Informational Substitutes and Complements

Bo Waggoner University of Pennsylvania

June 18, 2018

Background

- **Substitutes**: the total is less valuable than the sum of individual values each's value decreases given some of the others
- **Complements**: the total is more valuable than the sum of values each's value increases given some of the others
- e.g. bread and pasta; two weather channels left shoe/right shoe; thermometer and humidity reading
- S&C for items are useful concepts in economics and algorithms; how do they apply to **signals**?

What we will cover

- Definitions of **informational substitutes and complements** [Waggoner, Chen 2016; Börgers, Hernando-Veciana, Krähmer 2013]
- Known applications and results:
 - equilibria of prediction markets
 - algorithms for S&C [Kong, Schoenebeck 2018]
 - information acquisition

connections to experimental design, statistics, econ

- Known examples / classes of S&C
- Open problems and directions

Outline

1. Marginal value; definitions of S&C relationship to information theory moderate and strong definitions

2. Known applications prediction markets algorithmic problems

3. Known classes of examples

4. Open problems; directions

Marginal value; definitions

Reminder: setting and value function

- Prior p on states θ
- Set of signals: $\Sigma_1, \ldots, \Sigma_n$.
- Distribution $\varphi(\sigma_1 ... \sigma_n, \theta)$
- Decision problem $u(a, \theta)$

Value function:

 $V^{u,\varphi}(\Sigma)$ = "expected utility given Σ " assuming optimal action $= \mathbf{E}_{\sigma \sim \omega} \max_{\mathbf{a}} \mathbf{E}_{\theta \mid \sigma} u(a, \theta)$ p_{σ} = posterior on θ given σ $= \mathbf{E}_{a \sim a} G(p_a)$. *G* = convex expected utility function

 $V^{u,\varphi}(\perp) = G(p)$

expected utility with no information

• Extends to any subset or garbling of the "base" signals $\Sigma_1, ..., \Sigma_n$.

 σ_i is a realization of Σ_i $\Pr[\dots \Sigma_i = \sigma_i \dots \mid \theta]$

Key example: log scoring rule

Example: $u(q, \theta) = \log q(\theta)$.

Definition: (weak) substitutes

Def. $\Sigma_1, ..., \Sigma_n$ are (weak) substitutes for u if $V^{u,\varphi}$ is submodular, i.e. for all Σ_i and all $S \subseteq T \subseteq \{\Sigma_1, ..., \Sigma_n\}$, $V^{u,\varphi}(S \cup \Sigma_i) - V^{u,\varphi}(S) \ge V^{u,\varphi}(T \cup \Sigma_i) - V^{u,\varphi}(T)$.

"The marginal value of Σ_i is decreasing in knowledge of the other signals."

They are (weak) complements for u if $V^{u,\varphi}$ is supermodular (ineq reversed).

Depends on both the information structure and the decision problem!

Initial examples

Canonical substitutes: With probability 1, $\Sigma_1 = \ldots = \Sigma_n$.

Canonical complements:

Each Σ_i i.i.d. uniform {0,1} θ = XOR of all the bits.

Intuitively substitutes:

Conditionally independent noisy observations of θ .

Intuitively complements:

Independent components of a system or function θ .

for any decision problem

also for any decision problem

causation: $\theta \rightarrow \Sigma_1 \dots \Sigma_n$ relatively low sensitivity

causation: $\Sigma_1 \dots \Sigma_n \to \theta$ relatively high sensitivity

Interpretations of the marginal value function

1. Value.

Given a utility function *u*, consider $V^{u,\varphi}(\Sigma) - V^{u,\varphi}(\bot) = marginal value of \Sigma.$

e.g. log scoring rule

2. Distance.

Given a Bregman divergence d, considere.g. KL-divergence $\mathbf{E}_{\sigma} d(p_{\sigma}, p)$ = average change in belief due to Σ.

3. Uncertainty.

Given a concave "entropy" H, considere.g. Shannon entropy $H(\Theta | \Sigma) - H(\Theta)$ = information conveyed by Σ.where $H(\Theta | \Sigma) := E_{\sigma} H(p_{\sigma})$

Fact: There is a 1-1-1 correspondence between *u*, *d*, H such that $V^{u,\varphi}(\Sigma) - V^{u,\varphi}(\bot) = \mathbf{E}_{\sigma} d(p_{\sigma}, p) = H(\Theta | \Sigma) - H(\Theta).$ e.g. above examples

Marginal value = expected KL-divergence

Example: $u(q, \theta) = \log q(\theta)$.

Marginal value = reduction in entropy of θ

Example: $u(q, \theta) = \log q(\theta)$.

Definition: (weak) substitutes

Def. $\Sigma_1, ..., \Sigma_n$ are (weak) substitutes for u if $V^{u,\varphi}$ is submodular, i.e. for all Σ_i and all $S \subseteq T \subseteq \{\Sigma_1, ..., \Sigma_n\}$, $V^{u,\varphi}(S \cup \Sigma_i) - V^{u,\varphi}(S) \ge V^{u,\varphi}(T \cup \Sigma_i) - V^{u,\varphi}(T)$.

"The marginal value of Σ_i is decreasing in knowledge of the other signals." "The change in belief (distance) due to Σ_i is decreasing in" "The marginal amount of information contained in Σ_i is decreasing in"

They are (weak) complements for u if $V^{u,\varphi}$ is supermodular (ineq reversed).

Depends on both the information structure and the decision problem!

Drawback of "weak" defs: signals are divisibile

"Half the truth is often a great lie." - Benjamin Franklin

Example: Alice observes entire stock market, but strategically reports one stock's performance.

Partial revelation and stronger definitions

Given a signal Σ_i and a function f, let $f(\Sigma_i)$ be the signal consisting of $f(\sigma_i)$.

Def. $\Sigma_1, ..., \Sigma_n$ are (moderate) substitutes for u if for all deterministic \mathbf{f} , for all Σ_i and all $S \subseteq T \subseteq \{\Sigma_1, ..., \Sigma_n\}$, $V^{u,\varphi}(S \cup f(\Sigma_i)) - V^{u,\varphi}(S) \ge V^{u,\varphi}(T \cup f(\Sigma_i)) - V^{u,\varphi}(T)$.

They are (moderate) complements for *u* if the inequality always reverses.

Def. $\Sigma_1, ..., \Sigma_n$ are **(strong) substitutes** for *u* if for all **randomized f**, for all Σ_i and all $S \subseteq T \subseteq {\Sigma_1, ..., \Sigma_n}$, $V^{u,\varphi}(S \cup f(\Sigma_i)) - V^{u,\varphi}(S) \ge V^{u,\varphi}(T \cup f(\Sigma_i)) - V^{u,\varphi}(T)$.

They are (strong) complements for *u* if the inequality always reverses.

Comment on definitions

- Weak definition seems uncontroversial and general.
- *Moderate* and *strong* definitions are somewhat tailored to the prediction market application.
- Future applications may need to tweak details:
 "marginal value of _____ when added to _____ must be diminishing"

Moderate:	deterministic garbling
Strong:	randomized garbling

any subset of the signals any subset of the signals

Known applications

"Marginal-score games"

Decision problem $u(a, \theta)$. Players 1...n have private signals $\Sigma_1, ..., \Sigma_n$.

- 1. Players take turns proposing actions $a^1...a^T$. multiple plays allowed 2. θ is revealed.
- 3. Reward for update $a^{t-1} \rightarrow a^t$ is $u(a^t, \theta) u(a^{t-1}, \theta)$.
- 4. \Rightarrow player's reward is sum of marginal improvements.

"Marginal-score games"

Decision problem $u(a, \theta)$. Players 1...n have private signals $\Sigma_1, ..., \Sigma_n$.

- 1. Players take turns proposing actions $a^1 \dots a^T$. multiple plays allowed 2. θ is revealed.
- 3. Reward for update $a^{t-1} \rightarrow a^t$ is $u(a^t, \theta) u(a^{t-1}, \theta)$.
- 4. \Rightarrow player's reward is sum of marginal improvements.

Theorem (Chen, Waggoner 2016):

1. The only Bayes-Nash equilibria are to play **always myopically optimally** if and only $\Sigma_1, ..., \Sigma_n$ are strong **substitutes** for *u*.

2. The only perfect Bayesian equilibria are **copy the previous strategy until your final participation, then play optimally** if and only if $\Sigma_1, ..., \Sigma_n$ are strong **complements** for *u*.

Details: assume signals are inferrable from actions; any order of participation is allowed.

Proof idea

Total utility available is $V^{u,\varphi}(\Sigma_1, ..., \Sigma_n)$ - $V^{u,\varphi}(\bot)$.

assume a⁰ is optimal for the prior

In equilibrium, let S^t be all information revealed up to time t. Player *i* can obtain $V^{u,\varphi}(S^t \cup f(\Sigma_i)) - V^{u,\varphi}(S^t)$ for any randomized strategy f.

Substitutes \Leftrightarrow always optimal to reveal **earlier**.

Complements \Leftrightarrow always optimal to **delay**.

Therefore: every^{*} equilibrium has the stated form.

*proof is nonconstructive for beliefs/actions off the equilibrium path! Strongly uses that "nobody is deceived in equilibrium". See also [Gao, Zhang, Chen EC'13] for a constructive example.

Examples of marginal-score games

Prediction markets.

u is a proper scoring rule and actions are predictions of θ .

[Chen, Reeves, Pennock, Hanson 2007], [Dimitrov, Sami EC'08], [Gao, Zhang, Chen EC'13], [Kong, Schoenebeck ITCS'18]

Market-based machine-learning contests.

u is a loss function, and actions are hypotheses, θ is a test data set.

[Abernethy, Frongillo NIPS'11], [Waggoner, Frongillo, Abernethy NIPS'15], [Frongillo, Waggoner ITCS'18]

Crowdsourced Q&A forums.

Decisionmaker solicits information, rewards answers proportional to value. [Jain, Chen, Parkes EC'09]

Algorithmic problems (1)

Information acquisition problem:

Input: $\Sigma_1, ..., \Sigma_n, u$, and φ ; prices $\pi_1 ... \pi_n$ for the signals; budget constraint B. *Output*: subset *S* of signals to acquire.

Fact:

If signals are substitutes, there is a polynomial-time 1-1/e approximation. In general or for complements, a nonzero approximation is computationally hard.

Proof: reduction to and from submodular set function maximization.

Open: more algorithmic connections

- Extends to *dynamic* information acquisition; but more to investigate.
- Point of possible connection between **games and algorithms**
 - information acquisition literature (stats, econ, CS)
 - see *Optimal and Myopic Information Acquisition* Liang, Mu, Syrgkanis tomorrow morning -- does not use these definitions but very related!
- Econ literature models: often capture substitutes with *positive correlation* - connection between these?

Algorithmic problems (2)

S&C identification problem:

Given $\Sigma_1, ..., \Sigma_n, u$, and φ : Are they **substitutes**, **complements**, or **neither**?

exponential # of subsets; not obvious with *n*=2

Marginal value optimization problem:

Given Σ_1 , Σ_2 , compute a garbling of Σ_1 to minimize marginal value of Σ_2 : $\operatorname{argmin}_{f} V^{u,\varphi}(\Sigma_{2} \cup f(\Sigma_{1})) - V^{u,\varphi}(f(\Sigma_{1})).$ **S** or **C** \Rightarrow trivial answer. Restrict f for *weak*, *moderate* versions. Gives best-responses in prediction markets!

Theorem (Kong, Schoenebeck 2018):

There is an FPTAS for the marginal value optimization problem, treating the number of outcomes $|\Sigma_1|$ as fixed.

 \Rightarrow efficient test for identifying approximate S&C for small number of signals, and identifying all-rush or all-delay equilibria in prediction markets.

What do we know about S&C?

Knowledge about classes of S&C

For the **log scoring rule** decision problem:

- Signals *conditionally independent* on θ are strong **substitutes**
- Have separations between *weak*, *moderate*, and *strong* substitutes [Kong+Schoenebeck ITCS'18]

For **every decision problem** where *G* has a jointly convex Bregman div.: - Signals *unconditionally independent* are strong **complements**

When are signals $\Sigma_1, ..., \Sigma_n \sim \varphi$ substitutes for every *u*?

[Börgers, Hernando-Veciana, Krähmer JET 2013]: define two signals to be substitutes if they are **weak substitutes** for **every decision problem**.

- \rightarrow universal weak substitutes in my terminology.
- \rightarrow results on structure (universality is very restrictive)
- → universal moderate/strong S&C are trivial [Anunrojwong, Chen, Waggoner]

Open problems and directions

Problems and directions

Applications:

- Financial markets; efficient market hypothesis. [Ostrovsky 2013]
- Common-value auctions. [Milgrom, Weber 1982. *The Value of Information in a Sealed-Bid Auction*]
- More general mechanism design? usefulness of S&C is open...

Structure and algorithms:

- Identify natural *classes* of S&C
 - e.g. sets {decision problems, signals} where all combos are substitutes
- Closer connections to information acquisition
- Improve on KS18 or show hardness
- Identify conditions for efficient algorithms

Thanks!

Questions?