To Signal or Not To Signal: Exploiting Uncertain Real-Time Information in
Signaling Games for Security and Sustainability

Elizabeth Bondi,' Hoon Oh,” Haifeng Xu,’ Fei Fang,’ Bistra Dilkina,* Milind Tambe'
!Center for Research on Computation and Society, Harvard University, ebondi @g.harvard.edu, tambe @seas.harvard.edu
2Carnegie Mellon University, hooh@andrew.cmu.edu, feifang@cmu.edu
3University of Virginia, hx4ad @virginia.edu
4University of Southern California, dilkina@usc.edu

Abstract

Motivated by real-world deployment of drones for conserva-
tion, this paper advances the state-of-the-art in security games
with signaling. The well-known defender-attacker security
games framework can help in planning for such strategic
deployments of sensors and human patrollers, and warning
signals to ward off adversaries. However, we show that de-
fenders can suffer significant losses when ignoring real-world
uncertainties despite carefully planned security game strate-
gies with signaling. In fact, defenders may perform worse
than forgoing drones completely in this case. We address
this shortcoming by proposing a novel game model that inte-
grates signaling and sensor uncertainty; perhaps surprisingly,
we show that defenders can still perform well via a signaling
strategy that exploits uncertain real-time information. For ex-
ample, even in the presence of uncertainty, the defender still
has an informational advantage in knowing that she has or has
not actually detected the attacker; and she can design a sig-
naling scheme to “mislead” the attacker who is uncertain as to
whether he has been detected. We provide theoretical results,
a novel algorithm, scale-up techniques, and experimental re-
sults from simulation based on our ongoing deployment of a
conservation drone system in South Africa.

1 Introduction

Conservation drones are currently deployed in South Africa
to prevent wildlife poaching in national parks (Fig. 1). The
drones, equipped with thermal infrared cameras, fly through-
out the park at night when poaching typically occurs. Should
anything suspicious be observed in the videos, nearby park
rangers can prevent poaching, and a warning signal (e.g.,
drone lights) can be deployed for deterrence (Air Shepherd
2019). This requires a great deal of planning and coordina-
tion, as well as constant video monitoring. Rather than con-
stant monitoring, we have recently worked with Air Shep-
herd to deploy an automatic detection system to locate hu-
mans and animals in these videos. Although an automatic
detection system is helpful, its detections are uncertain. Po-
tential false negative detections, in which the system fails to
detect actual poachers, may lead to missed opportunities to
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Figure 1: A drone and drone team member who are currently
searching for poachers in a South African park at night.

deter or prevent poaching. This work is motivated by this
ongoing, real-world deployment of drones for conservation.

Security challenges similar to those in conservation must
be addressed around the world, from protecting large public
gatherings such as marathons (Yin, An, and Jain 2014) to
protecting cities. Security game models have been shown to
be effective in many of these real-world domains (Tambe
2011; Bucarey et al. 2017). Recently, these models have
begun to take into account real-time information, for ex-
ample by using information from footprints when track-
ing poachers, or images from sensors (Wang et al. 2019;
Basilico, De Nittis, and Gatti 2015). In particular, signaling
based on real-time information, e.g., signaling to indicate
the presence of law enforcement (Xu et al. 2018), has been
introduced and established as a fundamental area of work.

Despite the rising interest in real-time information and
signaling, unfortunately, security games literature has failed
to consider uncertainty in sensing real-time information and
signaling, hindering real-world applicability of the game
models. Previously, only some types of uncertainty have
been considered, such as uncertainty in the attacker’s ob-
servation of the defender’s strategy, attacker’s payoff values,
or attacker’s rationality (Yin et al. 2011; Nguyen et al. 2014;
Yang et al. 2011). However, there are fundamentally new in-
sights when handling uncertainties w.r.t. real-time sensing
and signaling, which we discuss at the end of this section.

We therefore focus on uncertainty in security games, in
which real-time information comes from sensors that alert
the defender when an attacker is detected and can also send
warning signals to the attacker to deter the attack in real
time. We consider both uncertainty in the sensor’s detection
of adversaries (henceforth detection uncertainty) and uncer-



tainty in the adversaries’ observation of the sensor’s signals
(henceforth observational uncertainty), and show that ignor-
ing uncertainty hurts the defender’s expected utility. In our
motivating domain of wildlife conservation with drones, au-
tomatic detection algorithms may make incorrect detections
because humans in thermal infrared frames look similar to
other objects (e.g., Fig. 1) and may even be occluded by
other objects from the aerial perspective. The drone is also
used to emit light to deter poachers, but such signals could
sometimes be difficult for poachers to see in the wild, e.g.,
when trees block the sight.

We make contributions in (i) modeling, (ii) theoretical
analysis, (iii) algorithmic design, and (iv) empirical evalu-
ation. (i) We are the first to model uncertainty in sensing and
signaling settings for security games. We introduce a novel
reaction stage to the game model and construct a new signal-
ing scheme, allowing the defender to mitigate the impact of
uncertainty. In fact, this signaling scheme exploits uncertain
real-time information and the defender’s informational ad-
vantage. For example, both the defender and attacker may
know that there is detection uncertainty; however, the de-
fender has an informational advantage in knowing that she
has or has not actually detected the attacker, which she can
exploit via a signaling scheme to “mislead” the attacker who
is uncertain as to whether he has been detected. (ii) We pro-
vide several theoretical results on the impact of uncertain-
ties, e.g., the loss due to ignoring observational uncertainty
can be arbitrarily large, illustrating the need to handle uncer-
tainty. (iii) To compute the defender’s optimal strategy given
uncertainty, we develop a novel algorithm, GUARDSS, that
not only uses six states to represent the type of protection a
target has in a defender’s pure strategy but also uses a new
matching technique in a branch-and-bound framework. (iv)
We conduct extensive experiments on simulation based on
our real-world deployment of a conservation drone system.

2 Related Work

Among the rich literature of Stackelberg security games
(SSGs) (Tambe 2011; Bucarey et al. 2017), SSGs with real-
time information have been studied recently. Some recent
work in deception for cybersecurity, such as (Cooney et
al. 2019; Thakoor et al. 2019), considers strategic signal-
ing with boundedly rational attackers and attackers with dif-
ferent objectives and abilities, but no sensing is required to
identify attackers; rather, the systems may interact with both
normal and adversarial users. Some other work relies on hu-
man patrollers for real-time information (Zhang et al. 2019;
Wang et al. 2019), and others rely on sensors that can no-
tify the patroller when an opponent is detected (de Cote
et al. 2013; Basilico, De Nittis, and Gatti 2015; De Nit-
tis and Gatti 2018). Sensor placement (He et al. 2017) and
drone patrolling (Rosenfeld, Maksimov, and Kraus 2018)
have also been studied. Spatial and detection uncertainties in
alarms are examined in (Basilico, De Nittis, and Gatti 2016;
Basilico, De Nittis, and Gatti 2017). In all of these works,
the sensors are only used to collect information, and do not
actively and possibly deceptively disseminate information
to the attacker. One work that does consider mobile sen-
sors with detection and signaling capability is (Xu et al.

2018). However, it does not consider uncertainty in detec-
tion, which limits its capability in real-world settings. We
add a new reaction stage and signaling strategy without de-
tection, and compactly encode the different states that the
defender resources can have at a target. Our model is there-
fore strictly more general than that in (Xu et al. 2018).

Our work is also related to multistage game models,
e.g., defender-attacker-defender sequential games (DAD)
(Brown et al. 2006; Alderson et al. 2011). In DAD, the de-
fender and attacker take turns to commit to strategies while
in our game, the defender commits to a strategy of all stages
at once. Extensive-form games (EFGs) also naturally model
the sequential interaction between players (Kroer et al. 2017;
Brown and Sandholm 2017; Moravcik et al. 2017), and
recent works develop algorithms to efficiently solve the
Stackelberg equilibrium in general two-player EFGs (Cerny,
Boyansky, and Kiekintveld 2018; Cermak et al. 2016). How-
ever, GUARDSS is more scalable than the general EFG ap-
proach in this case (see Appendix).

3 Model

We consider a security game played between a defender and
an attacker who seeks to attack one target. The defender
has k£ human patrollers and [ sensors to be allocated to tar-
gets in set [N] = {1,2,..., N}. The sensor is the same as a
drone in our motivation domain, and the attacker is the same

as a poacher. Let Ui//(i (7) be the defender/attacker (d/a)

utility when the defender successfully protects/fails to pro-
tect (+/—) the attacked target i. By convention, we assume
Ud(i) > 0 > U%(i) and US(i) < 0 < U“(4) for any
i € [N]. The underlying geographic structure of targets is
captured by an undirected graph G = (V, E) (e.g., Fig. 4).
A patroller can move to any neighboring target and success-
fully interdict an attack at the target at no cost.

Sensors cannot interdict an attack, but they can notify
nearby patrollers to respond and signal to deter the attacker.
If the attacker is deterred by a signal (e.g., runs away),
both players get utility 0. In practice, often one signal (o1,
e.g., illuminating the lights on the drone) is a warning that
a patroller is nearby, while another signal (og, e.g., turn-
ing no lights on) indicates no patroller is nearby, although
these may be used deceptively. Theoretically, (Kamenica
and Gentzkow 2011) also showed two signals suffice (with-
out uncertainty). We thus use two signals: oy is a strong
signal and oq is a weak signal. When the attacker chooses
one target to attack, he encounters one of four signaling
states, based on the target either having a patroller, noth-
ing, or a drone. The attacker may encounter: (1) a patroller
and immediately get caught (state p); (2) nothing (state n);
(3) a drone with signal o (state 0g); (4) a drone with sig-
nal o; (state 01). The attacker is caught immediately at
state p, so there is no signal. Therefore, we omit p and let
Q = {n, 0¢, 01} be the set of signaling states.

3.1 Modeling Uncertainty

In this paper, we focus on two prominent uncertainties
motivated directly by the use of conservation drones. The



first is the detection uncertainty, when there is a limita-
tion in the sensor’s capability, e.g., a detection could be
incorrect due to the inaccuracy of image detection tech-
niques in the conservation domain (Bondi et al. 2020; 2018;
Olivares-Mendez et al. 2015). We consider only false neg-
ative detection in this paper because patrollers often have
access to sensor videos, so the problem of false positives
can be partly resolved with a human in the loop. In contrast,
verifying false negatives is harder, e.g., the attacker is easy
to miss in the frame (Fig. 1) or is occluded. We therefore
denote the false negative rate as -y for any sensor!.

The second type of uncertainty we consider is the ob-
servational uncertainty, where the true signaling state of
the target may differ from the attacker’s observation (e.g.,
a poacher may not be able to detect the drone’s signal). We
use w to denote the attacker’s observed signaling state, and
use w to denote the true signaling state based on the defender
signaling scheme. We introduce uncertainty matrix II to cap-
ture observational uncertainty. The uncertainty matrix II will
contain the conditional probability Pr[w|w] for all ©,w €
to describe how likely the attacker will observe a signaling
state w given the true signaling state is w.

Pr[® = n|n] P [LD =nlog] Pr[® = n|oq]
II= PI’[(:J = 0'0‘11] [ |00] PI‘[(IJ = 00|01]‘|
Pr[w = o1|n] Pr[w = 01|00] Pr[® = o1]01]

Considering an arbitrary uncertainty matrix may unnec-
essarily complicate the problem, since some uncertainties
never happen. We thus focus on a restricted class of uncer-
tainty matrices that are natural in our domain.? In our un-
certainty model, we assume that a weak signal will never be
observed as strong; moreover, n (the signaling state without
any resource) will never be observed as strong or weak. As
a result, the uncertainty matrix 1I can be reduced to the fol-
lowing form, parameterized by s, A, u, where kK = Pr[w =
n|og], A = Pr[® = n|oy], p = Pr[w = gglo1]:

1 K A
HKAH:[O 1—k n ]
0 0 1—A—pu

As aresult of this uncertainty, the attacker may not behave
as expected. For example, if he knows that he has difficulty
seeing the strong signal, he may decide to attack only when
there is no drone, whereas typically we would expect him
to attack on a weak signal. Therefore, let € {0,1}> be
the vector that depicts attacker behavior for each observa-
tion {n, 09,01} € €, where 1 represents attacking, and 0
represents running away. So, 7 = 1 means an attacker will
attack no matter what signaling state is observed, and 7 = 0
means an attacker will never attack.

3.2 Reaction Stage

Uncertainty motivates us to add an explicit reaction stage
during which the defender can respond or re-allocate pa-
trollers to check on extremely uncertain sensors or previ-
ously unprotected targets, for example. The timing of the

'False negative rate: P(no detection | poacher is present).
2Most results can be extended to general uncertainty matrices.

game is summarized in Fig. 2. In words, (i) the defender
commits to a mixed strategy and then executes a pure strat-
egy allocation; (ii) the attacker chooses a target to attack;
(iii) the sensors detect the attacker with detection uncer-
tainty; (iv) the sensors signal based on the signaling scheme;
(V) the defender re-allocates patrollers based on sensor de-
tections and matching; (vi) the attacker observes the signal
with observational uncertainty; (vii) the attacker chooses to
either continue the attack or run away. In (v), if a sensor de-
tects the attacker, then nearby patroller(s) (if any) always go
to that target, and the game ends; or if no sensors or pa-
trollers detect the attacker, the patroller moves to another
target to check for the attacker. The attacker reaction occurs
after the defender reaction because the attacker reaction does
not affect the defender reaction in the current model. In other
words, there is no cost in reallocating the defender even if
the attacker runs away, so the defender should begin moving
right away.

Defender || Defender Defender | | Defender
Pre-Plan* || Allocate |Detection| Signal React

J/ J/ (with Uncertalnty) l /
o R i —

Attacker Observation Attacker
Allocate (with Uncertainty)  React

Figure 2: Game timing. Top and bottom are defender and at-
tacker actions, respectively. *Defender fixes strategy offline.

3.3 Defender and Attacker Strategies

Defender Strategy: The strategy space consists of random-
ized resource allocation and re-allocation, and signaling. A
deterministic resource allocation and re-allocation strategy
(henceforth, a defender pure strategy) consists of allocat-
ing the patrollers to k targets, the sensors to [ targets, and
the neighboring target to which each patroller moves if no
attackers are observed. Re-allocation can be equivalently
thought of as matching each patroller’s original target to a
neighboring target. A patroller goes to the matched target
only if the attacker is not observed, and may respond to any
nearby sensor detection, regardless of matching.

As a result of this rich structure, a pure strategy in the
model needs to represent not only if the target is assigned
a patroller (p), nothing (n), or a sensor (s), but also the al-
location in neighboring targets. We compactly encode this
pure strategy via 6 possible allocation states for each target.
Let © = {p,n+,n—,s,s+,s—} denote the set of all pos-
sible allocation states of an individual target. The target is
assigned a patroller (p), nothing (n), or a sensor (s). If there
is no patroller near a sensor (S), then no one can respond
to the sensor’s detection. If there is a nearby patroller, the
target is either matched (n+, s+) or not matched (n—, s—).
Therefore, each target is in one of the allocation states in Ta-
ble 1. For example, n+ is the state of a target which was not
allocated a patroller or sensor, but in the reaction stage has a
patroller from a neighboring target (“patroller matched”).



Covered Near Patroller = Protected
By: Patroller? | Matched? | Overall?
p | Patroller N/A N/A Yes
n+ | Nothing Yes Yes Yes
n- | Nothing N/A No No
S Sensor No N/A No
S- Sensor Yes No Yes*
S+ Sensor Yes Yes Yes

Table 1: Allocation State, *protected if sensor detects

Given O, a defender pure strategy can be compactly rep-
resented with an allocation state vector e € O, in which
e; € © denote the allocation state of a target i € [N].
Let £ C ON be the set of feasible allocation state vectors
that corresponds to defender pure strategies. Note that not
all vectors in © correspond to a feasible defender strategy
due to the limited number of patrollers and sensors. A de-
fender mixed strategy is thus a distribution over £ and can
be described by {¢. }ecs Where g is the probability of play-
ing pure strategy e € £. Similarly, a defender mixed strategy
can also be compactly represented by a marginal probability
vector x, where 2¢ represents the marginal probability that
target ¢ is in the allocation state § € ©. This is similar to the
coverage vector used in basic SSGs with schedules (Jain et
al. 2010). We introduce the constraints that x needs to satisfy
to be a valid mixed strategy in Section 5.

The defender also deploys a signaling process w.r.t. each
target ¢. The defender’s signaling strategy can be speci-
fied by probabilities 1}, 5, and 5. ¢~ is the joint
probability of allocation state s— and sending signal o
together conditioned on the sensor detecting an attacker,
i.e., Pr[s— A og|detected]. To be a valid signaling strat-
egy, ¥; € [0,2] ]. Note that 2}~ — ¢}~ will be the joint
probability of realized state s— and sending signal o4, to-
gether conditioned on detection. The conditional probability
of sending o( given the target is in state s— and it is de-
tected is ¢} /x~. We use the joint probability instead of
the conditional probability as it results in linear terms for the
optimal defender strategy. Because of detection uncertainty,
we add the option to signal without detecting the attacker.
Let ¢ € [0, 2¢] be the joint probability of allocation state 6
and sending signal oy conditioned on the sensor not detect-
ing an attacker, for all § € {s,s—, s+}. We use x to denote
the allocation, reaction, and signaling scheme, or defender’s
deployment strategy: x = (x,1, ).

Attacker Strategy: Recall the attacker has the alloca-
tion and reaction stages. In the allocation stage, the attacker
chooses a target to attack based on the defender deployment
strategy x. He will be caught if the target is at state p. When
the attacker is not caught, he may observe any of the signal-
ing states @ € (2. Based on his observation, the attacker then
has a choice in the reaction stage to run away or continue
the attack. The attacker knows the defender mixed strategy
x when choosing a target to attack, and he can observe the
realization of the target (with uncertainty) when choosing
to attack or run away. Since this is a Stackelberg game and
the defender commits to allocation and signaling schemes, it

suffices to consider only the attacker’s pure responses.

4 Why Do We Need to Handle Uncertainty

In this section, we prove several theoretical properties re-
garding how uncertainties affect the defender’s optimal strat-
egy and utility. All formal proofs are deferred to the Ap-
pendix. Let x* (v, II) be the optimal allocation under detec-
tion uncertainty of v and observational uncertainty II. Let
DefEU(x, v, II) be the defender expected utility when the
actual uncertainties are v, II and the defender’s deployment
is x. Let IIy = I denote no observational uncertainty. We
assume in Propositions 1 and 2 and Theorem 1 that IT = I,
and analyze detection uncertainty, so omit for conciseness.
We first show the loss due to ignoring detection uncertainty.

Proposition 1. Let x{§ = x*(0) be the defender optimal de-
ployment when no uncertainties exist. There exist instances
where DefEU(x§,v) < DefEU(x*(7),7) for some 7.

In fact, DefEU(x"(7), v) —DefEU (x5, 7) = V- max U2 (3)|
1€

for some instance. If we ignore vy, we do not signal when we
do not detect an attacker. Furthermore, the defender would
never match a patroller to a target with a sensor (s+) in
X¢- Thus, if we ignore uncertainty, there can be a steep
penalty; in contrast, with the optimal strategy considering
uncertainty, if the false negative rate is high, we may match
a patroller to a target to confirm the presence of an attacker.
Given the attacker’s knowledge of the defender mixed strat-
egy, the attacker is therefore more likely to run away.

Our next result (Theorem 1) shows that the defender ex-
pected utility is non-increasing as detection uncertainty -y
increases. As a byproduct of the proof for Theorem 1, we
also show that the optimal solution may change as detec-
tion uncertainty changes. This illustrates the necessity of an
algorithm for dealing with detection uncertainties.

Theorem 1. DefEU(x*(7),7) > DefEU(x*(v'),7’) for

any ' > ~ in any problem instance.

Proposition 2. x* () differs from x*(v') for any v/ > v
when xy~ is nonzero for x*(v'), where target t is the at-
tacker best responding target in x*(v').

The intuition underlying the proof of Theorem 1 is that if
we have a drone with a low false negative rate, then we can
simulate a drone with a high false negative rate by ignoring
some of its detections. The optimal solution for drones with
a low false negative rate cannot be worse than that for drones
with a high false negative rate.

We now show several results for observational uncer-
tainty. First, we show that the loss due to observational un-
certainty can be arbitrarily large.

Proposition 3. There exists 11 such that the loss
due to ignoring observational uncertainty is arbitrar-
ily large. In other words, DefEU(x*(70,II),v0,1I) -
DefEU(X*(’YQ,Ho),’yQ,H) > M,VYM > 0.

The original signaling strategy tries to ensure the attacker
only attacks when he observes the weak signal, og, or noth-
ing, n. However, with observational uncertainty, this may not
be true because the true signal may be o1, but the attacker
may have observed it mistakenly as 0. Therefore, we need



to enforce different attacker behaviors in order to obtain a
better solution quality.

Now, we examine the attacker’s behavior given a fixed de-
ployment y as observational uncertainty changes. Let (¢, 7)
represent an attacker strategy of attacking target ¢ and behav-
ing according to 7. Theorems 2 and 3 show that if we do not
consider observational uncertainty, then the attacker behav-
ior is more likely to converge to always attacking (n = 1)
as observational uncertainty increases, where higher obser-
vational uncertainty means the attacker cannot distinguish
between signaling states. Theorems 2 and 3 show that a de-
ployment x that does not consider observational uncertainty
is more likely to result in this worst-case behavior of n = 1.

Theorem 2. For any fixed deployment x, if the attacker’s
best response is (t,0) or (t,1) at the Stackelberg equilib-
rium with Iy, then it stays as an equilibrium for any 11’

Note that 7 = 0 and = 1 result in an action that is inde-
pendent of the attacker’s observation. Thus, no matter what
the attacker observes, the attacker can obtain the same utility
with 7 = 0 or n = 1. It’s only left to show that the attacker
cannot get strictly better utility in II” with a different attacker
behavior. Intuitively, II, implies a perfect observation, thus
the attacker cannot get better utility than the perfect obser-
vation. So, if (¢,1) or (¢, 0) is a Stackelberg equilibrium, the
defender can safely deploy the same strategy for any uncer-
tainty matrix IT', without any loss in her expected utility.

Even if (¢,0) or (¢,1) is not a best response with I,
(t,1) may still be a best response at high levels of uncer-
tainty. First, we say a target ¢ is a weak-signal-attack tar-
get if AttEU(op) > 0 at ¢. Note that if AttEU(og) > 0,
then the attacker will either always attack at @ = o, or is
indifferent between attacking and running away. We say
is a weak-signal-attack deployment if all targets are weak-
signal-attack targets.

Theorem 3. If (t,1) is a best response for Il,.», and X is
a weak-signal-attack deployment, then (t,1) is a best re-
sponse for Iy, and X for all & > k, X' >\, pf/ > p.

In our model of observational uncertainty, more uncertainty
means that the attacker sees a weak signal more often. Fur-
ther, the attacker always attacks when he observes a weak
signal. Thus, if the attacker is always attacking with less
uncertainty, he will only attack more often with more un-
certainty. However, in order to obtain predictable attacker
behavior, we need to show that a weak-signal-attack deploy-
ment always exists as an optimal solution. In other words,
Theorem 3 holds if there is weak-signal-attack deployment,
so we now have to show that such a deployment exists.

Proposition 4. There always exists an optimal solution that
is a weak-signal-attack deployment with 1.

The intuition behind the proof is that we can always decrease
the probability of a weak signal such that we either do not
send a weak signal, or the attacker attacks when he observes
a weak signal. This holds optimally because when obser-
vational uncertainty is Ilp, signals are interchangeable. To
summarize, if the attacker behavior is O or 1, then the at-
tacker behavior is independent of observational uncertainty.
We may see this behavior emerge as uncertainty increases.

5 How to Handle Uncertainty

We provide a solution approach based on the well-known
multiple LPs approach from (Conitzer and Sandholm 2006).
In particular, for each target ¢ € [IN], we compute the opti-
mal defender strategy given that the attacker’s best response
is t. Then, the optimal defender strategy is the mixed strategy
that leads to the maximum defender expected utility among
allt € [N]. The problem is NP-hard without uncertainty (Xu
et al. 2018), thus our ultimate goal is to develop an efficient
algorithm to solve the problem. For expository purposes, we
first focus on presenting the LP for detection uncertainty.

5.1 Detection Uncertainty

Using notation from Section 3.3, we first formulate each
player’s utility function by breaking it into three parts ac-
cording to signaling states: 1) no sensor is allocated (states
n(+/—) and p, which we denote by —s); 2) sensor is allo-
cated and sends og; and 3) sensor is allocated and sends o7 .

LU () =2 UL ) + 2t U )+ - U2 0)
is the expected defender/attacker utility of target ¢ being
attacked over states when ¢ has no sensor (p, n+,n—).

2. UH6) = (L—) - [5t - UL () + w3 - U/ () + 5

U (@) - [} UL (i) + 03 UL () + 03U ()]
is the defender/attacker expected utility when the attacker
attacks target ¢ and the defender signals 0.

3. US0) = (1 =) - (@ — oty - Uf/ ) + (23 -

) UV (0 (af =) - UV (D) 4y (@ — )

U (0) + (7 =) - U0 + (af = ) - UV ()]

In words, 2) and 3) are the sum of expected utility on a
detection and the sum of expected utility on no detection. In
3), in the no detection case, the defender exploits informa-
tion asymmetry in signaling ;. In particular, the defender
knows that there is no detection, but in sending o to indicate
a detection, relies on the uncertainty the attacker faces in de-
termining if there was a detection. We are now ready to de-
scribe an (exponentially-large) linear program (LP) formu-
lation for computing the optimal defender strategy assuming
best attacker response ¢ (not (¢,7) since only detection un-
certainty):

max U(t) + UZ (t) 1)

z,q,9,¢p

S Yecgie,—0le = TF Vo€ O,Vie[N] (2)

ZeEE ge =1 3)
ge >0 Veec & 4)
UL (i) > 0 Vit (5)
UL (i) <0 Vit (©6)

USt)+Ug, (t) 2 US (i) + Uy (i) Vi#t (7)

0<y! <2l VOec{ss—s+},Vic[N] @8)

0< ¢ <zl VOe{ss—,s+},Vie[N] 9
The objective function (1) maximizes defender expected
utility. Since the attacker is running away when he observes



o1, U (‘,11 = 0. Constraints (2)-(4) enforce that the random-
ized resource allocation is feasible (£ has exponential num-
ber of elements); (5)-(6) guarantee that oy, o result in the
attacker best responses of running away and attacking?; (7)
ensures the attacker expected utility at target ¢ is bigger than
at any other target ¢, thus ¢ is attacker’s best response; (8)-(9)
ensure a feasible signaling scheme.

5.2 Acceleration via Branch and Price

We now describe the branch-and-price solution framework,
which can be used for both uncertainty scenarios. There are
two main challenges in efficiently solving the LP (1)-(9).
First, the total number of possible g, is O(6" ). Second, we
will need to solve N LPs (for each ¢ € [N]). Solving many
of these large LPs is a significant barrier for scaling up. We
therefore introduce Games with Uncertainty And Response
to Detection with Signaling Solver (GUARDSS), which em-
ploys the branch-and-price framework. This framework is
well-known for solving large-scale optimization programs,
but the main challenges of applying this framework are to
(1) design the efficient subroutine called the slave problem
for solving each LP, and to (2) carefully design an upper
bound for pruning LPs.

First, for one LP w.r.t. a specific ¢, to address the issue
of the exponential size of set £, we adopt the column gen-
eration technique. At a high level, we start by solving the
LP for a small subset &’ C &, and then search for a pure
strategy e € £\ £’ such that adding e to £’ improves the op-
timal objective value strictly. This procedure continues until
convergence, i.e., no objective value improvement. The key
component in this technique is an algorithm to search for
the new pure strategy, which is a specially-crafted problem
derived from LP duality and referred to as the slave problem.
Slave Problem: Given different weights of € R for 6 € ©,
for each target 7, solve the weight maximization problem:

Y 3 of w
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Note that {af}sce are the optimal dual variables for the
previous LP constraint (2). We want to solve this without
enumerating all of the elements in £. Despite the added com-
plexity compared to classic SSGs, in this section, we com-
pactly represent this slave problem as a mixed integer linear
program (MILP). To formulate the MILP, we introduce six
binary vectors vP, v+, v~ v®, v¢~, v*T € {0, 1}V to en-
code for each target whether it is in each allocation state.
For example, target 7 is at allocation state s if and only if
v§ = 1. The main challenge then is to properly set up linear
(in)equalities of these vectors to precisely capture their con-
straints and relations. The capacity for each resource type
results in two constraints (number of patrollers and sensors):

Lien Ui Sk (11
Pie (W5 0T + i) <1 (12)

Moreover, each target must be at one of these states:
o+l ol ol ol 40t =1 Vie [N] (13)

3 Although we minimize this behavior, we still model it.

Due to the reaction stage, we have to add constraints to spec-
ify (a) which targets have a patroller at a neighboring target;
(b) which patroller goes to which nearby target if both sen-
sors and patrollers do not detect the attacker. For (a), the
non-zero entries of A - vP specify the targets with a pa-
troller nearby, where A is the adjacency matrix of the under-
lying graph. Since three vectors encode the states requiring
a nearby patroller, we have this constraint:

A-vP > VT ST ST (14)
We ensure that a vertex with a patroller nearby cannot be v*:
A-vP < vP v VT VST ST (15)

Constraint (b) means that patrollers must be “re-matched”
to new vertices in the reaction stage. Specifically, targets
in states p,n+, s+ must form a matching. To enforce this
constraint, let G’ be the directed version of G, i.e. for all
(i,j) € E we have (i,7),(j,i) € E'. We further intro-
duce edge variables y; jy € {0, 1} indicating whether the
directed edge (i,7j) is in the matching or not. The match-
ing constraint can be expressed by the following linear con-
straints:

Z(i,j)eE’:je[N] Y(i,5) = “E Vi € [N] (16)
T > ya Y6, 5) € E (17
The resulting MILP for the slave problem is as follows.

maXy, » p ivfa?
s.t. (11) = (17) (18)

vP e {0, 1}V Vo e O (19)
Ya,j € 10,1} V(i,j) € E' (20)

Second, to avoid solving LPs for all different targets ¢t €
[N], we use the branch and bound technique which finds an
upper bound for each LP for pruning. The natural approach
for finding an upper bound is to solve a relaxed LP corre-
sponding to the original LP — in our case, essentially relax
the original LP into its marginal space. As the set £ is ex-
ponentially large, we relax variables and constraints corre-
sponding to £ in our LP. Concretely, we relax (2) - (4) into a
polynomial number of variables and constraints. These vari-
ables and constraints are (18) - (20) with v¥ replaced by x?.
We first use the relaxed LP to efficiently compute an upper
bound for each LP. After solving each relaxed LP exactly,
we solve original LPs chosen according to some heuristic
order (typically the descending order of the relaxed optimal
objective) using the column generation techniques, and we
can safely prune out those LPs whose optimal relaxed value
is less than the current largest achievable objective value.
This process continues until no LP is left to solve, in which
case the current largest objective value is optimal.

5.3 Detection and Observational Uncertainty

Finally, we briefly discuss the case with both uncertainties,
as it can be solved in a similar way. Constraints (2)-(4) and
(8)-(9) are the same. However, the remaining constraints
must now account for attacker behavior, 7. For example, the



utility functions U2/ and UZ/® must change to incorporate

attacker behaviors, and the objective function becomes that
in (21) since the attacker may not run away when he ob-
serves o in the presence of observational uncertainty. Also,
we add a constraint to ensure the attacker utilities are aligned
with the attacker behavior 7 € {0, 1}?. These are primarily
notational changes. We therefore provide the full LP for this
case in the Appendix.

max  USL(t) +US, (1) + U, (¢) 1)
z,q,%,¢

6 Experiments

We generate random Watts-Strogatz graphs, which have
small-world properties to describe more complex environ-
ments, such as roads connecting far-away nodes. For all
tests, we average over 20 random graphs and include p-
values. Utilities are randomly generated with a maximum
absolute value of 1090 and based on the idea that the losses
from undetected attacks are higher than the utility of catch-
ing adversaries (similar to (Xu et al. 2015)). This is realistic
to the situation of preventing poaching, as animals are worth
more for ecotourism than for sale on the black market as dis-
cussed in the Appendix. Additionally, we see that if we test
on a set of utilities that is slightly different from the original
input, the defender’s utility does not vary greatly. Fig. 3a-
3b show timing tests run on a cluster with Intel(R) Xeon(R)
CPU E5-2683 v4 @ 2.1 GHz with at most 16 GB RAM.
We set the number of patrollers to be k& = /N/2 and the
number of drones to be | = 2N/3 — k. As shown, the full
LP scales up to graphs of N = 14 only and exceeds the
cutoff time limit of 3600s for all N = 16 graphs. Branch
and price scales up to N = 80 and runs out of time for
larger games, and a warm-up enhancement that greedily se-
lect an initial set of £ further improves scalability and solves
13/40 graphs within cutoff time at N = 90 and N = 100.
This is sufficient for middle-scale real-world problems, with
further scalability being an interesting direction for future
work. The heuristics provide the same solution as the full
LP in most of the instances tested.

Next, we show the loss due to ignoring uncertainty em-
pirically. In Figs. 3c-3d we compare DefEU (x* (7, IT), v, II)
computed by GUARDSS and DefEU(x*(0,1Iy), v, II), the
defender expected utility when ignoring uncertainty for
graphs with N = 10, k = 1, [ = 3. We consider only
one type of uncertainty at a time (e.g., v = 0 when vary-
ing observational uncertainty). For detection uncertainty,
GUARDSS’s defender expected utility only decreases by
12%, whereas ignoring uncertainty decreases by 210% when
v varies from 0 to 0.9 (p < 1.421e—03 for v > 0.2 in Fig.
3c)*. Some initial analysis shows that it is robust in most of
the cases when we slightly under- or overestimate y (e.g., the
differences in defender expected utility are typically within
5-6% when the estimate of gamma is off by 0.1 or 0.2),
but further investigation on dealing with such uncertainty
over uncertainty would be an interesting direction for future
work. For observational uncertainty, GUARDSS’s defender

*% change once normalized by largest defender/attacker utility.

expected utility only decreases by 1%, whereas ignoring un-
certainty decreases by 18% as the observational uncertainty,
parameterized by x (A = 5, and 4 = 7) varies from 0 to 0.9
(p < 0.058 for x > 0.4 in Fig. 3d).

We also observe that when ignoring detection uncertainty,
the attacker’s best response is typically a target with a sen-
sor, which implies that the attacker is taking advantage of the
defender’s ignorance of uncertainty. In fact, there is a statis-
tically significant (p = 1.52e—08) difference in the mean
probability of a sensor at the attacker’s best response when
ignoring uncertainty (0.68) versus GUARDSS (0.19).

How does the defender avoid these challenges and achieve
such a small performance drop with GUARDSS when facing
uncertainty? Statistics of the resulting defender strategy as
well as Fig. 3e indicate that the defender exploits the uncer-
tain real-time information and the information asymmetry,
including (a) frequently but not always sending patrollers to
check important targets when there is no detection; (b) send-
ing strong signals more frequently than the probability that
the patroller will visit the target (either due to response to de-
tection or planned reallocation in the case of no detection),
leveraging the informational advantage in which the attacker
does not know whether he is detected or whether a patroller
is matched; (c) using different signaling schemes with and
without detection, leveraging the information advantage that
the attacker does not know whether he is detected. In the
GUARDSS strategies in Figs. 3c-3d, the mean probability
of the attacker’s best response target being at state s— (with
sensor but without a matched patroller) is 0.04, versus 0.43
when ignoring uncertainty (p = 2.70e—09), indicating point
(a). If we call the strong signal sent when there is no detec-
tion a fake signal, Fig. 3e shows that the probability of the
strong signal an attacker observes is a fake signal is non-
zero and increases in a non-linear fashion, indicating points
(b) and (c). Also, note that the strong signal is used with
nonzero probability on average on targets with a nonzero
probability of having a drone present.

Despite considering uncertainty, sensors may be less valu-
able at a high level of uncertainty. In Fig. 3f, the defender ex-
pected utility is influenced by the number of drones and un-
certainty in size N = 15 graphs. In Fig. 3g, drones are better
than an extra patroller at v = 0.3 (p < 6.661e—02), but at
~v = 0.8, patrollers are better than drones (p < 1.727e—07).

7 Conservation Drones

We have deployed a drone in South Africa, equipped with a
thermal camera and detection system (Air Shepherd 2019).
A photo of the drone team in South Africa currently is in-
cluded in Fig. 1 (center). To ease the challenges faced by
these operators in coordination of drones with imperfect sen-
sors and patrollers, we apply GUARDSS and show that it
provides positive results in simulation to support future po-
tential deployment. To facilitate the most realistic simula-
tion possible, we utilize example poaching hotspots in a real
park. We cannot provide the exact coordinates in order to
protect wildlife, but we selected points based on geospatial
features, and selected utilities to reflect the fact that the re-
ward and penalty of the attackers are impacted by animal
presence, price, and distance to several park features used
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Figure 3: Experimental results. Figs. 3a-3b compare multiple LPs approach (Exponential LP) with GUARDSS branch-and-price
and heuristic method. Figs. 3c-3d show defender expected utility when amount of detection uncertainty v and observational un-
certainty vary. Defender expected utility decreases much more when uncertainties are ignored. Fig. 3e shows the informational
advantage of the defender as uncertainty increases. Figs. 3f-3g show that in the presence of a high false negative rate, extra
patrollers may be more useful than drones. Fig. 3h contains the results from the case study, where GUARDSS performs best.

Figure 4: A park in Google Maps with potential poaching
hotspots and the resulting graph (edges for < 5 km).

in (Gholami et al. 2018). The targets are shown in Fig. 4
(left). Any targets within 5 km are connected via edges in the
graph, as park rangers could cover Skm for response. The
resulting graph is shown in Fig. 4 (right). The utilities are
included in the Appendix along with further details. For the
simulation, we use 3 drones and 1 patroller. In the no drones
scenario only, there are 0 drones and 1 patroller. We use
~ = 0.3 for detection uncertainty and no observational un-
certainty (see the Appendix for results with other ~). These
details are directly input to GUARDSS, and then a mixed
strategy is determined to cover the park. Fig. 3h shows the
defender expected utility in this park using GUARDSS with
and without uncertainty, and several baselines. A negative
defender expected utility indicates that animals were lost, so
a higher positive number is ideal. Therefore, we perform bet-
ter with GUARDSS than using a random allocation, ignor-

ing uncertainty, or forgoing drones. In fact, ignoring uncer-
tainty is worse than forgoing drones completely. For varying
~ (see Appendix), the gap between ignoring detection uncer-
tainty and GUARDSS increases as -y increases, and the gap
between the no drones case and GUARDSS decreases as vy
increases, showing a similar trend to Fig. 3g. However, in
all cases, the results emphasize the importance of correctly
optimizing to get value from drones even with uncertainty.

8 Conclusion

The loss due to ignoring uncertainty can be high such that
sensors are no longer useful. Nevertheless, by carefully ac-
counting for uncertainty, uncertain information can still be
exploited via a novel reaction stage and signaling even upon
no detection. In this case, despite being aware of uncer-
tainty, the attacker does not know whether he was detected,
nor whether a patroller will respond in the reaction stage.
Our results illustrate that the defender can exploit this infor-
mational advantage even with uncertain information. Thriv-
ing under this uncertainty makes real-world deployment of
GUARDSS promising, as shown through simulation.
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A EFG and POMDP

We first discuss in more detail how we exploit the structure
of our game and provide a scalable algorithm by extending
the use of coverage probabilities and multiple LPs, instead
of using an EFG. The game tree is shown in Fig. 1. Our ap-
proach solves at most 8N LPs with O(N + |£]) constraints
and O(N +|&]) variables, where £ is the defender pure strat-
egy set. Using the EFG approach, the size of the game tree
is O(N -4!-|&|), where [ is the number of drones. The EFG
multiple LPs approach therefore solves exponentially more
LPs, each with a much larger size than ours. One might also
consider using a POMDP to model the movement of the de-
fender from allocation to a new reaction target with the un-
observable state being whether an attacker is present or not.
However, a POMDP model does not capture all of the in-
tricacies due to strategic game interactions. For example, it
does not account for the fact that the attacker will choose a
location to attack rationally.

(a
(b

)
)
(©)
(d)
(e)
()
)

Figure 1: Game tree illustrating defenders’ (D) allocation,
signaling, and reaction steps, as well as those of the attacker
(A) and nature (N) (uncertainty). Level (a) is the initial de-
fender deployment, (b) is the attacker choice of target, (c)
is the detection (with uncertainty), (d) is the defender sig-
naling, (e) is the attacker’s observation (with uncertainty),
(f) is the attacker’s decision to run away or not, (g) is when
players receive payoffs.

B Omitted Proofs in Section 4

Proposition 1. Let x§ = x*(0) be the defender optimal de-
ployment when no uncertainties exist. There exist instances
where DefEU(x§,v) < DefEU(x*(7),7) for some .

Proof. We prove by constructing such an instance. Consider
the graph in Fig. 2 with 4 targets, 1 human patroller, and 2
sensors. The attacker chooses one target to attack. A suc-
cessful attack gives the attacker utility of +2 and defender
utility of —5, whereas catching the attacker yields attacker
utility —1 and defender utility 0. If the attacker chooses not
to attack after observing a signal from the sensor, both the
attacker and the defender receive 0.

If sensors have perfect detection (v = 0), we can place
the human patroller at £o, place the two sensors at t; and t3
respectively, and match the patroller to ¢4. Thus, we cover

Figure 2: Diagram of detection uncertainty example.

all targets with probability 1. When we observe the attacker,
we will always send the strong signal (01) to ensure the at-
tacker will run away. Therefore, the attacker is better off not
attacking, yielding utility of O for both.

To see how a false negative detection can affect the so-
lution quality, we now consider the case with v = 0.5. If
we use the same strategy but with imperfect detection, the
attacker can attack t; or t3 successfully with probability
1/2 (when the attacker does not observe a warning signal
o1), and run away with probability 1/2 (when the attacker
observes the signal o1). The defender’s expected utility is
DefEU(-) = 1(0) + 2(-5) = -2 = —2.5.

We want to show the optimal strategy when v = 0.5.
First, we will always have a patroller at 5. We will always
have one drone at ¢; and we will have another drone at ¢3
with probability 6/9 and at t4 with probability 3/9. We will
match the patroller to ¢; with probability 2/9; t3 with prob-
ability 3/9 (1/9 when there’s sensor, 2/9 when there’s noth-
ing); t4 with probability 4/9 when there’s nothing. We will
first calculate defender expected utility at ¢1, t5 and t4. At
target ¢, the attacker always observe a sensor, with proba-
bility 7/9 it’s state s— and with probability 2/9 it’s state s+.
Thus AttEU(t1) =2/9-(—=1)+7/9- (1 —~)(=1)+7/9-~-
(2) = 1/6, thus the attacker will attack. For target ¢, the at-
tacker will always get caught, so he won’t attack. For target
t4, if he observes nothing, he will get caught with probabil-
ity % = 2/3, so he will not attack when he observes
nothing. If he observes a drone, he will only get caught with
probability (1 — ), thus gains utility of v - 1/3 = 1/6.

Consider the following signaling scheme at ¢3. If we de-
tect an attacker or the state is matched, then we will send
09, if we don’t detect and state is not matched we will send
signal with marginal probability ¢©*~ = 7/18. If the at-
tacker does not observe a drone, he will not attack. If he
observes a drone with oy, then the attacker expected utility
is((1=7v)-2/3)-(-1)+~-1/9-(-1)+~-7/18-(2) = 0.
Thus the attacker only attacks when he observes o this hap-
pens with probability 1/12, thus the attacker gets expected
utility of 2 - 1/12 = 1/6. Since we are getting attacked
with probability 1/12, the defender expected utility is now
—5-1/12 = —0.416 thus doing getting better expected util-
ity by considering uncertainty.

With optimal deployment, we can get a defender expected
utility of —0.416 when v = 0.5. This example shows that
when the detection uncertainty does not exist, a very sim-
ple deployment yields the optimal expected utility. However,
this strategy is no longer optimal when detection uncertainty
is present. Therefore, we need to consider detection uncer-
tainty and compute the new optimal solution.

O



Theorem 1. DefEU(x*(v),y) > DefEU(x*(v'),~’) for any
~' > 7 in any problem instance.

Proof. Let x* = x*(7). Throughout the proof, we as-
sume no observational uncertainty. Assume for the con-
tradiction that defender expected utility strictly increases
as detection uncertainty increases, i.e., DefEU(x7,7) <
DefEU(X:H.,V + €) for. some €. Let ¢ and ¢ be the cor-
responding signaling variables from x7 .

Consider the following new variables x’ and @/ =
%, and let all other variables be the same

0 0
as X3, First, note that o = (ormvder o

1—v —
6 6
W = 2% for all @ € {s+,s—,s}; therefore,

all variables are feasible. Thus, we have DefEU(y',v) <
DefEU(x3,7) < DefEU(x%,.,v + €). Furthermore, con-
sider an augmented strategy where when we observe an at-
tacker at state 1’5~ , with marginal probability ©°~, we ig-
nore the detection, thus make the target uncovered. Note
that this strategy is still feasible, and makes our defender
expected utility lower.

Now, we will calculate the defender expected utility when
the defender allocates security resources according to x’.
We can decompose the expected utility by different sig-
nals, i.e. DefEU(X',7) = > i eqn og.003 DEFEUX, 7|w),
where DefEU(, v|w) is the defender expected utility given
state w. First, note that DefEU(x’,y|n) stays the same as
detection uncertainty changes. Thus, we will only look at
DefEU(x, v|oo) and DefEU(X’, v|o1).

DefEU(x’, 7|00

= (=) (WU + 9" U +9°07)
+79- (pTUL + UL + U

>(1—y—e- (TU{ +¢ UL +¢°U?)
+e(@TUL + U + U

(by our augmented strategy)

+9- (UL + UL + o°UY)

=(1—y—e - @TU+ ¢ UL +y°U?)
+(y+e) - (¢TUL + U + 6°TU?)

= DefEU(X 40,7 + €lor)

We also want to show that DefEU(x',v|o1) =
DefEU(X} e, 7 + €lo1). Recall that they are both 0 because
the attacker will run away. Then, we have DefEU(x’,v) >
DefEU(x% 4,7 + €) > DefEU(x%, 7). This contradicts x7

is an optimal solution.
O

Proposition 2. x*(v) differs from x*(v') for any v > =
when x;~ is nonzero for x*(7'), where target t is the at-
tacker best responding target in x*(v').

Proof. Suppose for contradiction that x is an optimal so-
lution for both DefEU(y,~) and DefEU(x,~ + €). Con-

sider x’ that is obtained same way as previous proof. i.e.

Y = % and all other variables stays the same.

Note DefEU(x', ) is strictly bigger than DefEU(x, vy +¢€)
if 7, 257 — %7, %7 or 2’7 — ¢°~ is non-zero. In other
words, if 2°~ is nonzero, the DefEU(x’,v) > DefEU(x, v+
€), thus contradicts DefEU(, ) is an optimal solution. [J

Proposition 3. There exists II such that the loss
due to ignoring observational uncertainty is arbitrar-
ily large. In other words, DefEU(x*(7y0,II),v0,1I) -
DefEU(x* (70, o), Y0, 1) > M, VM > 0.

Proof. We will show an example where the new signaling
strategy is arbitrarily better than the naive signaling strategy.
Consider the following example. We have 10 targets, 1 hu-
man patroller, and 8 sensors.

The optimal allocation strategy is to allocate sensors in all
t’s, allocate the human patroller in one of the center vertices
(c1, ¢2) uniformly at random, and match to the other center
vertex. For all targets, utility is defined as the following, for
some arbitrarily big M. Note that the attacker’s expected
utilities for attacking c; and cs are both 0.

covered | uncovered
Attacker -1 1+e€
Defender 0 -M

Consider the following uncertainty matrix. Let rg =
(1 — 2¢€'), for some € > 0.

1—e .
1+e€

Pripfw] [w=n[w=09 | w=0
w=n 1 1—17g e
(.:):O'(] 0 To 1—26/
(Z):(fl 0 0 6/

Let 7, be the probability of state p, let r, be the probability
of state n+ and n—, and let 7 and rg be the probability
of the state s+ and s— and s, respectively. Let r, = 1i6
(the optimal signaling strategy ignoring uncertainty). In this
strategy, the attacker attacks when he observes state n and
9. Therefore, 7 = [1, 1, 0] is the vector that depicts attacker
behavior in this case.

DefEU(r,)
=Ulry + Ulry + Urs(1 — 1,)7 - Pr[d|w = a0)

+ Urg(ro)i] - Pri@lw = o1] + Ufr 77 - Priofw = o1]

L M1y M2
) 2 €)=

(1-¢)



Let r,, = €' be the new signaling strategy. Let " be the new
attacker’s attacking vector. Observe the attacker will only
attack when he observes state n. Therefore, ' = [1,0,0].

DefEU(r,)
=Ulry +Ury + Urs(1 — )0 - Pr[d]w = o]

+ Urs(ry)n - Prldlw = o1] + Ulreyn’ - Prd|w = o4]

= Sa-a- 22

M
—(1—-¢€) - 76/6/

M
(1—2¢")) - ?e’e/

For 0 < € < 1/M, we get the gap of O(M).
O

Theorem 2. For any fixed deployment x, if the attacker’s
best response is (t,0) or (t,1) at the Stackelberg equilib-
rium with Iy, then it stays as an equilibrium for any 11'.

Proof. The proof of Theorem 2 follows from this Lemma:

Lemma 1. For any fixed x, if (t,1) (or (t,0)) is a best re-
sponse for the attacker at Iy, then (t,1) (or (t,0)) is also a
best response for all IU, for any TI' # Tl,.

Proof. The proof of the Lemma follows from the follow-
ing two claims. Let DefEU(x, ¢, 7, IT) be the defender’s ex-
pected utility when she plays the deployment x. We add ¢
and 7 to the typical notation to represent that the attacker’s
strategy is to attack ¢ with behavior 7, and the observational
uncertainty matrix is II. There is no detection uncertainty.
We use a similar notation for AttEU(x;, ¢, 7, IT). Let us also
index n with @ € € as ®, and reference 7 for a target, i, as
n;, for a final notation of . For example, to reference the
attacker behavior for @ = n and target ¢, we can write it as

;-

Claim 1. For any x, t 1, AttEU(x,t,nII') <
AttEU(x, t, 15 4, o), where 05 , is the best response when
= TIl,.

Proof. Let AttEU(w) = Pr{w]AttEU(x,t,1) be the at-
tacker’s expected utility when true signaling state is w and
the attacker attacks the target ¢.

AtEU(x, t,n, TT') =

> ¥ (Z Pr[&z|w]AttEU(w)>

weQ weN
—ZAttEU (Zn Pr| w|w>
weN weN
< ) AHEU(w) - T (AEU(w) > 0
weN

S AttEU(X,t, ng,taHO)
(Note ITy means Pr[@|w] = 1 forall & = w)

O

Where 1(+) is an indicator function, 1(-) = 1 if the corre-
sponding expression is true, and 1(-) = 0 otherwise. Note
that AttEU(x, ¢, 7, IT") < AttEU(x,t,n,Iy) is not true.
Consider a II; which is some permutation matrix of I.

Claim 2. For any x and t, the attacker’s ex-
pected attacker utility stays the same for any
II if the attacker behavior is 1 or 0. In other
words, AttEU(x,t,1,1I') = AttEU(x,¢,1,11y) and
AttEU(x,t,0,1IT") = AttEU(x, t, 0, I1j).

Corollary 1. We also have DefEU(x,t, 1,1I') =
DefEU(x,t,1,11y) and  DefEU(x,t,0,1T') =
DefEU(y, t, 0,11)).

Proof. If n = 1 then ), n® Pr[@|w] = 1 forallw € Q
independent of II. Therefore, we get AttEU(x,t,q,II) =
> weq AttEU(w) independent of I1, and the claim holds.

Similarly, if n = 0 then >, 7* Pr[@|w] = 0 for all
w € 2 independent of II.

Exactly the same argument holds for -calculating
DefEU(:). O

By combining the two claims we get the fol-
lowing: AttEU(x,t, 75, o) = AttEU(x,t,1,1lp) =
AttEU(x, ¢, 1,11") > AttEU(x,t, n,II'), thus we get (¢,1)
as a best response for IT’, for any II’ and . O

This shows if (¢, 1) or (¢,0) is a Stackelberg equilibrium,
the defender can safely deploy the same strategy for any un-
certainty matrix IT’, without any loss in her expected utility.

O

Theorem 3. If (t,1) is a best response for I, and x is
a weak-signal-attack deployment, then (t,1) is a best re-
sponse for Il and x forall &' > k, N > X\ (/> p.

Let AttEU(w) = Pr[@]AttEU(x,t, 1) be the attacker’s
expected utility when observed signaling state is @ and the
attacker attacks the target t.

Proof. We have n°t = 1, which implies AttEU(® = 04) >
0 because of our II structure. Therefore, increasing A or p
only increases AttEU(& = n) and AttEU(w = oy), respec-
tively. This implies AttEU(&w = n) and AttEU(&0 = oy)
stays positive. Therefore, the attacker behavior also stays the
same, when we increase \ or f.

Since x is a weak-signal-attack deployment, we know
AttEU(& = og) > 0. Therefore, increasing x only makes
AttEU(& = n), and AttEU(& = o) more positive; there-
fore, the attacker behavior stays as 1. O

Proposition 4. There always exists an optimal solution that
is a weak-signal-attack deployment with I1.

Proof. Suppose for contradiction there does not exist an
optimal solution that is a weak-signal-attack deployment.
Then, consider the optimal solution x* with the least num-
ber of non-weak-signal-attack targets. By the assumption,
we know AttEU(o() < 0 for some target ¢. Fix an arbitrary
target ¢ that is a non-weak-signal-attack target.

Then, we know AttEU(og) = US(t) - (5T +¢°7) +
Ue(t) - (¢°) < 0. Since AttEU(0p) < 0 and IT = I,



we know the attacker is not attacking when he observes .
Also, since AttEU(-) is strictly negative, we know ¢°T or
15~ is strictly greater than 0.

Consider the new deployment x where we can decrease
¥t and/or ¥*~ until AttEU (o) = 0. Since the attacker is
still not attacking when he observes o (recall we break ties
in favor of the defender), the defender expected utility stays
the same. Furthermore, this change only increases z°" — 5T
and 2°~ — ¢*~. Thus, DefEU(o;) also only increases. Our
new x is therefore still an optimal solution and ¢ is now a
weak-signal-attack target. Thus, it contradicts the assump-
tion that x* is the optimal solution with the least number of
non-weak-signal-attack targets. O

B.1 Handling Observational Uncertainty

The problem uses a similar linear program as for the case
without observational uncertainty:

max - US(8) + U7, (6) + Uz, () (1)
z,v,¢p

s.t. Zeeng ge=1! VYOecOVie[N] )

D oiple=1 3)

gde = 0 Veef @)
UL (i, i, i) < b Vo e QVi £t (5)
0<0b; 0<b] 0<0 Vi£t (6)
UL () + Ug, () + Uz, (1)

>al UL() + 0] +b7°+0b70 Vit (D

0<y? <2l Voe{ss— st} Vie[N] (@8
0<¢! <a? Voe{ss— st} Vie[N] 9
(208 = 1) - UL(Ws, o) <0 Y& €Q (10)

However, here the utility functions need to be redefined in
order to take observational uncertainty into account. We de-
fine p% (i) = Y ecqny - Prl@|w] as the probability of the
attacker attacking target ¢ given the true signaling state is
w € Q.

LU () = af UL (@) + a2 UL () a7~ U2 (1) is
the expected defender/attacker utility of target ¢ being at-
tacked over states when ¢ has no sensor (p, n+,n—). This
is the same as the version with only detection uncertainty.

2. Ugl™ (i) = (1=7) 0, (0)- 3 -UY (D)5~ UY " () +
d a d/a d/a
U3 UY D)y, ) [ UL (@) + ot U2 () +
o3-U E/ “(i)] is the defender/attacker expected utility when
the attacker attacks target 7 and the defender signals oy.

This has the added p$ (i) compared to the version with
only detection uncertainty.

Now we will define the attacker observational expected util-
ity of any signaling state @ € . Let Ud/a(z n¥=1) be
U2 (i) with n=1 and ¥ = 0 V& # &' and j € {0, 1}.

4. Ug/a(d}i’@ivgji) = Pr[w|n] - [x;l_ . Ud/a( ) +

Uy (@) + Prl@loo] - Usl®(i,nf=1) + Prla|oy] -

Uf,il/ “(4, 1; #=1) is the attacker observational expected util-

ity. This is used in (5) and (10).

The set of constraints (2) - (4) enforce the randomized
allocation is feasible, as in the version with only detection
uncertainty. The set of constraints (5) - (7) ensure target ¢
is the attacker’s best response. b variables ensure attacker’s
utilities are nonnegative. The set of constraints (8)-(9) ensure
the marginal probabilities of signaling (i) and ) are valid.
Lastly, constraint (10) ensures 7 is a valid attacker behavior.
In other words, if nf is zero, then the attacker observational
expected utility should be negative, otherwise the attacker
utility should be positive.

C Experimental Results

In Fig. 3e, we show the probability of a fake signal given that
a warning signal is used. Equation 11 describes this fully.
This is then averaged over all of the targets, and finally av-
eraged over 20 random graphs, as summarized in Equation
12.

P(fakesignal|oq)(i) =
v @ ) + @ — i) + (75— @)
(=) [ =) + (277 —9y7) + (af — 9]+
v l@T = o) + (25 =) + (2 - @Ei]l)

118X
N Z Z P(fake signal|oy) (i) (12)
i=1i=1

The p-values for the experimental results are summarized
in Table 1. Fig. 3h does not have a p-value because it is based
solely on the graph illustrated in Fig. 4, and the utilities de-
scribed in Section D.

D Conservation Drones
D.1 [Utilities

The utilities used for the experiment in Section 7 are in-
cluded in Table 2. We construct this payoff matrix to reflect
the fact that the reward and penalty of the attackers are im-
pacted by the following features: number of animals, dis-
tance to various park features such as boundary, rivers, and
roads (some of the features used in (Gholami et al. 2018) to
predict poaching activity), and price.

To arrive at specific values, we first chose locations of in-
terest near the park boundary, rivers, and roads in a region
of the park known for the presence of animals. The park and
specific coordinates are withheld to protect wildlife. We then
measured the distances from the locations of interest to the



Plot p-values

3a p < 3.457e—16 for N > 14
3b p <2.579%—3at40 < N <90
3c p < 1.421e—03 for v > 0.2
3d p < 0.058 fory > 0.4

3e p = 2.167e—22 when

comparing v = 0 and v = 0.9
Ivs.2:p <1.371e—04 for v < 0.7
3f 2vs.3:p <2.852e—02fory < 0.7
1vs.3:p < 1.984e—05 for v < 0.8

p <6.66le—02aty = 0.3
3g No difference at v = 0.5
p < 1.727e—07aty = 0.8

Table 1: p-values for results in Fig. 3 in the main paper.

closest rivers and roads, and the park boundary. The loca-
tions were ranked for each of these distances (e.g., node 6
is closest to the river and node 9 is farthest from the river,
whereas node 9 is closest to a road and node 4 is farthest
from a road). Next, a weighted average of these ranks was
taken for each node to estimate the attractiveness of the node
to animals (e.g., elephants), with weights of 0.8, 0.1, and 0.1
for distance to river, boundary, and road, respectively, ac-
cording to the intuition that water matters most to animals.
This was ranked from 1 to 10, with 10 being the best node
for animals, and this served as a proxy for the number of
animals at that node (e.g., 10 animals at node 6). To deter-
mine the relative poaching attractiveness for the attacker,
the weighted average rank was calculated from the num-
ber of animals, and the river, boundary, and road distances,
with weights of 0.7, 0.05, 0.15, and 0.1, respectively. This
is based on the intuition that animals are the most important
factor, but ease of reaching the location and getting away
quickly is also a factor (e.g., nodes 6 and 7 are most attrac-
tive, while node 9 is least attractive).

We finally take elephants as an example animal, and use
the price of ivory (approximately $40,000 (Brito 2019)),
the approximate monetary benefit of ecotourism ($1.6 mil-
lion (Platt 2014)), and an elephant poaching fine ($20,000
(Siyabona Africa (Pty) Ltd 2017)) to assign values to each
of the 10 nodes. The defender payoffs are related to the eco-
tourism benefits of elephants — if the node is uncovered, it
is related to the full amount, whereas if it is covered, it is
related to an amount for one day. The attacker payoffs are
related to the price of ivory, the attractiveness of a target,
and the fines associated with a covered target. Given histori-
cal data, it may be possible to learn these values in the future
from historical data (Gholami et al. 2019), or possibly from
park ranger knowledge (Gurumurthy et al. 2018).

D.2 Other False Negative Rates

We include results in Fig. 3h for a single v = 0.3, but the re-
lationship varies with v as we have seen in the rest of Fig. 3.
We include several other examples here for v = 0, v = 0.1,
v =0.5,7 = 0.7, and v = 0.9 in Figs. 3a, 3b, 3c, 3d, 3e, re-
spectively. At low values of ~, there is a small gap between
ignoring detection uncertainty and GUARDSS, as expected,

Node Udu Udc Uau Uac
-3200 | 29 | 120 | -20
-12800 | 56 | 320 | -20
-8000 42 | 240 | -20
-6400 | 38 | 160 | -20
-4800 | 33 80 | -20
-11200 | 51 | 280 | -20
-16000 | 64 | 400 | -20
-14400 | 59 | 400 | -20
-9600 | 46 | 200 | -20
-1600 24 40 | -20

\O| 00| | O\ | K| W | = O

Table 2: Utilities for Fig. 3h and Fig. 4 in the main paper.

which indicates that it may be acceptable to ignore detection
uncertainty at that point. However, as ~ increases, the gap
becomes wider, and ignoring detection uncertainty even be-
comes worse than a random allocation. The gap between no
drones and GUARDSS also decreases as -y increases, mean-
ing it becomes less beneficial to use drones under higher un-
certainty, as seen in Fig. 3g.
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Figure 3: Case study results for multiple values of ~: Fig. 3a has v = 0, Fig. 3b has v = 0.1, Fig.3c has v = 0.5, Fig. 3d has
~v = 0.7, Fig. 3e has v = 0.9.



