Information, Persuasion, and Decisionmaking

Part 1: Decisionmaking under uncertainty

Bo Waggoner (University of Pennsylvania \rightarrow Microsoft NY) **Haifeng Xu** (University of Southern California \rightarrow Harvard) *June 18, 2018, Ithaca, New York.*

Background

• Much of economic activity and strategic behavior centers around the **flow of information**

Google	online insurance quotes	٩
Search	About 129,000,000 results (0.35 seconds)	
Everything	Ads - Why these ads?	Ads - Why these ads?
Images	State Farm® Car Insurance - 40 Million Drivers Trust Us.	Progressive Car Insurance
	Quote Now & Get To A Better State.	www.progressive.com
Maps	Free Quick Auto Quote - Switch & Save - Discount Double Check - Find An Agent	Get A Free Online Quote Todavi
Videos	and the second	
News	Online Insurance Quotes GEICO.com	Liberty Mutual Insurance
Channing	GEICO could save you over \$500 on car insurance. Get a free motel	Got An Auto Queta In 10 Minutos
anopping		See How Much You Could Be Saving
More	Elephant® Auto Insurance Elephant.com	C
	www.elephant.com	\$19 Car Insurance - Cheap
Charlottesville, VA	Va Drivers Save Up to \$540 with Elephantel, Save 5% w Unline Quoter	* Virginia Residents Only
Change location	Get a Guote - Account Access - Ado Insulance - Claims	Get a Free Quote & Save 55-75%/
	Free Car Insurance Quote - Cheap Online Auto Insurance Quotes	Equipage @ Auto Insurance
Anytime	www.freeinsurancequotes.org/	WWW esurance.com
Past hour	Aug 19, 2010 – Get free insurance quotes online without entering any contact	1 (855) 209 2126
Past work	FIG Car Blog, About, Arizona, Massachusetts	Get a quote & compare rates online.
Pastmonth		Save nundreds on your policy!
Pastyear	Esurance Online Car Insurance — Get Your Quote & Save on Auto	Free East Online Quote
Custom range	www.esurance.com/	www.travelers.com
	See how much you can save on reliable, affordable car insurance. Get your free	Travelers Could Save You \$469.
All results Related searches	quote online or over the phone and compare auto insurance rates in minutes. Customer Login - Contact Us - Car Insurance - Health Insurance	Get A Free Quote In Minutes Now!
More search tools	Best Insurance Quotes - Compare Online Insurance Quotes Free	www.nationwide.com/Carinsurance

Background

- Much of economic activity and strategic behavior centers around the **flow of information**
- Traditional approaches: information in a game is fixed
- Reality: information can be actively designed/elicited/transferred
- Recent, fundamental questions:
 - How to reason about value of information?
 - How does information influence strategic behavior?
 - How to elicit valuable information from strategic sources?
 - How to design information structures to yield desired equilibrium?

Topics Covered in this Tutorial

- Signals as carriers of information, and their properties
- Single-agent decision problems and effect of information
- Bayesian games, equilibrium concepts, and effect of information
- Informational substitutes: definitions, applications, and algorithms
- Persuasion: models, algorithmic study, applications and generalizations
- Open problems and directions

Schedule of the Tutorial

8:30 am - 9:30 am **Part 1**: Basics of decisionmaking under uncertainty

(short break)

9:40 am - 10:30 am **Part 2**: Informational substitutes and complements

(10:30 am - 11:00 am coffee break)

11:00 am - 12:30 am **Part 3**: Algorithmic persuasion

Outline of Part 1

A. Model of information and signals- basic properties of signals

B. Model of a single decisionmaker

- basic properties of decision problems
- how information impacts decisions
- Blackwell ordering
- C. Bayesian games
 - equilibrium concepts

Part 1A: Model of information and signals

Notation

• A	set of actions	agent chooses a
• 0	set of states of the world	nature draws θ
• u(a, θ)	utility function	
• <i>p</i>	prior distribution on Θ	known to agent
• ∑	a signal (also refers to set of realizations)	agent observes $\Sigma = \sigma$
 φ(σ, θ) 	probability of signal σ given state $ heta$	
• <i>p</i> _{<i>o</i>}	posterior distribution on $oldsymbol{ heta}$ given σ	given by Bayes' rule
• <i>p</i> _σ	posterior distribution on Θ given σ	given by Bayes' rule

Basic properties of signals

Probability distributions, signals

- Agent starts with prior belief p in Δ_{ρ}
- Agent observes signal σ from conditional distribution $\varphi(\sigma, \theta)$
- Agent updates to posterior belief p_{σ} using Bayes' rule

Fact 1

- (1) For all conditional distributions, $E[p_{\sigma}] = p$. (On average, the posterior equals the prior.) (Your current belief is your expectation of your future belief.)
- (2) For any set of points $\{p_1, ..., p_n\}$ such that p is in their convex hull, there exists a φ inducing this set of posterior beliefs.

Proof.

(1)
$$\mathbf{\tilde{E}} \operatorname{Pr}[\theta | \sigma] = \Sigma_{\sigma} \operatorname{Pr}[\sigma] \operatorname{Pr}[\theta | \sigma] = \Sigma_{\sigma} \operatorname{Pr}[\theta, \sigma] = \operatorname{Pr}[\theta].$$

(2) Write
$$p = \Sigma_{\sigma} \alpha_{\sigma} p_{\sigma}$$
 and let $\varphi(\sigma, \theta) = \alpha_{\sigma} p_{\sigma}(\theta) / p(\theta)$.

The Ithaca meteorologist

- The prior is *p*.
- Meteorologist Marsha observes signal $\varphi(\sigma, \theta)$. **1**[clear]

1[rain]

• Marsha wants to design a signal $\varphi'(\sigma', \sigma)$.

What is the space of achievable signalling schemes?

• Think of Σ as the new state space!

The Ithaca meteorologist

- The prior is *p*.
- Meteorologist Marsha observes signal $\varphi(\sigma, \theta)$.
- Marsha wants to design a signal $\varphi'(\sigma', \sigma)$.

What is the space of achievable signalling schemes?

- Think of Σ as the new state space! (The convex hull of $\{p_{\sigma}\}$ is the new simplex.)
- Can easily characterize all schemes:
 - $\mathbf{E} \mathbf{p}_{\sigma'} = p$.
 - *p* must be in the convex hull of {*p_o*} which must be in the convex hull of {*p_o*}.
 - For each σ' , **E**[$p_{\sigma} \mid \sigma'$] = $p_{\sigma'}$.

Therefore: It is without much loss to assume that a signaller observes the true state θ .

Part 1B: Decision problems

Notation

• Α • θ • u(a, θ)	set of actions set of states of the world utility function	agent chooses a nature draws θ
• n	nrior distribution on Θ	known to agent
<i>Ρ</i> • Σ	a signal (also refers to set of realizations)	agent observes $\Sigma = \sigma$
 φ(σ, θ) 	probability of signal σ given state $ heta$	
• <i>p</i> _σ	posterior distribution on $\boldsymbol{\Theta}$ given σ	given by Bayes' rule
• u(a;q)	$= \mathbf{E}_{a} u(a, \theta)$	linear function of <i>q</i>
• G(q)	$= \max_{a} u(a; q)$	convex function of q
• <i>a*</i> (<i>q</i>)	= $\arg \max_a u(a; q)$	optimal action given q

۰.

Basics of decision problems

Decision problems and convex functions

• Agent must choose *a* based on belief *q*

q may be prior or posterior

- Assume: chooses to maximize expected_q utility
- Write *G*(*q*) = "expected utility for optimal_{*q*} action"

How to characterize all possible decision problems?

Decision problems and convex functions

• Agent must choose *a* based on belief *q*

q may be prior or posterior

- Assume: chooses to maximize expected_a utility
- Write *G*(*q*) = "expected utility for optimal_{*q*} action"

Fact 2

- (1) For every decision problem (A, Θ , u), $G(q) = \max_a u(a; q)$ is **convex**.
- (2) Every convex $G : \Delta_{\theta} \to \mathbf{R}$ is the expected utility function for some decision problem (A, θ, u).

Proof.

- (1) Each *u*(a; *q*) is a linear function of *q*; a max of linear functions is convex.
- We can write *G* as a maximum of linear functions of *q*.
 Assign each linear function to an action *a* and write it as *u*(*a*; *q*).
 Define *u*(*a*, θ) = u(a; 1[θ]) = expected utility for *a* under belief Pr[θ] = 1.

Probability simplex on θ = {clear, rain, snow} A = {walk, ride}

Example: proper scoring rules

Example: proper scoring rules

A decision problem $S(a, \theta)$ with $A = \Delta_{\theta}$ is a **proper scoring rule** if $a^*(q) = q$, i.e. it is always optimal to choose one's true belief.

1[rain]

Solution: take any convex function *G*.

For each *q*, there will be a tangent hyperplane.

Strictly convex $\leftarrow \rightarrow$ strictly proper (truthfulness is uniquely optimal).

1[snow]

1[clear]

Example: proper scoring rules

A decision problem $S(a, \theta)$ with $A = \Delta_{\theta}$ is a **proper scoring rule** if $a^*(q) = q$, i.e. it is always optimal to choose one's true belief.

Solution: take any convex function *G*.

For each *q*, there will be a tangent hyperplane.

Example: $S(a, \theta) = \log a(\theta)$.

- $S(a;q) = \Sigma_{\theta} q(\theta) \log a(\theta)$.
- Optimal action *a* = *q*.
- $G(q) = \Sigma_{\theta} q(\theta) \log q(\theta) = -H(q).$

Revelation principle for agents

Fact 3

For every decision problem (A, θ , u), there is a corresponding proper scoring rule (Δ_{θ} , θ , S) that is utility-equivalent: the expected utility is always equal.

Proof. Define $S(q, \theta) = u(a^*(q), \theta)$.

In other words: given agent's reported belief q, plug action $a^*(q)$ into the original decision problem.

Truthfulness is an optimal action, and expected utility for any belief is equal in both problems.

Signals and decisionmaking

How signals affect decisionmaking

- Agent begins with prior belief p on θ .
- She would take action $a^{*}(p) = \operatorname{argmax}_{a} u(a; p)$. **1**[clear]
- After receiving signal σ , she takes $a^*(p_{\sigma})$.

How signals affect decisionmaking

- Agent begins with prior belief p on θ .
- She would take action a*(p) = argmax_a u(a; p).
- After receiving signal σ , she takes $a^*(p_{\sigma})$.
- Expected utility is $V^{u,\varphi}(\Sigma) := \mathbf{E}_{\sigma \sim \varphi} G(p_{\sigma})$.

Revelation principle for signallers

 φ is **direct** if $\Sigma = A$ (each signal *recommends* a unique action), and **persuasive** if it is optimal to comply, i.e. $a^*(p_a) = a$.

Fact 5

For every signalling scheme φ in decision problem (A, θ , u), there is a direct, persuasive φ ' that outcome-equivalent: induces the same distribution on a, θ .

Proof.

```
Merge all signals \sigma inducing action a, i.e. a = a^*(p_{\sigma}), into a single signal s.
```

```
Then p_s is a convex combination of the \{p_{\sigma}\}, so argmax<sub>a</sub>, u(a'; p_s) = \operatorname{argmax}_{a'} \Sigma_{\sigma} \alpha_{\sigma} u(a'; p_s) = a.
```

Repeat for all actions.

Illustrating the signaller's revelation principle

Illustrating the signaller's revelation principle

The Blackwell order

Garblings and Blackwell order

- We have a signal Σ distributed according to $\varphi(\sigma, \theta)$.
- And we have Σ ' distributed according to $\varphi'(\sigma', \theta)$.

Say Σ ' is a **garbling** of Σ if it can be simulated given Σ , i.e. σ ' is distributed as a randomized function $f(\sigma)$. (Σ ' is conditionally independent of Θ given Σ .)

Fact (cf. 1.2): Σ' is a garbling of Σ if and only if each $p_{\sigma'} = E[p_{\sigma'} | \sigma']$.

Theorem (Blackwell 1953):

 Σ' is a garbling of Σ if and only if, for all decision problems, $V^{u,\varphi}(\Sigma) \ge V^{u,\varphi}(\Sigma')$.

Proof sketch:

 (\rightarrow) Given Σ , we can simulate a draw from Σ' and take the optimal action. (\leftarrow) If not a garbling, there exists a realization σ' that is more informative in some direction than Σ is on average. Make a two-action decision problem that rewards this knowledge...

Blackwell proof - an easy version

Blackwell proof - an easy version

Blackwell proof - an easy version

If p_{a} , is not in the convex hull of $\{p_{a}\}$, then definitely not a garbling \Rightarrow for some *u*, Σ ' is preferable.

Blackwell proof - general idea

Blackwell proof - general idea

Part 1C: Bayesian games

The Game Model

The basic game

• <i>I</i> = {1,, <i>n</i> }	set of agents	Agent <i>i</i>
• <i>A</i> _i	set of actions for agent <i>i</i>	Agent <i>i</i> chooses $a_i \in A_i$
• $A = A_1 \times A_2 \dots A_n$	$a \in A$ is an action profile	
• $\theta \in \boldsymbol{\Theta}$	state of nature with prior <i>p</i>	
• $u_i((a_i, a_{-i}), \theta)$	utility function for <i>i</i>	
Information struc	ture (Σ , φ) of the game	
• Σ _i	set of signals for <i>i</i>	agent <i>i</i> observes $\sigma_i \in \Sigma_i$
• $\Sigma = \Sigma_1 \times \Sigma_2 \dots \Sigma_n$	$\sigma \in \Sigma$ is a signal profile	
 φ(σ, θ) 	prob. of $\sigma \in \Sigma$ given state $ heta$	

Note: a_{-i} denotes the set of all agents' actions except *i*'s (similar definition for σ_{-i})

Equilibrium Concepts

Bayes Nash Equilibrium (BNE)

- A **strategy** for player *i* is $\beta_i : \Sigma_i \to \Delta(A_i)$
- $\beta_i (a_i | \sigma_i)$ = Prob(take a_i when observing σ_i)

 $\{\beta_i\}_{i=1,\dots,n} \text{ forms a BNE if unilateral deviation is not beneficial for any agent.}$ Specifically, for any agent *i*, signal $\sigma_i \in \Sigma_i$, action $a_i \in A_i$ with $\beta_i(a_i | \sigma_i) > 0$, $\sum_{\sigma_{-i}, a_{-i}} p(\theta)\varphi((\sigma_i, \sigma_{-i}), \theta) \left(\Pi_{j \neq i}\beta_j(a_j | \sigma_j)\right) u_i((a_i, a_{-i}), \theta)$ $\geq \sum_{\sigma_{-i}, a_{-i}} p(\theta)\varphi((\sigma_i, \sigma_{-i}), \theta) \left(\Pi_{j \neq i}\beta_j(a_j | \sigma_j)\right) u_i((a'_i, a_{-i}), \theta)$ for all $a'_i \in A_i$

Equilibrium Concepts

Bayes Correlated Equilibrium (BCE)

- An action recommendation rule $\pi : \Theta \times \Sigma \to \Delta(A)$
- π (*a* | θ , σ) = Prob(recommend action profile *a* conditioned on θ , σ)

 $\pi \text{ is a BCE if the recommendation satisfies following obedience constraints:}$ for any agent *i*, signal $\sigma_i \in \Sigma_i$, action $a_i \in A_i$, $\sum_{\sigma_{-i}, a_{-i}} p(\theta)\varphi((\sigma_i, \sigma_{-i}), \theta)\pi[(a_i, a_{-i})|\theta, (\sigma_i, \sigma_{-i})]u_i((a_i, a_{-i}), \theta)$ $\geq \sum_{\sigma_{-i}, a_{-i}} p(\theta)\varphi((\sigma_i, \sigma_{-i}), \theta)\pi[(a_i, a_{-i})|\theta, (\sigma_i, \sigma_{-i})]u_i((a'_i, a_{-i}), \theta)$ for all $a'_i \in A_i$

A Simple Fact

Fact 6

Any BNE corresponds to a BCE.

Proof.

Follows from definition.

Formally, let π ($a \mid \theta, \sigma$) = $\Pi_i \beta_i (a_i \mid \sigma_i)$ for each θ .

Comparison of Information Structures

- Goal: compare informativeness of information structures
- Recall: Blackwell order compares informativeness of signaling schemes
 - (Σ', φ') is a garbling of (Σ, φ) if they can be coupled such that Σ' is independent of θ conditioned on Σ

A generalization of **garbling** for $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n) \in \Sigma$:

Information structure (Σ, φ) is **individually sufficient** for (Σ', φ') if they can be coupled such that for any i = 1, 2, ..., n, Σ'_i is independent of θ and Σ_{-i} conditioned on Σ_i .

Intuitively, (Σ, φ) is more informative than (Σ', φ')

Comparison of Information Structures

Theorem [Bergemann/Morris 2016]

(Σ , φ) is **individually sufficient** for (Σ ', φ ') *if and only if* the set of BCE induced by (Σ , φ) is a **subset** of the set of BCE induced by (Σ ', φ ') for all Bayesian games.

Remarks:

• More information means smaller BCE set (because more constraints)

Obedience constraints in BCE: for any agent *i*, signal $\sigma_i \in \Sigma_i$, action $a_i \in A_i$, $\sum_{\sigma_{-i}, a_{-i}} p(\theta)\varphi((\sigma_i, \sigma_{-i}), \theta)\pi[(a_i, a_{-i})|\theta, (\sigma_i, \sigma_{-i})]u_i((a_i, a_{-i}), \theta)$ $\geq \sum_{\sigma_{-i}, a_{-i}} p(\theta)\varphi((\sigma_i, \sigma_{-i}), \theta)\pi[(a_i, a_{-i})|\theta, (\sigma_i, \sigma_{-i})]u_i((a'_i, a_{-i}), \theta)$ for all $a'_i \in A_i$

Comparison of Information Structures

Theorem [Bergemann/Morris 2016]

(Σ , φ) is **individually sufficient** for (Σ ', φ ') *if and only if* the set of BCE induced by (Σ , φ) is a **subset** of the set of BCE induced by (Σ ', φ ') for all Bayesian games.

Remarks:

- More information means smaller BCE set (because more constraints)
- Defines a *partial order* over information structures

	Cooj	perate	De	fect
0		-3		0
Cooperate	-3		-9	
Defect		-9		-6
Defect	0		-6	

	Соор	erate	Defe	ect	
Cooperate		-3 + θ		0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $
cooperate	-3 + θ		-9 + <i>θ</i>		to encourage cooperation
Defect		-9 + <i>θ</i>		-6	to encourage cooperation
201000	0		-6		

- Information structure I: players know θ exactly (full information)
 - A game of complete information is played for each θ
 - Unique BNE and BCE

	Соор	erate	Defe	ect	
Cooperato		-3 + θ		0	
cooperate	-3 + θ		-9 + θ		Reward $\theta \sim \text{uniform}\{0, 2, 4.1\}$
Defect		-9 + <i>θ</i>		-6	
Derect	0		-6		

- Information structure II: players know whether θ = 0 or not
 - After realization of θ , φ reveals " $\theta \neq 0$ " or " $\theta = 0$ "
- Unique Bayes Nash Equilibrium:
- For each player: " $\theta = 0$ " \rightarrow defect; " $\theta \neq 0$ " \rightarrow cooperate

	Соор	erate	Defe	ect	
Cooperate		-3 + θ		0	$\begin{bmatrix} \text{Doward } \theta \sim \text{uniform} \{0, 2, 4, 1\} \end{bmatrix}$
cooperate	-3 + θ		-9 + θ		to encourage cooperation
Defect		-9 + <i>θ</i>		-6	to encourage cooperation
201000	0		-6		

- Information structure II: players know whether θ = 0 or not
 - After realization of θ , φ reveals " $\theta \neq 0$ " or " $\theta = 0$ "
- This BNE corresponds to a BCE, but there are also other BCEs.
- π ((cooperate, cooperate) | θ = 4.1, " $\theta \neq 0$ ") = 1
- π ((defect, defect) | θ = 2, " $\theta \neq$ 0") = 1
- π ((defect, defect) | θ = 0, " θ = 0") = 1

	Соор	erate	Defe	ect	
Commente		-3 + θ		0	
Cooperate	-3 + θ		-9 + <i>θ</i>		Reward $\theta \sim uniform\{0, 2, 4.1\}$
Defect		-9 + <i>θ</i>		-6	
Derect	0		-6		

• Information structure III: players know nothing about θ besides its prior

<u>Exercise</u>: prove there is still a unique BNE, but the set of BCE is even larger than the previous one

A Useful Remark for Bayesian Games

A Bayesian agent in equilibrium cannot be misinformed

(There is no lying or misinformation. Agents can only be more informed or less informed)

<u>Explanation</u>: models assume that players know all prior distributions, and player actions and signals are indeed drawn from these distributions.

Recap and Takeaways

Signals

 Signal ←→ set of posterior beliefs {p₁,...,p_n} whose expectation is the prior. (amenable to linear programs)

Decision problems

• Decision problem $\leftarrow \rightarrow$ convex function G on Δ_{θ} .

Revelation principles

- For agents: can WLOG report belief on θ ; optimal action is simulated.
- For signaller: can WLOG signal a recommended action (it will be followed).

Bayesian Games

- Games with uncertainty and player private information
- Main solution concepts: Bayes-Nash and Bayes-Correlated equilibria
- Information structure affects equilibrium

Notation

 A Θ u(a, θ) 	set of actions set of states of the world utility function	agent chooses <i>a</i> nature draws θ
• p • Σ • ω(σ. θ)	prior distribution on Θ a signal (also refers to set of realizations) probability of signal σ given state θ	known to agent agent observes $\Sigma = \sigma$
• p_{σ}	posterior distribution on θ given σ	given by Bayes' rule

- *G*(*q*)
- a*(q)
- $V^{u,\varphi}(\Sigma)$
- $= \mathbf{E}_{\theta \sim q} u(a, \theta)$ = max_a u(a; q) = argmax_a u(a; q) = $\mathbf{E}_{\sigma \sim \varphi} G(p_{\sigma})$

linear function of qconvex function of qoptimal action given qexp. utility observing Σ