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Background
•  Much of economic activity and strategic behavior centers around
    the flow of information
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Background
•  Much of economic activity and strategic behavior centers around
    the flow of information

•  Traditional approaches: information in a game is fixed

•  Reality: information can be actively designed/elicited/transferred

•  Recent, fundamental questions: 
- How to reason about value of information?
- How does information influence strategic behavior?
- How to elicit valuable information from strategic sources?
- How to design information structures to yield desired equilibrium?
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Topics Covered in this Tutorial
•  Signals as carriers of information, and their properties

•  Single-agent decision problems and effect of information

•  Bayesian games, equilibrium concepts, and effect of information

•  Informational substitutes: definitions, applications, and algorithms

•  Persuasion: models, algorithmic study, applications and generalizations

•  Open problems and directions
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Schedule of the Tutorial

8:30 am - 9:30 am 
Part 1: Basics of decisionmaking  under uncertainty

(short break)

9:40 am - 10:30 am
Part 2: Informational substitutes and complements

(10:30 am - 11:00 am  coffee break)

11:00 am - 12:30 am
Part 3: Algorithmic persuasion
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Outline of Part 1

A. Model of information and signals
- basic properties of signals

B. Model of a single decisionmaker
- basic properties of decision problems
- how information impacts decisions
- Blackwell ordering

C. Bayesian games
- equilibrium concepts
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Part 1A:
Model of information and signals
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Notation
•  A set of actions
•  ᶊ set of states of the world
•  u(a, ᶚ) utility function

•  p prior distribution on ᶊ
•  Σ a signal (also refers to set of realizations)
•  ᶨ(ᶥ, ᶚ) probability of signal ᶥ given state ᶚ
•  pᶥ posterior distribution on ᶊ given ᶥ
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agent chooses a
nature draws ᶚ

known to agent
agent observes Σ=ᶥ

given by Bayes’ rule



Basic properties of signals

9



Probability distributions, signals
•  Agent starts with prior belief p in Δᶊ
•  Agent observes signal ᶥ from conditional distribution ᶨ(ᶥ, ᶚ)
•  Agent updates to posterior belief pᶥ using Bayes’ rule
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(1) For all conditional distributions, E[ pᶥ] = p.
(On average, the posterior equals the prior.)
(Your current belief is your expectation of your future belief.)

(2) For any set of points {p1,...,pn} such that p is in their convex hull, there
exists a ᶨ inducing this set of posterior beliefs.

Fact 1

Proof.
(1) E Pr[ᶚ|ᶥ] = ᵑᶥ Pr[ᶥ] Pr[ᶚ|ᶥ] = ᵑᶥPr[ᶚ, ᶥ] = Pr[ᶚ].

(2) Write p = ᵑᶥ ᶓᶥ pᶥ  and let ᶨ(ᶥ, ᶚ) = ᶓᶥ pᶥ(ᶚ) / p(ᶚ).
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1[clear]

1[rain] 1[snow]

Probability simplex on ᶊ = {clear, rain, snow}

Example: a journey through Ithaca

uniform distribution
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1[clear]

1[rain] 1[snow]

Probability simplex on ᶊ = {clear, rain, snow}

Simplest signal: observe ᶚ itself. ᶨ(ᶚ, ᶚ) = 1.
•  prain = 1[rain] and so on.
•  Fact 1.1: p = E[ pᶚ].

Example: a journey through Ithaca

p
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1[clear]

1[rain]

Probability simplex on ᶊ = {clear, rain, snow}

Simplest signal: observe ᶚ itself. ᶨ(ᶚ, ᶚ) = 1.

An example where each pᶥ is uniform
on two of the states.
•  Fact 1.2 says this is possible because p is
    in the convex hull.
•  Fact 1.1 implies Pr[ᶥ = 3] is small.

1[snow]

Example: a journey through Ithaca

p
p1 p2

p3
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1[clear]

1[rain]

Probability simplex on ᶊ = {clear, rain, snow}

Simplest signal: observe ᶚ itself. ᶨ(ᶚ, ᶚ) = 1.

An example where each pᶥ is uniform
on two of the states.

A generic example with |Σ| = 4.
•  System overdetermined; multiple schemes exist

1[snow]

Example: a journey through Ithaca

p
p1

p2

p3

p4
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1[clear]

1[rain]

•  The prior is p.
•  Meteorologist Marsha observes signal ᶨ(ᶥ, ᶚ).
•  Marsha wants to design a signal ᶨ’(ᶥ’, ᶥ).

What is the space of achievable
signalling schemes?
•  Think of Σ as the new state space!

1[snow]

The Ithaca meteorologist

p
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•  The prior is p.
•  Meteorologist Marsha observes signal ᶨ(ᶥ, ᶚ).
•  Marsha wants to design a signal ᶨ’(ᶥ’, ᶥ).

What is the space of achievable
signalling schemes?
•  Think of Σ as the new state space!
    (The convex hull of {pᶥ} is the new simplex.)

•  Can easily characterize all schemes:
     •  E pᶥ’ = p .
     •  p must be in the convex hull of {pᶥ’ } which
         must be in the convex hull of {pᶥ}.
     •  For each ᶥ’, E[ pᶥ  | ᶥ’ ] = pᶥ’ .

Therefore: It is without much
loss to assume that a signaller
observes the true state ᶚ.

The Ithaca meteorologist

p



Part 1B:
Decision problems
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Notation
•  A set of actions
•  ᶊ set of states of the world
•  u(a, ᶚ) utility function

•  p prior distribution on ᶊ
•  Σ a signal (also refers to set of realizations)
•  ᶨ(ᶥ, ᶚ) probability of signal ᶥ given state ᶚ
•  pᶥ posterior distribution on ᶊ given ᶥ

•  u(a ; q) = Eᶚ~q u(a, ᶚ)
•  G(q) = maxa u(a ; q)
•  a*(q) = argmaxa u(a ; q)
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agent chooses a
nature draws ᶚ

known to agent
agent observes Σ=ᶥ

given by Bayes’ rule

linear function of q
convex function of q

optimal action given q



Basics of decision problems
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Decision problems and convex functions
•  Agent must choose a based on belief q
•  Assume: chooses to maximize expectedq utility
•  Write G(q) = “expected utility for optimalq action”

How to characterize all possible decision problems?
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q may be prior or posterior



Decision problems and convex functions
•  Agent must choose a based on belief q
•  Assume: chooses to maximize expectedq utility
•  Write G(q) = “expected utility for optimalq action”
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q may be prior or posterior

(1) For every decision problem (A, ᶊ, u), G(q) = maxa u(a ; q)  is convex.

(2) Every convex  G : Δᶊ → R  is the expected utility function for some
decision problem (A, ᶊ, u).

Fact 2

Proof.
(1) Each u(a ; q) is a linear function of q; a max of linear functions is convex.

(2) We can write G as a maximum of linear functions of q.
Assign each linear function to an action a and write it as u(a ; q).
Define u(a, ᶚ) = u(a ; 1[ᶚ]) = expected utility for a under belief Pr[ᶚ] = 1.
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1[clear]

1[rain] 1[snow]

walk

ride

Probability simplex on ᶊ = {clear, rain, snow}
A = {walk, ride}

Pictured: best-response a*(q).
For some beliefs q, it is preferable to walk;
for others, it is preferable to ride.

Example: a journey through Ithaca
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Example: a journey through Ithaca

1[clear]

1[rain] 1[snow]

walk

7

7

7

Probability simplex on ᶊ = {clear, rain, snow}
A = {walk, ride}
If we ride:

u(ride, clear) = 7
u(ride, snow) = 7
u(ride, rain) = 7

u(ride ; q)
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Example: a journey through Ithaca

1[clear]

1[rain] 1[snow]

walk

8

10

2

Probability simplex on ᶊ = {clear, rain, snow}
A = {walk, ride}
If we ride:

u(ride, clear) = 7
u(ride, snow) = 7
u(ride, rain) = 7

If we walk:
u(walk, clear) = 10
u(walk, snow) = 8
u(walk, rain) = 2

u(walk ; q)
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Example: a journey through Ithaca

1[clear]

1[rain] 1[snow]

walk

Probability simplex on ᶊ = {clear, rain, snow}
A = {walk, ride}
If we ride:

u(ride, clear) = 7
u(ride, snow) = 7
u(ride, rain) = 7

If we walk:
u(walk, clear) = 10
u(walk, snow) = 8
u(walk, rain) = 2

G(q) = expected utility 
for acting optimally 
under belief q
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1[clear]

1[rain] 1[snow]

A decision problem S(a, ᶚ) with A = Δᶊ is a 
proper scoring rule if a*(q) = q, i.e. it is
always optimal to choose one’s true belief.

Example: proper scoring rules
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1[clear]

1[rain] 1[snow]

A decision problem S(a, ᶚ) with A = Δᶊ is a 
proper scoring rule if a*(q) = q, i.e. it is
always optimal to choose one’s true belief.

Solution: take any convex
function G.

For each q, there will be a
tangent hyperplane.

Strictly convex ←→ strictly proper
(truthfulness is uniquely optimal)

Example: proper scoring rules
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A decision problem S(a, ᶚ) with A = Δᶊ is a 
proper scoring rule if a*(q) = q, i.e. it is
always optimal to choose one’s true belief.

Solution: take any convex
function G.

For each q, there will be a
tangent hyperplane.

Example: S(a, ᶚ) = log a(ᶚ).
•  S(a ; q) = ᵑᶚ q(ᶚ) log a(ᶚ).
•  Optimal action a = q.
•  G(q) = ᵑᶚ q(ᶚ) log q(ᶚ)  =  -H(q).

Example: proper scoring rules
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Revelation principle for agents

For every decision problem (A, ᶊ, u), there is a corresponding proper scoring 
rule (Δᶊ, ᶊ, S) that is utility-equivalent: the expected utility is always equal.

Fact 3

Proof.
Define S(q, ᶚ) = u(a*(q), ᶚ).

In other words: given agent’s reported belief q, plug action a*(q) into the 
original decision problem.

Truthfulness is an optimal action, and expected utility for any belief is equal 
in both problems.



Signals and decisionmaking
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How signals affect decisionmaking
•  Agent begins with prior belief p on ᶊ.
•  She would take action a*(p) = argmaxa u(a ; p).
•  After receiving signal ᶥ, she takes a*(pᶥ).

31

1[clear]

1[rain] 1[snow]

walk

ride

1[rain] 1[snow]

p
p1 p2

p3



How signals affect decisionmaking
•  Agent begins with prior belief p on ᶊ.
•  She would take action a*(p) = argmaxa u(a ; p).
•  After receiving signal ᶥ, she takes a*(pᶥ).
•  Expected utility is Vu,ᶨ(Σ)  :=  Eᶥ~ᶨG(pᶥ).
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1[clear]

1[rain] 1[snow]

walk
p

p1 p2

p3

More information always
increases expected utility in
a decision problem.

Fact 4

Proof.
    Vu,ᶨ(Σ)
=  EᶥG(pᶥ)
≥ G(Eᶥpᶥ)    (Jensen’s inequality)
=  G(p)
=  exp. utility with no signal.
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Revelation principle for signallers

For every signalling scheme ᶨ in decision problem (A, ᶊ, u), there is a direct,
persuasive ᶨ’ that outcome-equivalent: induces the same distribution on a, ᶚ.

Fact 5

ᶨ is direct if Σ = A (each signal recommends a unique action),
and persuasive if it is optimal to comply, i.e. a*(pa) = a.

Proof.
Merge all signals ᶥ inducing action a, i.e. a = a*(pᶥ), into a single signal s.

Then ps is a convex combination of the {pᶥ}, so
argmaxa’ u(a’ ; ps)   =   argmaxa’ ᵑᶥ ᶓᶥ u(a’ ; ps)   =   a.

Repeat for all actions.
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Illustrating the signaller’s revelation principle
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1[clear]

1[rain] 1[snow]

walk

ride

1[rain] 1[snow]

p
p1 p2

p3
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Illustrating the signaller’s revelation principle
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1[clear]

1[rain] 1[snow]

walk

ride

1[rain] 1[snow]

p

pride

pwalk

p3



The Blackwell order
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Garblings and Blackwell order
•  We have a signal Σ distributed according to ᶨ(ᶥ, ᶚ).
•  And we have Σ’ distributed according to ᶨ’(ᶥ’, ᶚ).

Say Σ’ is a garbling of Σ if it can be simulated given Σ, i.e. ᶥ’ is distributed as a 
randomized function f(ᶥ).  (Σ’ is conditionally independent of ᶊ given Σ.)

Fact (cf. 1.2): Σ’ is a garbling of Σ if and only if each pᶥ’ = E[ pᶥ  | ᶥ’ ].

Theorem (Blackwell 1953):
Σ’ is a garbling of Σ if and only if, for all decision problems, Vu,ᶨ(Σ) ≥ Vu,ᶨ(Σ’).

Proof sketch:
(→) Given Σ, we can simulate a draw from Σ’ and take the optimal action.
(←) If not a garbling, there exists a realization ᶥ’ that is more informative in 
some direction than Σ is on average. Make a two-action decision problem that 
rewards this knowledge...
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Blackwell proof - an easy version

38

1[clear]

1[rain] 1[snow]1[rain] 1[snow]

p
 pᶥ’

posteriors pᶥ

If pᶥ’ is not in the convex hull of { pᶥ}, then
definitely not a garbling ⇒ for some u,
Σ’ is preferable.



Blackwell proof - an easy version
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1[clear]

1[rain] 1[snow]1[rain] 1[snow]

p
 pᶥ’

posteriors pᶥ

action 1

action 2

If pᶥ’ is not in the convex hull of { pᶥ}, then
definitely not a garbling ⇒ for some u,
Σ’ is preferable.



Blackwell proof - an easy version
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1[rain] 1[snow]

p
 pᶥ’

posteriors pᶥ

1[clear]
0

0

0

If pᶥ’ is not in the convex hull of { pᶥ}, then
definitely not a garbling ⇒ for some u,
Σ’ is preferable.

Vu,ᶨ(Σ) = 0
Vu,ᶨ(Σ’) > 0.



Blackwell proof - general idea
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1[clear]

1[rain] 1[snow]1[rain] 1[snow]

p
 pᶥ’

posteriors pᶥ

If not a garbling, there exists a 
realization ᶥ’ that is more informative in 
some direction than Σ is on average.



Blackwell proof - general idea
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If not a garbling, there exists a 
realization ᶥ’ that is more informative in 
some direction than Σ is on average.

1[clear]

1[rain] 1[snow]1[rain] 1[snow]

posteriors pᶥ

action 1

action 2

 pᶥ’



Part 1C:
Bayesian games
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The Game Model

•  I = {1,...,n}                set of agents
•  Ai set of actions for agent i
•  A = A1 ✕ A2 … An a ∈ A is an action profile
•  θ ∈ ᶊ state of nature with prior p
•  ui( (ai , a-i), ᶚ )          utility function for i

•  Σi   set of signals for i
•  Σ = Σ1 ✕ Σ2 … Σn   ᶥ ∈ Σ  is a signal profile
•  ᶨ(ᶥ, ᶚ)            prob. of ᶥ ∈ Σ  given state ᶚ

44

Agent i
Agent i chooses ai ∈ Ai

agent i observes ᶥi ∈ Σi

The basic game

Information structure (Σ, ᶨ) of the game

Note:   a-i denotes the set of all agents’ actions except i’s     
            (similar definition for ᶥ-i ) 



Equilibrium Concepts
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Specifically, for any agent i, signal ᶥi  ∈ Σi, action ai ∈ Ai with βi (ai|ᶥi) > 0,

Bayes Nash Equilibrium (BNE)

•  A strategy for player i is βi : Σi → Δ(Ai)
•  βi (ai|ᶥi)= Prob(take ai when observing ᶥi )

{βi }i=1,...,n  forms a BNE if unilateral deviation is not beneficial for any agent.



Equilibrium Concepts
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ᶢ is a BCE if the recommendation satisfies following obedience constraints:

for any agent i, signal ᶥi  ∈ Σi, action ai ∈ Ai,

Bayes Correlated Equilibrium (BCE)

•  An action recommendation rule ᶢ : ᶊ ✕ Σ → Δ(A)
•  ᶢ (a|ᶚ, ᶥ )= Prob(recommend action profile a conditioned on ᶚ, ᶥ )



A Simple Fact
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Any BNE corresponds to a BCE.

Fact 6

Proof.

Follows from definition. 

Formally, let ᶢ (a|ᶚ, ᶥ ) =  ᵎi βi (ai|ᶥi)  for each ᶚ.



Comparison of Information Structures
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•  Recall: Blackwell order compares informativeness of signaling schemes
     •  (Σ’, ᶨ’) is a garbling of (Σ, ᶨ) if they can be coupled such that Σ’ is 
       independent of θ conditioned on Σ

A generalization of garbling for ᶥ=(ᶥ1 ,ᶥ2  ,..., ᶥn ) ∈ Σ:

Information structure (Σ, ᶨ) is individually sufficient for  (Σ’, ᶨ’) if they 
can be coupled such that for any i  =1,2,...,n,  Σ’i is independent of θ and Σ-i 
conditioned on Σi .  

•  Goal: compare informativeness of information structures

Intuitively, (Σ, ᶨ) is more informative than  (Σ’, ᶨ’) 



Comparison of Information Structures
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(Σ, ᶨ) is individually sufficient for  (Σ’, ᶨ’) if and only if the set of BCE induced 
by (Σ, ᶨ) is a subset of the set of BCE induced by (Σ’, ᶨ’) for all Bayesian games.

Theorem [Bergemann/Morris 2016]

Obedience constraints in BCE: for any agent i, signal ᶥi  ∈ Σi, action ai ∈ Ai,

Remarks:

•  More information means smaller BCE set (because more constraints)



Comparison of Information Structures
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Remarks:

•  More information means smaller BCE set (because more constraints)

•  Defines a partial order over information structures

(Σ, ᶨ) is individually sufficient for  (Σ’, ᶨ’) if and only if the set of BCE induced 
by (Σ, ᶨ) is a subset of the set of BCE induced by (Σ’, ᶨ’) for all Bayesian games.

Theorem [Bergemann/Morris 2016]



Prisoner’s Dilemma of Incomplete Information
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Cooperate Defect

Cooperate
-3 + ᷔ 0

-3 + ᷔ -9 + ᷔ

Defect
-9 + ᷔ -6

0 -6



Prisoner’s Dilemma of Incomplete Information
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Cooperate Defect

Cooperate
-3 + ᷔ 0

-3 + ᷔ -9 + ᷔ

Defect
-9 + ᷔ -6

0 -6

•  Information structure I: players know ᷔ exactly (full information)
● A game of complete information is played for each ᷔ
● Unique BNE and BCE

Reward ᷔ 〜 uniform{0, 2, 4.1} 
to encourage cooperation



Prisoner’s Dilemma of Incomplete Information
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Cooperate Defect

Cooperate
-3 + ᷔ 0

-3 + ᷔ -9 + ᷔ

Defect
-9 + ᷔ -6

0 -6

•  Information structure II: players know whether ᷔ = 0 or not
● After realization of ᷔ, ᶨ reveals “ᷔ ≠ 0”  or  “ᷔ = 0” 

Reward ᷔ 〜 uniform{0, 2, 4.1} 
to encourage cooperation

•  Unique Bayes Nash Equilibrium: 
● For each player: “ᷔ = 0” → defect; “ᷔ ≠ 0” → cooperate



Prisoner’s Dilemma of Incomplete Information
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Cooperate Defect

Cooperate
-3 + ᷔ 0

-3 + ᷔ -9 + ᷔ

Defect
-9 + ᷔ -6

0 -6

•  Information structure II: players know whether ᷔ = 0 or not
● After realization of ᷔ, ᶨ reveals “ᷔ ≠ 0”  or  “ᷔ = 0” 

Reward ᷔ 〜 uniform{0, 2, 4.1} 
to encourage cooperation

•  This BNE corresponds to a BCE, but there are also other  BCEs.
●  ᶢ ( (cooperate, cooperate) |ᶚ = 4.1, “ᷔ ≠ 0” ) = 1 
●  ᶢ ( (defect, defect) |ᶚ = 2, “ᷔ ≠ 0”) = 1 
●  ᶢ ( (defect, defect) |ᶚ = 0,  “ᷔ = 0”) = 1  



Prisoner’s Dilemma of Incomplete Information
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Cooperate Defect

Cooperate
-3 + ᷔ 0

-3 + ᷔ -9 + ᷔ

Defect
-9 + ᷔ -6

0 -6

•  Information structure III: players know nothing about ᷔ besides its prior 

Reward ᷔ 〜 uniform{0, 2, 4.1} 
to encourage cooperation

Exercise: prove there is still a unique BNE, but the set of BCE is even 
larger than the previous one



A Useful Remark for Bayesian Games
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A Bayesian agent
in equilibrium

cannot be misinformed
(There is no lying or misinformation. 

Agents can only be more informed or less informed)

Explanation: models assume that players know all prior distributions, and 
player actions and signals are indeed drawn from these distributions.



Recap and Takeaways
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Signals
•  Signal ←→ set of posterior beliefs {p1,...,pn} whose expectation is the prior.
    (amenable to linear programs)

Decision problems
•  Decision problem ←→ convex function G on Δᶊ.

Revelation principles
•  For agents: can WLOG report belief on ᶊ; optimal action is simulated.
•  For signaller: can WLOG signal a recommended action (it will be followed).

Bayesian Games
•  Games with uncertainty and player private information
•  Main solution concepts: Bayes-Nash and Bayes-Correlated equilibria
•  Information structure affects equilibrium



Notation
•  A set of actions
•  ᶊ set of states of the world
•  u(a, ᶚ) utility function

•  p prior distribution on ᶊ
•  Σ a signal (also refers to set of realizations)
•  ᶨ(ᶥ, ᶚ) probability of signal ᶥ given state ᶚ
•  pᶥ posterior distribution on ᶊ given ᶥ

•  u(a ; q) = Eᶚ~q u(a, ᶚ)
•  G(q) = maxa u(a ; q)
•  a*(q) = argmaxa u(a ; q)
•  Vu,ᶨ(Σ) = Eᶥ~ᶨG(pᶥ)
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agent chooses a
nature draws ᶚ

known to agent
agent observes Σ=ᶥ

given by Bayes’ rule

linear function of q
convex function of q

optimal action given q
exp. utility observing Σ


