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Example: Recommendation Letters

s

> Advisor vs. recruiter

>

1/3 of the advisor’s students are excellent; 2/3 are average

» A fresh graduate is randomly drawn from this population

>

Recruiter
s Ulility 1 + € for hiring an excellent student; —1 for an average student
¢ Utility 0 for not hiring

s A-priori, only knows the advisor’s student population
(1+€)x1/3—1x2/3 < 0
hiring Not hiring



Example: Recommendation Letters

s

» Advisor vs. recruiter
» 1/3 of the advisor’s students are excellent; 2/3 are average
» A fresh graduate is randomly drawn from this population

» Recruiter
s Ulility 1 + € for hiring an excellent student; —1 for an average student
¢ Utility 0 for not hiring
s A-priori, only knows the advisor’s student population

> Advisor
% Utility 1 if the studentis hired, O otherwise
<+ Knows whether the studentis excellent or not

-
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Example: Recommendation Letters

s

What is the advisor’s optimal “recommendation strategy”?

W

> Attempt 1: always say “excellent” (equivalently, no information)
** Recruiter ignores the recommendation

*» Advisor expected utility 0



Example: Recommendation Letters

s

What is the advisor’s optimal “recommendation strategy”?

W

» Attempt 2: honest recommendation (i.e., full information)

% Advisor expected utility 1/3

ST
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7
- N> excellent Y\
o recruiter
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Example: Recommendation Letters

R R R Rt

LR i

What is the advisor’s optimal “recommendation strategy”?

> Attempt 3: partial noisy information - advisor expected utility 2/3

—> P(excellent |o =1/2

excellent OK
’ AR recruiter (I+e—-1/2 > 0
/ Hiring Not hiring
>(B)AP

average




4 N
Persuasion the actof exploiting an informational advantage in

order to influence the decisions of others
\ J

» Intrinsic in human activities: advertising, negotiation, politics, security,
marketing, financial regulation,...

» Alarge body of recent work

One Quarter of GDP Is Persuasion

By DoNALD McCLOSKEY AND ARJO KLAMER*

— The American Economic Review Vol. 85, No. 2, 1995.



Bayesian Persuasion [Kamenica/Gentzkow | 1]

» Two players: a persuader (sender), a decision maker (receiver)

J/

*» Previous example: advisor = sender, recruiter = receiver
» Receiver must choose action from 1, 2,...,n
» Action i has random type 6;

J/

s Determines sender utility s(8;) and receiver utility r(68;)
> State of nature 8 = (04, ...,0,,) € R*™ drawn from a common prior
» Sender can observe realized 6; receiver only knows the prior

Persuasion Problem

Sender must design and commit to a signaling scheme X:
» Randomized map from states of nature to signals

When state 6 is realized, sender must communicate ¢ ~ X(60) to
receiver before he chooses action.



The Commitment Assumption

-~

Argument 1. Emerges at Equilibrium

» Game played repeatedly: sender and receiver optimize

long-run payoff

\> Commitment = reputation / credibility

/

-

o

Argument 2: Service Agreement or Trusted Authority

» E.g., in an auction, principal commits to rules of interactions
» Publish code, undergo audits / statistical tests

~

/
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Direct Persuasive Schemes

» |In previous example, the scheme recommends an action based on
the state of nature

% Such schemes are called direct: signals are actions

» A recommendation should be persuasive: after Bayes update,
receiver’s favorite action is indeed the recommended action

Fact: There exists an optimal signaling scheme which is direct
and persuasive.

Remark:
» Adirect persuasive scheme is a Bayes correlated equilibrium
» Solving BP is to compute the BCE that maximizes sender utility

11



Characterizing Optimal Sender Utility

> Receiver belief p = receiver best response = sender utility V(p)

A
sender

utility

! >
P1 p D2 receiver belief

A signaling scheme is a convex decomposition of p
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> Receiver belief p = receiver best response = sender utility V(p)

A
sender

utility

! >
P1 p D2 receiver belief

A signaling scheme is a convex decomposition of p
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Characterizing Optimal Sender Utility

> Receiver belief p = receiver best response = sender utility V(p)

sender
utility

A

V@)

>
p receiver belief

Proposition [KG’11]: for any prior p, the optimal sender utility
from persuasion is V (p), where V is the concave closure of V.
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Why the Algorithmic Lens?

» Enable automated application
» Lead to structural insights

» Understand possibility and limitation of the model

Some settings are combinatorial by nature, thus require
algorithmic techniques
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Example: Advisor with Multiple Students

» Advisor has 2 students; recruiter wants to recruit one of them
» Each student’s type is independent uniform draw from {L, S, W}

» Student’'s type determine long / short term achievement

L S W
Recruiter utility — | Long-Term 2 1+ ¢ 0
Advisor utility —— | Short-Term 0 1 0)

-

Scheme 1: no information
» Students appear identical to the recruiter

» Recruiter randomly chooses a student

> Expected advisor utility 1/3
N Y Y,

17



Example: Advisor with Multiple Students

» Advisor has 2 students; recruiter wants to recruit one of them
» Each student’s type is independent uniform draw from {L, S, W}

» Student’'s type determine long / short term achievement

L S W
Recruiter utility — | Long-Term 2 1+ ¢ 0
Advisor utility —— | Short-Term 0 1 0)

Scheme 2: full information

» Good cases for advisor: (S,S), (S,W), (W,S)

» Expected advisor utility: (1/9)x3 = 1/3

o Y
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Example: Advisor with Multiple Students

» Advisor has 2 students; recruiter wants to recruit one of them

» Each student’s type is independent uniform draw from {L, S, W}

» Student’'s type determine long / short term achievement

Recruiter utility — | Long-Term

Advisor utility —— | Short-Term

L S Y
2 1+ € 0)
0 1 0

-~

» Properly correlate students’types

Scheme 3: optimal (partially informative) scheme

\

* When there is exactly one type-S student, recommend him
% Otherwise, recommend a student uniformly at random

Q An S-type student is hired whenever S shows up (prob 5/9) /

19



Example: Advisor with Multiple Students

» Advisor has 2 students; recruiter wants to recruit one of them
» Each student’s type is independent uniform draw from {L, S, W}

» Student’'s type determine long / short term achievement

L S W
Recruiter utility — | Long-Term 2 1+ ¢ 0
Advisor utility —— | Short-Term 0 1 0)

This setting: |.I.D. prior for action types
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Explicit Prior

» Probabilities for all states are explicitly enumerated

» Linear program (LP)

Expected sender utility

max [, P(0) > x(0,i)s(6;)

Obedience constraints

e

st [SpP(0)2(0,i)[r(6:;) —r(6;)] >0, for z’,je[n]:

7

Yic1 2(0,4) =1,

for 0
for 0,1

z(0,7) >0,
\

Scheme feasibility
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Succinct |.1.D. Prior

» State of nature 8 = (64, ...,6,)
» Action type 6;’s are i.i.d., supported on a discrete set of size m

Theorem [DX’16]: In the i.i.d. model, the optimal signaling
scheme can be implemented in poly(n, m) time.

Structural Insight |
Analogous to single-item auctions

» Actions = bidders
» Action types = bidder types

» Recommending an action = giving the time to a bidder

» Signaling scheme = allocation rule with obedience constraints
instead of incentive compatibility (IC) constraints

22



Succinct |.1.D. Prior

» State of nature 8 = (64, ...,6,)
» Action type 6;’s are i.i.d., supported on a discrete set of size m

Theorem [DX’16]: In the i.i.d. model, the optimal signaling
scheme can be implemented in poly(n, m) time.

Structural Insight I
There exists an optimal scheme that is symmetric

» Each action is recommended w.p. 1/n

» All (un)recommended actions “look the same” (i.e., have the
same posterior type distribution)
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Succinct |.1.D. Prior

» State of nature 6 = (64, ...,6,)
» Action type 6;’s are i.i.d., supported on a discrete set of size m

Theorem [DX’16]: In the i.i.d. model, the optimal signaling

scheme can be implemented in poly(n, m) time.

(o

» Summarize symmetric schemes via its reduced forms

roof QOutline

¢ Prob. of recommendation (resp. winning) for each type

~

» LP over Border’s polytope [Border '91] + obedience constraints

(linear in reduced form)
K s Solvable efficiently [Alaei et al '12, Cai et al '12]

/
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Succinct Independent Prior

» Generalize i.i.d. model to non-identical actions, explicit marginals
» Border’s thm generalizes to non-identical bidders . . .

Theorem [DX’16]: In persuasion with independent actions, itis
#P-hard to compute optimal expected sender utility.

Structural Lesson

There is no Border’s-theorem-like characterization for persuasion with
Independent actions

> Also called “generalized border’s theorem” [Copalan et al. ‘15]
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Succinct Independent Prior

» Generalize i.i.d. model to non-identical actions, explicit marginals
» Border’s thm generalizes to non-identical bidders . . .

Theorem [DX’16]: In persuasion with independent actions, itis
#P-hard to compute optimal expected sender utility.

/Explanation

» Obedience constraints, unlike IC constraints, are not expressible
using “standard” reduced form.

\_ theorem implies it cannot exist unless PH collapses

» Any adequate reduced form encodes #P-hard problems, so Toda’s

~

/

Remark: See [Kolotilin et al. 2017] for other connections and
differences between persuasion and mechanism design



General Black-Box Prior

» 0 = (64, ...,0,) isdrawn from an arbitrary distribution
¢ 0;’s can be correlated
» Given to algorithm as a black box

Theorem [DX’16]: For general black-box prior, an e-optimal e-
persuasive scheme can be implemented in poly(n,1/¢) time.

Bicriteria loss is inevitable for information-theoretic reasons.

21



General Black-Box Prior

/Algorithm Sketch
> Input is a state 8* drawn from prior
> In addition to 6%, take poly(n,1/¢€) samples from black box P

> Solve explicit LP on empirical P (relax to e-obedience)
Q Signal as LP suggests for 8*

~

/

subject to

Ze 9)33(
Zzzl I(@, Z)

x(0,4) = 0,

fori,j € [n].
for 6 € O.

forf € ©,i € [n].

28



General Black-Box Prior

/Algorithm Sketch
> Input is a state 8* drawn from prior

> Solve explicit LP on empirical P (relax to e-obedience)
Q Signal as LP suggests for 8*

> In addition to 6%, take poly(n,1/¢€) samples from black box P

~

/

Structural Insight

To query scheme locally (i.e., sample X (8%)), little context is needed
» Small sample complexity

29
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Domain |: Security Games

» A defender faces a strategic adversary
» Defender seeks to protect critical targets from adversary’s attack

Key idea: defender can utilize informational advantage to
deceive adversary and improve defense

31



Example: UAVs for Conservation

> lllegal poaching is a major threat to

endangered animals Air

Shepherd

The Lindbergh Foundation

» UAVs to combat poaching ’




Example: UAVs for Conservation

Air
Shepherd
7 The Lindbergh Foundation

[
UAV video Automatic poacher UAVs can not directly
detection catch poachers

» Very few rangers are available and nearby
¢ Poaching usually happens during night

33



Exploit Informational Advantage

* ) Air
I/ Shepherd

poacher

» Poacher only knows that rangers come with certain probability
» Air Shepherd knows precisely whether a ranger will come or not

» Approach: use alerting signal to deter poaching

% Signals correlate with the presence of rangers
*» Deceptive alerting: may alert even no rangers are nearby

34



Additional Challenge due to Domain Features

Rely on
UAVs Rangers
Alerting: send (deceptive) Interdiction: directly interdict
alerting signals poaching

35



Additional Challenge due to Domain Features

Coordinate rangers + Deceptive alerting
and UAVs via persuasion

Y
Global optimality

36



Additional Challenge due to Domain Features

Coordinate rangers + Deceptive alerting
and UAVs via persuasion

Y
Global optimality

-

o

» Novel model that integrates patroller’'s interdiction and UAVS’

deceptive alerting functionality [Xu et al. 18]

» Algorithmic study: complexity analysis and scalable algorithms

~

/
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Utility Comparisons

» Simulated games
> Y-axis: defender loss (lower is better)

Defender Loss
N w

(WY

0
B Without UAVs

M UAVs (no alerting)

B UAVs

Gain of deceptive
alerting

38



Utility Comparisons

» Simulated games
> Y-axis: defender loss (lower is better)

4
a3
o
—
P 5 | Gain by using
= UAVs
&
)
o

(WY

0
B Without UAVs

B UAVs (no alerting) M UAVs
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Other Applications in Security Games

» Prevent fare evasion in honor metro systems [Xu et al. 2015]
¢ Alert passengers with warning signals

40



Other Applications in Security Games

» Prevent fare evasion in honor metro systems [Xu et al. 2015]
¢ Alert passengers with warning signals

» Reduce illegal parking [Hernandez/Neeman 2017]
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Other Applications in Security Games

» Prevent fare evasion in honor metro systems [Xu et al. 2015]
¢ Alert passengers with warning signals

» Reduce illegal parking [Hernandez/Neeman 2017]
» Protect cyber systems [Schlenker et al. 2018]
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Other Applications in Security Games

» Prevent fare evasion in honor metro systems [Xu et al. 2015]
¢ Alert passengers with warning signals

» Reduce illegal parking [Hernandez/Neeman 2017]
» Protect cyber systems [Schlenker et al. 2018]

» New security game models with deception [Rabinovich et al.
2015, Xu et al. 2016]
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Domain ll: Auctions

» E.g., ad auctions (auctions for selling online ad slots)

» Uncertainty and information asymmetry

Advertiser’s perspective:

short of the 20% target. Wall Street analysts were mostly persuaded that both would

soon return to their former glory.

Ad Slot I

To be sure, Nike's business is still by far the largest, generating $3.74 billion in sales in

the most recent period versus $877.6 million for Adidas and $827 million for Under

The Internet

Auctioneer’s perspective:

Timeline ~

44



Persuasion in Auctions

» Reveal information to bidders in order to influence their bidding
* Can reveal different information to different bidders

» Difficulty: intricate equilibrium behavior
“ Players’ actions are affected by information and others’ actions
*» Issues of equilibrium selection

o
S A | S T S S S
A Google AdWords nom 4 @ - &

= SATLLEEHIT RS iVl canply % Daafts « Al mo: May 29, 2017 - Jun 4, 2017 ¥
Campaign: Vijay_Bridal_USA
| All campalg
Mukes| Se: etwor ta
s Keywords
BN Vijay Bridal USA
Bridal N
Bridal_Jo
Pearl Bn
Segment 1= Q
CTR
rimer
mp*a ups Eligibl
------ Eligbl
1.02% 4962
Eligb!
tpea
Elig
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Two Natural Types of Signaling Schemes

Public scheme: must send the
signal publicly to all bidders

» Equivalently, send the
same signal to every bidder

» Due to, e.g., fairness or
communication constraints

Private scheme: may send different
signals to different bidders

» Signals may be correlated to
steer desired collective behavior

46



Example: Public/Private Schemes, Intricacies

Bidder 1 Bidder 2 Bidder 3
State1 prob:1—¢ 2¢€ € 1
State 2 prob: e 1 1—¢ €

Single-item second-price auction

Fact: In public schemes, bidding the expected true value is a
dominant strategy for each bidder.

Typical to adopt the dominant-strategy equilibrium in public schemes

Claim: Revenue of the optimal public scheme is at most 3e.

47



Example: Public/Private Schemes, Intricacies

Bidder 1 Bidder 2 Bidder 3

———————————

State1 prob:1—¢ - 2e € 1

State 2 prob: € 1 1—¢€ €

Private scheme: full info to bidder 2 and 3: no info to bidder 1

Truthful bidding is not an equilibrium
» Bidder 2 and 3: bidding true value is a dominant strategy
» But, bidder 1 will not bid her expected value (= 3¢)

¢ Equilibrium bid for bidder1isany b € (1 —¢,1)

48



Example: Public/Private Schemes, Intricacies

Bidder 1 Bidder 2 Bidder 3

———————————

State1 prob:1—¢ - 2e € 1

State 2 prob: € 1 1—¢€ €

Private scheme: full info to bidder 2 and 3: no info to bidder 1

Large revenue gap between public and private scheme

» Claim: Revenue of above scheme > 1 — ¢

» Recall: revenue of optimal public signaling < 3¢

49



Example: Public/Private Schemes, Intricacies

Bidder 1 Bidder 2 Bidder 3

———————————

State1 prob:1—¢ - 2e € 1

State 2 prob: € 1 1—¢€ €

Private scheme: full info to bidder 2 and 3: no info to bidder 1

This private scheme extracts almost full surplus

» Rev>1—-c¢
» Social surplus =1

See [Badanidiyuru/Bhawalkar/Xu 18] for a general conclusion.
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(Some) Works in Auctions

» One bidder/buyer

% [Bergemann/Brooks/Morris 2015, Shen/Tang/Zeng 2018]
characterize all possible revenue-welfare tradeoffs of persuasion

» Multiple bidders

% [Fu et al. 12]: revealing full information is the optimal public
scheme in Myerson’s optimal auction

“ [Emek et al. 12] and [Miltersen/Sheffet 12]: how to compute
optimal public scheme in second price auctions?

** [Dughmi et al. 15]: contrained public scheme by revealing only a
subset of item features

¢ [Badanidiyuru/Bhawalkar/Xu 18]: both private and public schemes
in a setting motivated by ad auctions

L)
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Information Structure Design

Influence equilibria by designing “who knows what”

One receiver

Multiple receivers

information

No player private | Bayesian persuasion

& apptications

With player private
information

/

Main focus of this part
(except auctions)

53



Information Structure Design

Influence equilibria by designing “who knows what”

One receiver

Multiple receivers

No player private
information

Bayesian persuasion

& applications

Many basic models
& applications

With player private
information

S

pd

» Basic models:

/

¢ [Dughmi 2014]: two receivers playing a zero-sum game

» [Taneva 2016]: two receivers, two actions, two states
» [Arieli/Babichenko 2016, Dughmi/Xu 2018]: multiple

receivers, no externalities, binary actions
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Persuading Multiple Receivers: Applications

[Chan/Li/Wang '15] (private signals), Routing games
[Alonso/Camara’15] (public signals), [Bhaskar et al.”16]
[Cheng et al.”15] algorithmic study

Best Restaurants in Los Angeles, CA m

&t Snou: s r ';:": — ol

[ oo o on e teve g 60 e Snsitie e ey | | _

Recommendation systems Queueing with strategic customers
[Mansour/Slivinks/Syrgkanis’15, [Lingenbrink/lyer’17]

Mansour et al. “16] 55



Information Structure Design

Influence equilibria by designing “who knows what”

One receiver

Multiple receivers

No player private
information

Bayesian persuasion
& applications

Basic models and
applications

With player private
information

Limited work, relate
to meck@nism design

-~

» The receiver holds private information about the random state
» The sender may elicit receiver’s private information

» [Kolotilin et al. 2017] studies a basic model and relate its
structure to mechanism design

*» [Xu et al. 2016] studies persuasion in Bayesian Stackelberg

games
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Information Structure Design

Influence equilibria by designing “who knows what”

One receiver

Multiple receivers

No player private
information

Bayesian persuasion
& applications

Basic models and
applications

With player private
information

Limited work, relate
to mechanism design

Much less explored
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Information Structure Design

Influence equilibria by designing “who knows what”

One receiver

Multiple receivers

No player private
information

Bayesian persuasion
& applications

Basic models and
applications

With player private
information

Limited work, relate
to mechanism design

Much less explored

» See [Bergemann/Morris 2017] for a unified perspective and

examples

» Models with multiple senders [Kamenica/Gentzkow 2017]
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Future Directions

» Information structure design with multiple receivers

¢ Basic questions: persuade multiple receivers with externalities,
private information, and multiple actions

“ Dynamic/repeated settings
% Constraints/costs on signaling schemes
+ Applications

» Value and pricing of information
¢ Connects to the first part of this tutorial
¢ Consider the “data - information” procedure
% Relation between persuasion and information elicitation?

59



Thank You

—  Questions’
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