ≤ m.
Moreover, since at most one resource is assigned to any tar-
get, we have v1

i + v2
i + v3

i ≤ 1 for each i ∈ [n]. Finally,
we use the set of constraints Aτ · v1 ≥ v2 to specify which
vertices could possibly have state θs+ (i.e., have a patroller
within distance τ ). To see that this is the correct constraint,
we claim that no vertex in v1 is within distance τ to i if
and only if Aτi · v1 = 0 where Aτi is the i’th row of Aτ .
This is easy to verify for τ = 1 and follows by induction
for general τ . It turns out that these constraints are sufficient
to encode the slave problem. Details are presented in MILP
(3), whose correctness is summarized in Proposition 4. Here,

α = (α1, ..., αn)> (β, γ defined similarly) and 〈v1 ·α〉 is the
inner product between v1 and α. Matrix A ∈ {0, 1}n×n is
the adjacency matrix of G and Aτ is the τ ’th power of A.

max 〈v1 · α〉+ 〈v2 · β〉+ 〈v3 · γ〉
s.t.

∑
i∈[n] v

1
i ≤ k∑

i∈[n](v
2
i + v3

i ) ≤ m
v1
i + v2

i + v3
i ≤ 1, for i ∈ [n].

Aτ · v1 ≥ v2

v1,v2,v3 ∈ {0, 1}n

(3)

Proposition 4. Let {ê1, ê2, ê3} be an optimal solution to
MILP (3). Then assigning k patrollers to vertices in ê1 and
m sensors to vertices in ê2 + ê3 correctly solves Slave (2).
Here, for vector v ∈ {0, 1}n, we say “i is in v” iff vi = 1.

LP Relaxation for Branch-and-Bound Pruning
Our goal of using branch-and-bound is to avoid solving LP
(1) one by one for each t, which is too costly. The idea is to
come up with an efficiently-computable upper bound of LP
(1) for each t, so that once the best objective value among the
solved LP (1)’s is larger than the upper bound of all the (yet)
unsolved ones, we can safely claim that the current best so-
lution is optimal without solving the remaining LPs. In this
section, by properly relaxing LP (1) we obtain such an upper
bound, which leads to significant speed-up in experiments.

The standard approach for finding relaxations in security
games is to ignore scheduling constraints. Unfortunately,
this does not work in our case since our security resources do
not have scheduling constraints. The difficulty of our prob-
lem lies in characterizing marginal probabilities of different
states in Θ. Our idea is to utilize the constraints in MILP
(3). Observe that v1,v2,v3 in MILP (3) can be viewed as
marginal vectors of a pure strategy for state θ+, θs+, θs− re-
spectively. Recall that x,y, z in LP (1) are the marginal vec-
tors of a mixed strategy p for state θ+, θs+, θs− respectively.
Therefore, the x,y, z of any pure strategy must satisfy the
constraints in MILP (3) by setting v1 = x, v2 = y, v3 = z.
By linearity, the x,y, z of any mixed strategy must also sat-
isfy these constraints. This results in a relaxation of LP (1)
by substituting the constraints in LP (1) that define xi, yi, zi
with the constraints of MILP (3).
Proposition 5. The following is a valid relaxation of LP (1).
Moreover, this relaxation results in a linear program with
polynomially number of variables and constraints.∑

e∈E:ei=θ+
pe = xi,∀i∑

e∈E:ei=θs+
pe = yi,∀i∑

e∈E:ei=θs−
pe = zi,∀i∑

e∈E pe = 1
pe ≥ 0, ∀e ∈ E

=⇒

∑
i∈[n] xi ≤ k∑
i∈[n](yi + zi) ≤ m

xi + yi + zi ≤ 1, ∀i
Aτ · x ≥ y
x,y, z ∈ [0, 1]n

Relaxation: substitute left part in LP (1) with right part

A Faster Approximate Algorithm for Slave
In this section, we design a novel polynomial-time algorithm
to approximately solve the slave problem, which can be used
to accelerate SEGer. Our algorithm is provably a 1

2 (1− 1
e )-

approximation to the slave problem in zero-sum cases. The



approximation guarantee relies on a special property of the
slave for zero-sum SEGs, stated as follows, which unfortu-
nately is not true in general. However, the algorithm can still
be used as a good heuristic for solving general-sum SEGs.
Lemma 6. In zero-sum SEGs, the αi, βi, γi in Slave (2) are
guaranteed to satisfy: αi ≥ βi ≥ γi ≥ 0 for any i ∈ [n].

Our algorithm originates from the following idea. That
is, the slave problem can be viewed as a two-step resource
allocation problem. At the first step, a vertex subset T of size
at most k is chosen for allocating patrollers; At the second
step, a subset I ⊆ [n] \ T of size at most m is chosen for
allocating sensors. Our key observation is that given T , the
second step of choosing I is easy. Particularly, let

TN = {i | i 6∈ T but Aτi,j > 0 for some j ∈ T}
denote the set of all vertices that are not in T but within
distance τ to some vertices in T (interpreted as neighbors of
T ). With some abuse of notions, let T c = [n] \ (T ∪ TN )
denote the set of remaining vertices. Notice that T, TN , T c
are mutually disjoint. The following lemma illustrates how
to pick the optimal set I , given T .
Lemma 7. Given T , the second step of the slave (i.e., pick-
ing set I) simply picks the m vertices corresponding to the
largest m weights in {βi | i ∈ TN} ∪ {γi | i ∈ T c}.

Lemma 7 is true because when T is given, the weight of
covering target i by a sensor is determined – either βi if
i ∈ TN or γi if i ∈ T c. Thus the main difficulty of solving
the slave problem lies at the first step, i.e., to find the alloca-
tion for patrollers. For convenience, let operator Σmmax(W )
denote the sum of the largest m weights in weight set W .
Utilizing Lemma 7, the objective value of the slave, param-
eterized by set T , can be viewed as a set function of T :
f(T ) =

∑
i∈T αi + Σmmax

(
{βi | i ∈ TN} ∪ {γi | i ∈ T c}

)
As a result, the slave problem can be re-formulated as a set
function maximization problem:

Slave Reformulation: max
T⊂[n]:|T |≤k

f(T )

The NP-hardness of the slave implies that there is unlikely
a polynomial-time algorithm that maximizes f(T ) exactly.
One natural question is whether f(T ) is submodular, since
submodular maximization admits good approximation guar-
antees (Calinescu et al. 2011). Unfortunately, the answer
turns out to be “No” (see the supplementary material for a
counter example). Nevertheless, we show that maximizing
f(T ) admits a constant approximation under conditions.
Theorem 8. When αi ≥ βi ≥ γi ≥ 0,∀i ∈ [n], there is a
poly-time 1

2 (1− 1
e )-approximate algorithm for the slave.

To prove Theorem 8, our key insight is that though f(T ) is
not submodular, a carefully-crafted variant of f(T ), defined
below, can be proved to be submodular. Particularly, let

g(T ) =
∑

i∈T αi + Σm
max

(
{βi | i ∈ TN ∪ T} ∪ {γi | i ∈ T c}

)
The only difference between f(T ) and g(T ) is that the
weight set in the definition of f(T ) [resp., g(T )] contains
βis for any i ∈ TN [resp., i ∈ TN ∪ T ]. Notice that g(T )
can be evaluated in polynomial time for any T ⊆ [n].

Our algorithm, named TailoredGreedy (details in
Algorithm 1), runs the greedy algorithm for maximizing
g(T ) and then uses the output to construct a solution for
the slave, i.e., for maximizing f(T ). The remaining proof is
divided into two parts. First, we prove that g(T ) is mono-
tone submodular. This requires a somewhat intricate proof
with careful analysis of the function. Then we show that
TailoredGreedy yields a 1

2 (1 − 1
e )-approximation for

the slave problem. The key step for proving this result is to
establish the following relation between function f(T ) and
g(T ): f(T ) ≤ g(T ) ≤ 2f(T ).

Algorithm 1 TailoredGreedy
Input: weights αi, βi, γi ∈ R for any i ∈ [n]
Output: a pure strategy in E

1: Initialization: T = ∅.
2: for t = 1 to k do
3: Compute i∗ = arg maxi∈[n]−T [g(T ∪{i})− g(T )].
4: Add i∗ to T
5: end for
6: return the pure strategy that covers vertices in T with

patrollers and covers the m vertices corresponding to
the largest m weights in {βi | i ∈ TN} ∪ {γi | i ∈ T c}
with sensors.

Experimental Results
In this section, we experimentally test our model and algo-
rithms. All LPs and MILPs are solved by CPLEX (version
12.7.1) on a machine with an Intel core i5-7200U CPU and
11.6 GB memory. All the game payoffs are generated via the
covariant game model (Nudelman et al. 2004). Particularly,
let µ[a, b] denote the uniform distribution over interval [a, b].
For any i ∈ [n], we generate Ud+(i) ∼ µ[0, 10], Ud−(i) ∼
µ[−10, 0], Ua+(i) = cor · Ud+(i) + (1 + cor) · µ[−10, 0]

and Ua−(i) = cor · Ud−(i) + (1 + cor) · µ[0, 10] where
cor ∈ [−1, 0] is a parameter controlling the correlation be-
tween the defender and attacker payoffs. The game is zero-
sum when cor = −1. All general-sum games are generated
with cor = −0.6 unless otherwise stated. The graph G is
generated via the Erdös – Rényi random graph model.

Sensors Improve the Defender’s Utility
Figure 2 shows the comparison of the defender utility under
different scenarios. All data points in Figure 2 are averaged
over 30 random instances and each instance has 30 targets.

The left panel of Figure 2 compares the following scenar-
ios. The defender has a fixed budget that equals the total cost
of 7 patrollers, and the cost of a patroller may equal the cost
of 3 or 5 or 7 sensors (corresponding to ratio 3, ratio 5 and
ratio 7 line, respectively). The x-axis coordinate k means the
defender gets k patrollers and ratio×(7−k) sensors; y-axis
is the defender utility. The figure demonstrates that a proper
combination of patrollers and sensors results in better de-
fender utility than just having patrollers (i.e., k = 7). This is
the case even when the cost ratio is 3. The figure also shows
that many sensors with few patrollers will not perform well
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Figure 4: Utility comparison and scalability test of different algorithms for solving general-sum and zero-sum SEGs.

neither. Therefore, the number of patrollers and sensors need
to be properly balanced in practice.

The right panel of Figure 2 compares the defender util-
ity in three different models: 1. signaling – SEG model;
2. no signaling – SEG model but assuming sensors do
not strategically signal; 3. no sensor – classical security
games. Both signaling and no signaling have 4 pa-
trollers and 10 sensors while no sensor has 6 patrollers
with no sensors (i.e., cost ratio between the patroller and
sensor is 5). The x-axis is the correlation parameter of the
general-sum games. The graph G used in this figure is a cy-
cle graph motivated by the protection of the border of con-
servation parks as in our previous illustrative example. The
figure shows that signaling results in higher utility than
no signaling, demonstrating the benefit of using strate-
gic signaling in this setting. Such a benefit decreases as the
game becomes closer to being zero-sum (i.e., cor tends to
−1). This is as expected since it is well-known that signaling
does not help in zero-sum cases due to its strict competition
(Xu et al. 2015). Both signaling and no signaling
result in a stably higher utility that no sensor regardless
of players’ payoff correlation.

TailoredGreedy vs. MILP
In Figure 3, we compare the performances of MILP (3) and
TailoredGreedy on solving just the slave problem. No-
tice that running time in the right panel is in logarithmic
scale. Each data point is an average over 15 instances with
randomly generated αi ≥ βi ≥ γi ≥ 0 for each i ∈ [n]. Fig-
ure 3 shows that TailoredGreedy achieves only slightly
worst objective value than MILP but is much more scalable.
The scalability superiority of TailoredGreedy becomes
particularly clear for larger instances (n ≥280) where MILP
starts to run in exponential time while TailoredGreedy
is a polynomial time algorithm.

Game Solving: Utility & Scalability Comparisons
Finally, we compare the performance of different algo-
rithms in solving SEGs in Figure 4. Since zero-sum SEGs

can be formulated by a single LP, which can then be
solved by column generation. We compare two algorithms
in this case: CG[milp] – column generation with MILP
(3) for the slave; CG[grdy] –column generation with
TailoredGreedy for the slave. Note that CG[milp] is
optimal while CG[grdy] is not optimal since it uses an ap-
proximate algorithm for the slave.1 Figure 4(b) shows that
our algorithms can solve zero-sum SEGs with 80 ∼ 100
targets (depending on the algorithm) within 10 minutes.
CG[grdy] achieves less utility than CG[milp], but is
more scalable (exact calculations show that CG[grdy] is
at least 6 times faster). Interestingly, the utility gap between
CG[milp] and CG[grdy] becomes smaller as n grows,
while their running time gap becomes larger. This suggests
that it is more desirable to use CG[milp] for small in-
stances and CG[grdy] for large instances if some utility
loss is acceptable.

For general-sum SEGs (Figures 4(c) and 4(d)), we con-
sider three algorithms: 1. SEGer[milp] – SEGer us-
ing MILP for column generation; 2. SEGer[grdy] –
SEGer using TailoredGreedy for column generation;
3. NtLP – solving LP (1) one by one for each t without
branch and bound. Surprisingly, though SEGer[grdy] is
not optimal, it achieves close-to-optimal objective value in
this case and runs faster than SEGer[milp] (roughly half
of the running time of SEGer[milp]). On the other hand,
both SEGer[milp] and SEGer[grdy] are much more
scalable than NtLP. In fact, the running time for solving a
general-sum SEG by SEGer[milp] is only slightly more
than the running time of solving a zero-sum SEG of the same
size, which demonstrates the significant advantage of our
branch and price algorithm.

1We also implemented the algorithm that uses
TailoredGreedy first and then switch to MILP when
TailoredGreedy does not improve the objective. However,
this approach seems to not help in our case and results in the same
running time as CG[milp], thus we do not present it here.



Conclusions and Future Work
In this paper, we initiated the study of strategic coordina-
tion of human patrollers and mobile sensors. We proposed
the SEG model, which integrates sensors’ functionalities of
monitoring and signaling into security games, and provided
an algorithmic study for the model. Our work raises several
opening directions for future research. One important ques-
tion is to consider sensors’ false positive/negative detections
in the model. It is also interesting to analyze the advantages
of using mobile sensors compared to static ones. Finally, our
work did not consider scheduling constraints and patrol path
planning for sensors and patrollers, which is an intriguing
direction for future research.
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Bucarey, V.; Casorrn, C.; Óscar Figueroa; Rosas, K.; Navar-
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APPENDIX

Proof of Theorem 2
We reduce from the dominating set problem. A dominating
set for a graph G is a subset D of vertices such that every
vertex is either in D or adjacent to a vertex in D. The domi-
nating set problem is to compute the size of a smallest dom-
inating set for G. This problem is NP-hard even when G is
a planar graph with maximum degree 3 (Garey and Johnson
1979). We now reduce an arbitrary dominating set instance
to our problem.

Given any graph G with n vertices, consider a zero-sum
SEG instance with k patrollers and m = n− k sensors. Let
τ = 1 and Ud+(i) = Ua+(i) = 0, Ud−(i) = −1 = −Ua−(i) for
every i. That is the defender receives utility 0 for success-
fully protecting a target and utility −1 for failing to protect
a target. We now prove that G has a dominating set of size
k if and only if the optimal defender utility is 0 in the con-
structed SEG. As a result, by solving SEGs, we can solve the
dominating set problem by enumerating different k’s, yield-
ing the NP-hardness of solving SEGs.
⇒: IfG has a dominating setD of size k, we can cover the

k vertices in D with patrollers and cover all the rest vertices
with sensors. By definition, any vertex not in D, covered by
a sensor, will be adjacent to a vertex in D therefore is suc-
cessfully protected. As a result, all vertices are successfully
protected and the defender receives utility 0.
⇐: If the defender achieves utility 0, this must imply that

each target is always successfully protected, i.e., either at
state s+ or ss+ (signaling is not even needed in this case).
Otherwise, since attack failure has cost 0 to the attacker
(Ua+(i) = 0), the attacker will attack a target that is pro-
tected with probability p < 1, which would have resulted
in a negative defender utility – a contraction. This implies
that any pure strategy must successfully protect every target,
which means the vertices protected by the k patrollers must
form a dominating set.

Proof of Lemma 3
The proof is similar to the proof of Theorem 2. In particu-
larly, by letting αi = βi = 1, γi = 0, τ = 1 and m = n−k,
it is easy to show that the graph has an independent set of
size k if and only if the slave problem has optimal objective
value n.

Proof of Proposition 4
We prove that feasible solutions to MILP (3) precisely en-
codes all pure strategies in E , under the mapping that ver-
tices in ê1 have state s+, vertices in ê2 have state ss+ and
vertices in ê3 have state ss−. As a result, the objective of
MILP (3) equals the objective of slave, yielding the desired
conclusion.

First, any pure strategy in E must satisfy all constraints of
MILP (3). To see this, we only need to argue the necessity
of satisfying constraint Aτ · v1 ≥ v2. Let Ai denote the i’th

row of A. Observe that the non-zero entries in Ai specify all
vertices within distance 1 from i. A standard inductive argu-
ment shows that the non-zero entries in the i’th row of Aτ ,
denoted by Aτi , are precisely all the vertices within distance
τ to i. Now let v1 denote the subset of vertices covered by
patrollers, then Aτi ·v1 > 0 if and only if there is a vertex in
v1 (i.e., covered by a patroller) that is within distance τ to i.
Only such a vertex i can have e2

i = 1, and this is precisely
captured by Aτi · v1 ≥ e2

i for all i (i.e., Aτ · v1 ≥ v2).
Conversely, a similar argument shows that any feasible

solution to MILP (3) corresponds to a pure strategy in E by
assigning k patrollers to vertices in ê1 and m sensors to ver-
tices in ê2 + ê3, concluding the proof of the proposition.

Proof of Lemma 6
The linear program for solving zero-sum SEGs can be writ-
ten as follows, which is a slight modification to LP (1):

max u

s.t. u ≤ xiUd+(i) + wiU
d
−(i) + Udσ(π+

i , π
−
i ) ∀ i ∈ [n]∑

e∈E:ei=θ+
pe = xi ∀ i ∈ [n]∑

e∈E:ei=θs+
pe = yi ∀ i ∈ [n]∑

e∈E:ei=θs−
pe = zi ∀ i ∈ [n]

xi + yi + zi + wi = 1 ∀ i ∈ [n]∑
e∈E pe = 1

pe ≥ 0 ∀ e ∈ E
Udσ(π+

i , π
−
i ) ≤ 0 ∀ i ∈ [n]

(yi − π+
i )Ud+(i) + (zi − π−i )Ud−(i) ≥ 0 ∀ i ∈ [n]

0 ≤ π+
i ≤ yi, 0 ≤ π−i ≤ zi ∀ i ∈ [n]

(4)
We first prove a useful property of the optimal solution

of LP (4). In particular, we show that there always exists an
optimal solution to LP (4) that satisfies π−i = zi ∀i ∈ [n].

First, we claim that it is without loss of generality to as-
sume that the optimal solution satisfied either yi = π+

i or
zi = π−i . Otherwise, we can increase π+

i by ε
Ud

+(i)
and π−i

by ε
−Ud

−(i)
without violating constraints and changing the

objective value. Once one of the π+
i , π

−
i reaches its upper

bound, we have yi = π+
i or zi = π−i and the solution re-

mains optimal.
Now, if π−i = zi, then we are done. If π+

i = yi, we have
0 ≤ (yi−π+

i )Ud+(i)+(zi−π−i )Ud−(i) = (zi−π−i )Ud−(i) ≤
0, which implies zi = π−i or Ud−(i) = 0. In the later case,
we can arbitrary set π−i to be zi without affecting anything
neither.

Therefore, adding the constraint zi = π−i will not affect
the optimal value of linear program (4). Moreover, π+

i is al-
ways non-negative at the optimal solution. So relaxing π+

i
to be a real number will not affect the optimal value. Thus,
the linear program 4 is equivilent to the following linear pro-
gram:



max u

s.t. u ≤ xiUd+(i) + (1− xi − yi − zi)Ud−(i)
+π+

i U
d
+(i) + z−i U

d
−(i) ∀ i ∈ [n]∑

e∈E:ei=θ+
pe = xi ∀ i ∈ [n]∑

e∈E:ei=θs+
pe = yi ∀ i ∈ [n]∑

e∈E:ei=θs−
pe = zi ∀ i ∈ [n]∑

e∈E pe = 1
pe ≥ 0 ∀ e ∈ E
π+
i U

d
+(i) + ziU

d
−(i) ≤ 0 ∀ i ∈ [n]

π+
i ≤ yi ∀ i ∈ [n]

(5)
The dual of LP (5) is the following LP.

min
∑n
i=1 U

d
−(i)wi + r

s.t. r ≥
∑

i:ei=θ+

αi +
∑

i:ei=θs+

βi +
∑

i:ei=θs−

γi ∀ e ∈ E

αi = [Ud+(i)− Ud−(i)]wi ∀ i ∈ [n]
βi = ϕi − wiUd−(i) ∀ i ∈ [n]
γi = −δiUd−(i) ∀ i ∈ [n]∑

e∈E pe = 1
ϕi = Ud+(i)wi − Ud+(i)δi ∀ i ∈ [n]∑n
i=1 wi = 1

(6)
in which αi, βi, γi correspond to the constraints defining
xi, yi, zi respectively. Note that

αi = [Ud+(i)−Ud−(i)]wi ≥ [Ud+(i)−Ud−(i)]wi−Ud+(i)δi = βi

Also, since ϕi ≥ 0 and Ud+(i) ≥ 0 too, so we have the
implicit constraint wi ≥ δi ≥0. Therefore,

βi = [Ud+(i)− Ud−(i)]wi − Ud+(i)δi

≥ [Ud+(i)− Ud−(i)]δi − Ud+(i)δi

= −Ud−(i)δi = γi

Since γi = −Ud−(i)δi ≥ 0, this implies

αi ≥ βi ≥ γi ≥ 0

Proof of Lemma 7
This is because when T is fixed, the weight of covering any
target i by a sensor has been determined – either βi if i ∈ TN
or γi if i ∈ T c. Therefore, to maximize the total weights, we
simply pick the largest m elements in {βi | i ∈ TN} ∪ {γi |
i ∈ T c}.

Counter Example to Submodularity of f(T )
Recall that

f(T ) =
∑
i∈T αi + Σmmax

(
{βi | i ∈ TN} ∪ {γi | i ∈ T c}

)
Consider a simple line graph G with 5 vertices, as in Figure
5. Let τ = 1 and m = 2. Moreover, αi = βi = 1 while
γi = 0 for all i = 1, .., 5.

1

2

3

4

5

Figure 5: Graph G for the Counter Example .

Consider S = {2}, T = {2, 4} and j = 1 6∈ T . We have
f(S) = 3, f(S ∪ {j}) = 3, f(T ) = 4 and f(T ∪ {j}) = 5.
Therefore,

f(T ∪ {j})− f(T ) = 1 > 0 = f(S ∪ {j})− f(S).

So f(T ) is not submodular in T .

Proof of Theorem 8
The proof follows from the following two lemmas.

Lemma 9. When αi ≥ βi ≥ γi ≥ 0,∀i ∈ [n], function
g(T ) is nonnegative, monotone increasing and submodular.

Proof of Lemma 9. It is easy to see that g(T ) ≥ 0 and is
monotone increasing in T . We only prove its submodularity.
Since

∑
i∈T αi is a modular function of T , we only need to

prove that function f ′(T ) = Σmmax

(
{βi | i ∈ TN∪T}∪{γi |

i ∈ T c}
)

is submodular in T . The key step is to prove that
the following function is submodular:

W (S) =
∑m

max({βi|i ∈ S} ∪ {γi|i ∈ S̄})

where βi ≥ γi for all i ∈ [n] and S̄ = [n] − S is the
complement of S. Notice that W (T ) 6= f ′(T ) (instead
W (TN ∪ T ) = f ′(T )), so they are two different functions
despite the similarity.

Pick any sets S ⊂ T ⊆ [n] and j 6∈ T . Following the
standard definition of submodularity, we prove the following
inequality:

W (S ∪ {j})−W (S) ≥W (T ∪ {j})−W (T ).

This follows a case analysis. For convenience, we will say
“βj [γj] contributes toW (S)” if βj [γj] is among the largest
mweights of {βi|i ∈ S}∪{γi|i ∈ S̄}; Moreover, we denote
set S ∪ {j} by S+j .

• βj contributes to W (T+j). Then we must have that βj
also contributes to W (S+j) since S ⊂ T . In this case,
W (S+j)−W (S) equals βj minus the smallest weight that
contributes toW (S). On the other hand,W (T+j)−W (T )
equals βj minus the smallest weight that contributes to
W (T ). Since S ⊂ T , the smallest weight contributing
to W (T ) is larger than the smallest weight contributing
to W (S). This implies W (S+j) −W (S) ≥ W (T+j) −
W (T ).

• βj does not contribute toW (T+j). In this caseW (T+j)−
W (T ) = 0 and W (S+j) − W (S) ≥ 0. Therefore,
W (S+j)−W (S) ≥W (T+j)−W (T ).



As a result, W (S) is submodular. We now show that f ′(T )
is submodular by proving

f ′(S+j)− f ′(S) ≥ f ′(T+j)− f ′(T )

for any S ⊂ T ⊆ [n] and j 6∈ T . Let A = TN+j ∪ T+j \
(TN ∪T ) andB = SN+j ∪S+j \ (SN ∪S). Note thatA ⊆ B
since S ⊂ T . Therefore

f ′(S+j)− f ′(S) = W (SN+j ∪ S+j)−W (SN ∪ S)

= W (SN ∪ S ∪B)−W (SN ∪ S)

≥ W (SN ∪ S ∪A)−W (SN ∪ S)

≥ W (TN ∪ T ∪A)−W (TN ∪ T )

= f ′(T+j)− f ′(T ),

where the first inequality follows from monotonicity of func-
tion W (S) and the second inequality follows from submod-
ularity of W (S). This proves that f ′(T ), thus f(T ), is sub-
modular.

Lemma 10. When αi ≥ βi ≥ γi ≥ 0,∀i ∈ [n], Algorithm
1 outputs a 1

2 (1− 1
e )-approximation for the slave problem.

Proof of Lemma 10. Let T ∗g and T ∗f be the optimal solu-
tion to maximizing g(T ) and f(T ) subject to |T | ≤ k, re-
spectively. Let T̂ be the set generated by the greedy pro-
cess (step 2 – 5) in Algorithm 1. Our goal is to prove
f(T̂ ) ≥ 1

2 (1 − 1
e )f(T ∗f ). The key step is to show the fol-

lowing relations:

f(T ) ≤ g(T ) ≤ 2f(T ), ∀T ⊆ [n].

Since the Σmmax operator in g(T ) acts on a larger set than that
in f(T ), this implies g(T ) ≥ f(T ). We now prove g(T ) ≤
2f(T ). Since T, TN , T c are mutually disjoint, the weights
that contribute to f(T ) are all indexed by different vertices.
However, since T ⊆ TN ∪ T , there may exist vertex i ∈ T
such that both αi and βi contribute to g(T ). Let A ⊆ T be
all such i’s. We have∑

i∈A
βi ≤

∑
i∈A

αi ≤
∑
i∈T

αi ≤ f(T ). (7)

Moreover, if we remove the portion of
∑
i∈A βi from g(T ),

then the left weights are all indexed by different vertices and
their total weights are at most f(T ). That is,

g(T )−
∑
i∈A

βi ≤ f(T ) (8)

Combining Inequalities (7) and (8) yields that g(T ) ≤
f(T ) +

∑
i∈A βi ≤ 2f(T ), as desired.

By the monotone submodularity of g(T ) (Lemma 9), we
have g(T̂ ) ≥ (1− 1

e )g(T ∗g ). Since g(T ∗g ) ≥ g(T ∗f ) ≥ f(T ∗f )

and 2f(T̂ ) ≥ g(T̂ ), this implies f(T̂ ) ≥ 1
2 (1− 1

e )f(T ∗f ).


