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Background

* Much of economic activity and strategic behavior centers around
the flow of information

» Traditional approaches: information in a game is fixed
» Reality: information can be actively designed/elicited/transferred

* Recent, fundamental questions:
- How to reason about value of information?
- How does information influence strategic behavior?
- How to elicit valuable information from strategic sources?
- How to design information structures to yield desired equilibrium?



Topics Covered in this Tutorial

 Signals as carriers of information, and their properties

Single-agent decision problems and effect of information

Bayesian games, equilibrium concepts, and effect of information

Informational substitutes: definitions, applications, and algorithms

Persuasion: models, algorithmic study, applications and generalizations

Open problems and directions



Schedule of the Tutorial

8:30 am - 9:30 am
Part 1: Basics of decisionmaking under uncertainty

9:40 am - 10:30 am
Part 2: Informational substitutes and complements

11:00 am - 12:30 am
Part 3: Algorithmic persuasion



Outline of Part 1

. Model of information and signals
- basic properties of signals

. Model of a single decisionmaker

- basic properties of decision problems
- how information impacts decisions

- Blackwell ordering

. Bayesian games
- equilibrium concepts



Part 1A:
Model of information and signals



Notation

¢« A set of actions agent chooses a
* O set of states of the world nature draws 6
* u(a, 9) utility function

°*p prior distribution on 6 known to agent
3> a signal (also refers to set of realizations) agent observes X=¢
* ¢(o, 0) probability of signal ¢ given state 0

* D, posterior distribution on 6 given o given by Bayes’ rule



Basic properties of signals



Probability distributions, signals

 Agent starts with prior belief p in A
» Agent observes signal ¢ from conditional distribution ¢(o, 6)
 Agent updates to posterior belief p_using Bayes’ rule

:Factl

(1) For all conditional distributions, E[ p ] = p.
(On average, the posterior equals the prior.)
(Your current belief is your expectation of your future belief.)

(2) For any set of points {p.,...,p _} such that p is in their convex hull, there
exists a ¢ inducing this set of posterior beliefs.

Proof.
(1) EPr[0|c]l =X Prlo] Pr[0]|c] = X Pr[6, ] = Pr[0].

(2) Writep=X o _p andletg(o, 0)=a_p (0)/p(0).
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_Example: a journey through Ithaca

Probability simplex on 6 = {clear, rain, snow}

1[clear]

uniform distribution

1[rain] 1[snow]
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_Example: a journey through Ithaca

Probability simplex on 6 = {clear, rain, snow}

1[clear]

Simplest signal: observe 0 itself. (0, 6) = 1.
* Dy = 1lrain] and so on.
« Fact 1.1: p=E[ p,l.

1[rain] 1[snow]
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_Example: a journey through Ithaca

Probability simplex on 6 = {clear, rain, snow}

Simplest signal: observe 0 itself. (0, 6) = 1. 1[clear]

An example where each p_is uniform

on two of the states.

» Fact 1.2 says this is possible because p is
in the convex hull.

» Fact 1.1 implies Pr[o = 3] is small.

By

1[rain] Ps

1[snow]
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_Example: a journey through Ithaca

Probability simplex on 6 = {clear, rain, snow}

1[clear]

Simplest signal: observe 6 itself. ¢(6, 6) = 1.

An example where each p_is uniform
on two of the states.

A generic example with |X| = 4.
» System overdetermined; multiple schemes exist

1[rain] 1[snow]
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The Ithaca meteorologist

* The prior is p.
» Meteorologist Marsha observes signal ¢(o, 6). 1[clear]
 Marsha wants to design a signal ¢’(¢’, o).

What is the space of achievable
signalling schemes?
* Think of X as the new state space!

1[rain] 1[snow]
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The Ithaca meteorologist

* The prior is p.
» Meteorologist Marsha observes signal ¢(o, 6).
 Marsha wants to design a signal ¢’(¢’, o).

What is the space of achievable

signalling schemes?

* Think of X as the new state space!
(The convex hull of {p_} is the new simplex.)

» Can easily characterize all schemes:

*Ep y =D
* p must be in the convex hull of {p_, } which
must be in the convex hull of {p }.

* Foreacho’, E[p, |’ 1=p,. .

Therefore: It is without much
loss to assume that a signaller
observes the true state 6.
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Part 1B:
Decision problems



\ Notation

¢« A set of actions agent chooses a
* O set of states of the world nature draws 6
* u(a, 9) utility function

°*p prior distribution on 6 known to agent
3> a signal (also refers to set of realizations) agent observes X=¢
* ¢(o, 0) probability of signal ¢ given state 0

* D, posterior distribution on 6 given o given by Bayes’ rule
e u(a;q) =E,., u(a, 0) linear function of g
¢ G(q) =max_u(a; q) convex function of g
* a*(q) = argmax_u(a; q) optimal action given q
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Basics of decision problems

19



Decision problems and convex functions

» Agent must choose a based on belief g g may be prior or posterior
* Assume: chooses to maximize eXpectedq utility
» Write G(q) = “expected utility for optimalq action”

How to characterize all possible decision problems?

20



Decision problems and convex functions

» Agent must choose a based on belief g g may be prior or posterior

* Assume: chooses to maximize eXpectedq utility
» Write G(q) = “expected utility for optimalq action”

\Factz

(1) For every decision problem (4, 0, u), G(q) = max_ u(a; q) is convex.

(2) Everyconvex G:A,— R isthe expected utility function for some
decision problem (4, 6, u).

Proof.
(1) Each u(a; q) is a linear function of ¢; a max of linear functions is convex.

(2) We can write G as a maximum of linear functions of q.
Assign each linear function to an action a and write it as u(a ; q).
Define u(a, 0) = u(a ; 1[0]) = expected utility for a under belief Pr[0] = 1.
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_Example: a journey through Ithaca

Probability simplex on 6 = {clear, rain, snow}

A = {walk, ride} 1[clear]

Pictured: best-response a*(q).
For some beliefs g, it is preferable to walk;
for others, it is preferable to ride.

1[rain] 1[snow]
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_Example: a journey through Ithaca

Probability simplex on 6 = {clear, rain, snow}
A = {walk, ride}

If we ride: ‘
u(ride, clear) =7
u(ride, snow) =7
u(ride, rain) = 7 ‘

1[clear]

1[snow]
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_Example: a journey through Ithaca

Probability simplex on 6 = {clear, rain, snow}

A = {walk, ride}

If we ride: ‘
u(ride, clear) =7

u(ride, snow) =7
u(ride, rain) = 7 ‘ ‘

If we walk: 110
u(walk, clear) = 10
u(walk, snow) = 8 1
u(walk, rain) = 2
)

1[clear]

u(walk ; q)

1[rain] 1[snow]
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_Example: a journey through Ithaca

Probability simplex on 6 = {clear, rain, snow}
A = {walk, ride}

If we ride: ‘
u(ride, clear) =7
u(ride, snow) =7
u(ride, rain) = 7 ‘
If we walk:
u(walk, clear) = 10
u(walk, snow) = 8 1
u(walk, rain) = 2

G(q) = expected utility

for acting optimally
under belief g

1[clear]

1[rain]

snow]
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Example: proper scoring rules

A decision problem S(a, 0) with A = A is a
proper scoring rule if a*(q) = q, 1.e. it is
always optimal to choose one’s true belief. 1[clear]

1[rain] 1[snow]

26



Example: proper scoring rules

A decision problem S(a, 0) with A = A is a
proper scoring rule if a*(q) = q, 1.e. it is

always optimal to choose one’s true belief. 1[clear]

Solution: take any convex
function G.

For each g, there will be a
tangent hyperplane.

Strictly convex «— strictly proper
(truthfulness is uniquely optimal) / "

1[rain] 1[snow]
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_Example: proper scoring rules

A decision problem S(a, 0) with A = A is a
proper scoring rule if a*(q) = q, 1.e. it is
always optimal to choose one’s true belief.

Solution: take any convex
function G.

For each g, there will be a
tangent hyperplane.

Example: S(a, 0) = log a(9).

* Sla; q) =X, q0)log a(o).

* Optimal action a = q.

* G(q) =X, q(0) log q(6) = -H(q).
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Revelation principle for agents

:FactB

For every decision problem (4, 6, u), there is a corresponding proper scoring
rule (A, 6, S) that is utility-equivalent: the expected utility is always equal.

VProof.
Define S(q, 6) = u(a*(q), 0).

In other words: given agent’s reported belief g, plug action a*(q) into the
original decision problem.

Truthfulness is an optimal action, and expected utility for any belief is equal
in both problem:s.

29



Signals and decisionmaking



_How signals affect decisionmaking

» Agent begins with prior belief p on 6.
* She would take action a*(p) = argmax_u(a ; p).
* After receiving signal o, she takes a*(p ).

1[clear]

1[rain] Ps 1[snow]

31



_How signals affect decisionmaking

» Agent begins with prior belief p on 6.

« She would take action a*(p) = argmax_u(a; p).

* After receiving signal o, she takes a*(p ). ‘
« Expected utility is V(%) := E._GD).

\ \

:Fact4

More information always
increases expected utility in T ®
a decision problem. ° -

Proof. 1
V()
= E G(p)
>G(E p) (Jensen’s inequality)
= G(p)
= exp. utility with no signal.

1[rain] P, 1[snow]
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Revelation principle for signallers

@ 1s direct if T = A (each signal recommends a unique action),
and persuasive if it is optimal to comply, i.e. a*(p ) = a.

:FactS

For every signalling scheme ¢ in decision problem (4, 6, u), there is a direct,
persuasive ¢’ that outcome-equivalent: induces the same distribution on a, 6.

Proof.
Merge all signals ¢ inducing action a, i.e. a = a*(p ), into a single signal s.

Then p_ is a convex combination of the {p }, so
argmax_ u(@;p) = argmax_ X c« u(a’;p) = a.

Repeat for all actions.
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Illustrating the signaller’s revelation principle

1[clear]

1[rain] Ps 1[snow]
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Illustrating the signaller’s revelation principle

1[clear]

1[rain] Ps 1[snow]
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The Blackwell order



_Garblings and Blackwell order

« We have a signal X distributed according to ¢(o, 0).
* And we have ¥’ distributed according to ¢’(¢’, 6).

Say X’ is a garbling of X if it can be simulated given X, i.e. ¢’ is distributed as a
randomized function f(e). (¥’ is conditionally independent of 6 given X.)

Fact (cf. 1.2): ¥’ is a garbling of X if and only if each p ,=E[p_ | ¢’ ].

Theorem (Blackwell 1953):
Y’ is a garbling of X if and only if, for all decision problems, V*?(X) > V%“¢(X’).

Proof sketch:

(—) Given X, we can simulate a draw from ¥’ and take the optimal action.

(«) If not a garbling, there exists a realization ¢’ that is more informative in
some direction than X is on average. Make a two-action decision problem that
rewards this knowledge...

37



Blackwell proof - an easy version

If p_, is not in the convex hull of { p_}, then
definitely not a garbling = for some u, 1[clear]
Y’ is preferable.

@ posteriors p_

1[rain] 1[snow]
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Blackwell proof - an easy version

If p_, is not in the convex hull of { p_}, then
definitely not a garbling = for some u, 1[clear]
Y’ is preferable.

@ posteriors p_

action 2

1[rain] 1[snow]
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Blackwell proof - an easy version

If p_, is not in the convex hull of { p_}, then
definitely not a garbling = for some u,
Y’ is preferable.

Ver(T) = 0 \
Ver(z?) > 0.

@ posteriors p_

\

1[rain]



Blackwell proof - general idea

If not a garbling, there exists a
realization ¢’ that is more informative in
some direction than X is on average.

1[clear]

@ posteriors p_

1[rain] 1[snow]



Blackwell proof - general idea

If not a garbling, there exists a
realization ¢’ that is more informative in
some direction than X is on average.

1[clear]

@ posteriors p_

action 2

1[rain] 1[snow]
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Part 1C:
Bayesian games



\ The Game Model

The basic game

o [={1,..,n} set of agents Agent i
.« A, set of actions for agent i Agent i chooses a, € A,
c A=A, XA,..A a& Aisan action profile

0 <=6 state of nature with prior p

* ul(a,a), o) utility function for i

Information structure (%, ¢) of the game

¢ I set of signals for i agent i observes ¢, € X,
X=X XZX,..X o€ X isasignal profile
* ¢(o, 0) prob. of ¢ € ¥ given state 0

Note: a,denotes the set of all agents’ actions except I’s
(similar definition for o)
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_Equilibrium Concepts

(Bayes Nash Equilibrium (BNE)

* A strategy for playeriis f,: X, — A(A)
* f,(a,|o)= Prob(take a, when observing o)

Specifically, for any agent i, signal o, = X, action a, = A, with g, (a;|c) > 0,

S p(@)p((o1,0-1),6) (H#z-ﬂj(aﬂoj))ui((ai,a_z->,e>

04,04

> Y p0)e((0i,0-:),0) (Hj;ézﬂj (%‘l%‘)) ui((as, a—i), 0)

O_i)0_;

for all a; € A,

{.}._, , formsa BNE if unilateral deviation is not beneficial for any agent.
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_Equilibrium Concepts

(Bayes Correlated Equilibrium (BCE)

 An action recommendationrule z: 6 XX — A(A)
* 7 (a|0, 0 )=Prob(recommend action profile a conditioned on 9, ¢ )

7 1S a BCE if the recommendation satisfies following obedience constraints:

for any agent i, signal 5, = X, actiona, = A,

Y pO)¢((0i,0-4),0)7(ai,a-4)|0, (0i,0—i)]ui((as, as),0)

0_;,a_3

> Z p(e)@(((j@ﬁ O—i)v 9)7‘(‘[(0,@', a—i)|97 (Oia U—i)]ui((a’{iv a’—i)v 9)

O_i,a0_3

for all a] € A;
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A Simple Fact

:FactG

Any BNE corresponds to a BCE.

Proof.
Follows from definition.

Formally, let = (a|60,0) = I . (a;|c) for each 6.
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_Comparison of Information Structures

» Goal: compare informativeness of information structures

« Recall: Blackwell order compares informativeness of signaling schemes
- (¥°, ¢’) is a garbling of (, ¢) if they can be coupled such that X’ is
independent of 6 conditioned on X

A generalization of garbling for o=(¢, ,0, ,...,0,) € XZ:
Information structure (%, ¢) is individually sufficient for (%, ¢’) if they

conditioned on z..

can be coupled such that for any i =1,2,...,n, g8 is independent of 6 and X .

Intuitively, (%, ¢) is more informative than (¥’, ¢’)
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_Comparison of Information Structures

:Theorem [Bergemann/Morris 2016] J

(X, ¢) is individually sufficient for (¥’, ¢’) if and only if the set of BCE induced
by (X, ¢) is a subset of the set of BCE induced by (¥’, ¢’) for all Bayesian games.

Remarks:
» More information means smaller BCE set (because more constraints)

Obedience constraints in BCE: for any agent i, signal ¢, & X, action a, = A,

Y p(0)¢((0i,0-4),0)m((as,0-5)|0, (07, 0-3)]us((ai, a—s), 6)

0—i,0—4

> Y pO)e((0i,0-4), 0)7(ai, a-i)h, (04, 0-i)ui((af, a—s), 0)

0—i,0—4

 for all a;, € A;
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_Comparison of Information Structures

:Theorem [Bergemann/Morris 2016] J

(X, ¢) is individually sufficient for (¥’, ¢’) if and only if the set of BCE induced
by (X, ¢) is a subset of the set of BCE induced by (¥’, ¢’) for all Bayesian games.

Remarks:

» More information means smaller BCE set (because more constraints)

» Defines a partial order over information structures
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_Prisoner’s Dilemma of Incomplete Information

Cooperate Defect
-3 0
Cooperate
-3 9
9 6
Defect
0 -6
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_Prisoner’s Dilemma of Incomplete Information

Cooperate

Defect

Cooperate Defect
-3+6 0
-3+0 9+0
9+0 -6
0 -6

Reward 0 — uniformi{0, 2, 4.1}
to encourage cooperation

» Information structure I: players know 6 exactly (full information)
e A game of complete information is played for each 6
e Unique BNE and BCE
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_Prisoner’s Dilemma of Incomplete Information

Cooperate

Defect

Cooperate Defect
-3+6 0
-3+0 9+0
9+0 -6
0 -6

Reward 0 — uniformi{0, 2, 4.1}
to encourage cooperation

» Information structure II: players know whether = 0 or not
e After realization of 0, ¢ reveals “0 #£0” or “0 =0”

* Unique Bayes Nash Equilibrium:
e For each player: “0 = 0” — defect; “9 # 0” — cooperate
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_Prisoner’s Dilemma of Incomplete Information

Cooperate

Defect

Cooperate Defect
-3+6 0
-3+0 9+0
9+0 -6
0 -6

Reward 0 — uniformi{0, 2, 4.1}
to encourage cooperation

» Information structure II: players know whether = 0 or not
e After realization of 0, ¢ reveals “0 #£0” or “0 =0”

* This BNE corresponds to a BCE, but there are also other BCEs.
e 1 ((cooperate, cooperate) |[0=4.1,“0+£0”)=1

e 1 ((defect, defect) |[0=2,“0+07)=1
e 1 ((defect, defect) |6=0, “0=0")=1
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_Prisoner’s Dilemma of Incomplete Information

Cooperate

Defect

Cooperate Defect
-3+6 0
-3+0 9+0
9+0 -6
0 -6

Reward 0 — uniformi{0, 2, 4.1}
to encourage cooperation

» Information structure III: players know nothing about 0 besides its prior

Exercise: prove there is still a unique BNE, but the set of BCE is even

larger than the previous one
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A Useful Remark for Bayesian Games

A Bayesian agent
In equilibrium
cannot be misinformed

(There is no lying or misinformation.
Agents can only be more informed or less informed)

Explanation: models assume that players know all prior distributions, and
player actions and signals are indeed drawn from these distributions.
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“Recap and Takeaways

Signals
* Signal «— set of posterior beliefs {p.,...,.p,_} whose expectation is the prior.
(amenable to linear programs)

Decision problems
* Decision problem «— convex function G on A_..

Revelation principles
» For agents: can WLOG report belief on 6; optimal action is simulated.
» For signaller: can WLOG signal a recommended action (it will be followed).

Bayesian Games

* Games with uncertainty and player private information

» Main solution concepts: Bayes-Nash and Bayes-Correlated equilibria
» Information structure affects equilibrium
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\ Notation

¢« A set of actions agent chooses a
* O set of states of the world nature draws 6
* u(a, 9) utility function

°*p prior distribution on 6 known to agent
3> a signal (also refers to set of realizations) agent observes X=¢
* ¢(o, 0) probability of signal ¢ given state 0

* D, posterior distribution on 6 given o given by Bayes’ rule
e u(a;q) =E,., u(a, 0) linear function of g
¢ G(q) =max_u(a; q) convex function of g
* a*(q) = argmax_u(a; q) optimal action given q
o VU9(X) = E@N(pG(PO) exp. utility observing
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