Part 3 Algorithmic Persuasion

Haifeng Xu

USC → Harvard (postdoc) → UVA

Outline

- >Introduction
- ➤ Persuasion Through the Algorithmic Lens
- ➤ Applications of Persuasion
- ➤ The Bigger Picture and Future Directions

- Advisor vs. recruiter
- > 1/3 of the advisor's students are excellent; 2/3 are average
- A fresh graduate is randomly drawn from this population
- Recruiter
 - \bullet Utility $1 + \epsilon$ for hiring an excellent student; -1 for an average student
 - Utility 0 for not hiring
 - ❖ A-priori, only knows the advisor's student population

$$(1+\epsilon)\times 1/3 - 1\times 2/3$$
 < 0

hiring Not hiring

- Advisor vs. recruiter
- > 1/3 of the advisor's students are excellent; 2/3 are average
- > A fresh graduate is randomly drawn from this population
- Recruiter
 - \bullet Utility $1 + \epsilon$ for hiring an excellent student; -1 for an average student
 - Utility 0 for not hiring
 - ❖ A-priori, only knows the advisor's student population
- Advisor
 - Utility 1 if the student is hired, 0 otherwise
 - Knows whether the student is excellent or not

What is the advisor's optimal "recommendation strategy"?

- Attempt 1: always say "excellent" (equivalently, no information)
 - Recruiter ignores the recommendation
 - Advisor expected utility 0

What is the advisor's optimal "recommendation strategy"?

- Attempt 2: honest recommendation (i.e., full information)
 - ❖ Advisor expected utility 1/3

What is the advisor's optimal "recommendation strategy"?

➤ Attempt 3: partial noisy information → advisor expected utility 2/3

Persuasion the act of exploiting an informational advantage in order to influence the decisions of others

- Intrinsic in human activities: advertising, negotiation, politics, security, marketing, financial regulation,...
- A large body of recent work

One Quarter of GDP Is Persuasion

By Donald McCloskey and Arjo Klamer*

— The American Economic Review Vol. 85, No. 2, 1995.

Bayesian Persuasion [Kamenica/Gentzkow II]

- Two players: a persuader (sender), a decision maker (receiver)
 - ❖ Previous example: advisor = sender, recruiter = receiver
- Receiver must choose action from 1, 2, ..., n
- \triangleright Action *i* has random type θ_i
 - Determines sender utility $s(\theta_i)$ and receiver utility $r(\theta_i)$
- > State of nature $\theta = (\theta_1, ..., \theta_n) \in \mathbb{R}^{2n}$ drawn from a common prior
- \triangleright Sender can observe realized θ ; receiver only knows the prior

Persuasion Problem

Sender must design and commit to a signaling scheme *X*:

> Randomized map from *states of nature* to signals

When state θ is realized, sender must communicate $\sigma \sim X(\theta)$ to receiver before he chooses action.

The Commitment Assumption

Argument 1: Emerges at Equilibrium

- Game played repeatedly: sender and receiver optimize long-run payoff
- ➤ Commitment ≈ reputation / credibility

Argument 2: Service Agreement or Trusted Authority

- > E.g., in an auction, principal commits to rules of interactions
- > Publish code, undergo audits / statistical tests

Direct Persuasive Schemes

- ➤ In previous example, the scheme *recommends an action* based on the state of nature
 - Such schemes are called direct: signals are actions
- ➤ A recommendation should be persuasive: after Bayes update, receiver's favorite action is indeed the recommended action

Fact: There exists an optimal signaling scheme which is direct and persuasive.

Remark:

- A direct persuasive scheme is a Bayes correlated equilibrium
- Solving BP is to compute the BCE that maximizes sender utility

Characterizing Optimal Sender Utility

 \triangleright Receiver belief $p \rightarrow$ receiver best response \rightarrow sender utility V(p)

A signaling scheme is a convex decomposition of p

Characterizing Optimal Sender Utility

 \triangleright Receiver belief $p \rightarrow$ receiver best response \rightarrow sender utility V(p)

A signaling scheme is a convex decomposition of p

Characterizing Optimal Sender Utility

 \triangleright Receiver belief $p \rightarrow$ receiver best response \rightarrow sender utility V(p)

Proposition [KG'11]: for any prior p, the optimal sender utility from persuasion is $\hat{V}(p)$, where \hat{V} is the concave closure of V.

Outline

- >Introduction
- ➤ Persuasion Through the Algorithmic Lens
- ➤ Applications of Persuasion
- ➤ The Bigger Picture and Future Directions

Why the Algorithmic Lens?

- > Enable automated application
- Lead to structural insights
- Understand possibility and limitation of the model

Some settings are combinatorial by nature, thus require algorithmic techniques

- > Advisor has 2 students; recruiter wants to recruit one of them
- Each student's type is independent uniform draw from {L, S, W}
- > Student's type determine long / short term achievement

		L	S	W	
Recruiter utility ——	Long-Term	2	$1 + \epsilon$	0	
Advisor utility ——	Short-Term	0	1	0	

Scheme 1: no information

- > Students appear identical to the recruiter
- Recruiter randomly chooses a student
- Expected advisor utility 1/3

- > Advisor has 2 students; recruiter wants to recruit one of them
- > Each student's type is independent uniform draw from {L, S, W}
- Student's type determine long / short term achievement

		L	S	W	
Recruiter utility ——	Long-Term	2	$1 + \epsilon$	0	
Advisor utility ——	Short-Term	0	1	0	

Scheme 2: full information

- ➤ Good cases for advisor: (S,S), (S,W), (W,S)
- \triangleright Expected advisor utility: $(1/9) \times 3 = 1/3$

- > Advisor has 2 students; recruiter wants to recruit one of them
- Each student's type is independent uniform draw from {L, S, W}
- Student's type determine long / short term achievement

		L	S	W
Recruiter utility ——	Long-Term	2	$1 + \epsilon$	0
Advisor utility	Short-Term	0	1	0

Scheme 3: optimal (partially informative) scheme

- Properly correlate students' types
 - ❖ When there is exactly one type-S student, recommend him
 - Otherwise, recommend a student uniformly at random
- An S-type student is hired whenever S shows up (prob 5/9)

- > Advisor has 2 students; recruiter wants to recruit one of them
- Each student's type is independent uniform draw from {L, S, W}
- Student's type determine long / short term achievement

		L	S	W
Recruiter utility ——	Long-Term	2	$1 + \epsilon$	0
Advisor utility ——	Short-Term	0	1	0

This setting: I.I.D. prior for action types

Explicit Prior

- Probabilities for all states are explicitly enumerated
- Linear program (LP)

Scheme feasibility

Succinct I.I.D. Prior

- > State of nature $\theta = (\theta_1, ..., \theta_n)$
- \triangleright Action type θ_i 's are i.i.d., supported on a discrete set of size m

Theorem [DX'16]: In the i.i.d. model, the optimal signaling scheme can be implemented in poly(n, m) time.

Structural Insight I

Analogous to single-item auctions

- ➤ Actions ≈ bidders
- ➤ Action types ≈ bidder types
- ➤ Recommending an action ≈ giving the time to a bidder
- ➤ Signaling scheme ≈ allocation rule with obedience constraints instead of incentive compatibility (IC) constraints

Succinct I.I.D. Prior

- > State of nature $\theta = (\theta_1, ..., \theta_n)$
- \triangleright Action type θ_i 's are i.i.d., supported on a discrete set of size m

Theorem [DX'16]: In the i.i.d. model, the optimal signaling scheme can be implemented in poly(n, m) time.

Structural Insight II

There exists an optimal scheme that is symmetric

- \triangleright Each action is recommended w.p. 1/n
- All (un)recommended actions "look the same" (i.e., have the same posterior type distribution)

Succinct I.I.D. Prior

- > State of nature $\theta = (\theta_1, ..., \theta_n)$
- \triangleright Action type θ_i 's are i.i.d., supported on a discrete set of size m

Theorem [DX'16]: In the i.i.d. model, the optimal signaling scheme can be implemented in poly(n, m) time.

Proof Outline

- > Summarize symmetric schemes via its reduced forms
 - ❖ Prob. of recommendation (resp. winning) for each type
- ➤ LP over Border's polytope [Border '91] + obedience constraints (linear in reduced form)
 - Solvable efficiently [Alaei et al '12, Cai et al '12]

Succinct Independent Prior

- Generalize i.i.d. model to non-identical actions, explicit marginals
- Border's thm generalizes to non-identical bidders . . .

Theorem [DX'16]: In persuasion with independent actions, it is #P-hard to compute optimal expected sender utility.

Structural Lesson

There is no Border's-theorem-like characterization for persuasion with independent actions

Also called "generalized border's theorem" [Copalan et al. '15]

Succinct Independent Prior

- Generalize i.i.d. model to non-identical actions, explicit marginals
- Border's thm generalizes to non-identical bidders . . .

Theorem [DX'16]: In persuasion with independent actions, it is #P-hard to compute optimal expected sender utility.

Explanation

- ➤ Obedience constraints, unlike IC constraints, are not expressible using "standard" reduced form.
- Any adequate reduced form encodes #P-hard problems, so Toda's theorem implies it cannot exist unless PH collapses

Remark: See [Kolotilin et al. 2017] for other connections and differences between persuasion and mechanism design

General Black-Box Prior

- $\triangleright \theta = (\theta_1, ..., \theta_n)$ is drawn from an arbitrary distribution
 - \bullet θ_i 's can be correlated
- Given to algorithm as a black box

Theorem [DX'16]: For general black-box prior, an ϵ -optimal ϵ -persuasive scheme can be implemented in $poly(n, 1/\epsilon)$ time.

Bicriteria loss is inevitable for information-theoretic reasons.

General Black-Box Prior

Algorithm Sketch

- \triangleright Input is a state θ^* drawn from prior
- \triangleright In addition to θ^* , take poly $(n,1/\epsilon)$ samples from black box **P**
- \triangleright Solve explicit LP on empirical \widehat{P} (relax to ϵ -obedience)
- \triangleright Signal as LP suggests for θ^*

$$\begin{array}{ll} \text{maximize} & \sum_{\theta} \sum_{i=1}^n \widehat{\mathbf{P}}(\theta) x(\theta,i) s(\theta_i) \\ \text{subject to} & \sum_{\theta} \widehat{\mathbf{P}}(\theta) x(\theta,i) [r(\theta_i) - r(\theta_j)] \geq -\epsilon, \quad \text{for } i,j \in [n]. \\ & \sum_{i=1}^n x(\theta,i) = 1, \qquad \qquad \text{for } \theta \in \Theta. \\ & x(\theta,i) \geq 0, \qquad \qquad \text{for } \theta \in \Theta, i \in [n]. \end{array}$$

General Black-Box Prior

Algorithm Sketch

- \triangleright Input is a state θ^* drawn from prior
- \triangleright In addition to θ^* , take $poly(n, 1/\epsilon)$ samples from black box **P**
- \triangleright Solve explicit LP on empirical \widehat{P} (relax to ϵ -obedience)
- \triangleright Signal as LP suggests for θ^*

Structural Insight

To query scheme locally (i.e., sample $X(\theta^*)$), little context is needed

Small sample complexity

Outline

- >Introduction
- ➤ Persuasion Through the Algorithmic Lens
- ➤ Applications of Persuasion
- ➤ The Bigger Picture and Future Directions

Domain I: Security Games

- ➤ A defender faces a strategic adversary
- > Defender seeks to protect critical targets from adversary's attack

Key idea: defender can utilize informational advantage to deceive adversary and improve defense

Example: UAVs for Conservation

- Illegal poaching is a major threat to endangered animals
- > UAVs to combat poaching

Example: UAVs for Conservation

- Very few rangers are available and nearby
 - Poaching usually happens during night

Exploit Informational Advantage

- Poacher only knows that rangers come with certain probability
- > Air Shepherd knows precisely whether a ranger will come or not
- Approach: use alerting signal to deter poaching
 - Signals correlate with the presence of rangers
 - ❖ Deceptive alerting: may alert even no rangers are nearby

Additional Challenge due to Domain Features

UAVs

Alerting: send (deceptive) alerting signals

Rangers

Interdiction: directly interdict

poaching

Additional Challenge due to Domain Features

Additional Challenge due to Domain Features

- Novel model that integrates patroller's interdiction and UAVs' deceptive alerting functionality [Xu et al. 18]
- Algorithmic study: complexity analysis and scalable algorithms

Utility Comparisons

- Simulated games
- Y-axis: defender loss (lower is better)

Utility Comparisons

- Simulated games
- Y-axis: defender loss (lower is better)

- > Prevent fare evasion in honor metro systems [Xu et al. 2015]
 - ❖ Alert passengers with warning signals

- Prevent fare evasion in honor metro systems [Xu et al. 2015]
 Alert passengers with warning signals
- Reduce illegal parking [Hernández/Neeman 2017]

- > Prevent fare evasion in honor metro systems [Xu et al. 2015]
 - Alert passengers with warning signals
- Reduce illegal parking [Hernández/Neeman 2017]
- Protect cyber systems [Schlenker et al. 2018]

- Prevent fare evasion in honor metro systems [Xu et al. 2015]
 Alert passengers with warning signals
- Reduce illegal parking [Hernández/Neeman 2017]
- Protect cyber systems [Schlenker et al. 2018]
- New security game models with deception [Rabinovich et al. 2015, Xu et al. 2016]

Domain II: Auctions

- > E.g., ad auctions (auctions for selling online ad slots)
- Uncertainty and information asymmetry

Advertiser's perspective:

Persuasion in Auctions

- Reveal information to bidders in order to influence their bidding
 - Can reveal different information to different bidders
- Difficulty: intricate equilibrium behavior
 - Players' actions are affected by information and others' actions
 - Issues of equilibrium selection

Two Natural Types of Signaling Schemes

Public scheme: must send the signal publicly to all bidders

- Equivalently, send the same signal to every bidder
- ➤ Due to, e.g., fairness or communication constraints

Private scheme: may send different signals to different bidders

Signals may be correlated to steer desired collective behavior

		Bidder 1	Bidder 2	Bidder 3
State 1	prob: $1 - \epsilon$	2ϵ	ϵ	1
State 2	prob: ϵ	1	$1-\epsilon$	ϵ

Single-item second-price auction

Fact: In public schemes, bidding the expected true value is a dominant strategy for each bidder.

Typical to adopt the dominant-strategy equilibrium in public schemes

Claim: Revenue of the optimal public scheme is at most 3ϵ .

		Bidder 1	Bidder 2	Bidder 3
State 1	prob: $1 - \epsilon$	2ϵ	ϵ	1
State 2	prob: ϵ	1	$1 - \epsilon$	ϵ

Private scheme: full info to bidder 2 and 3; no info to bidder 1

Truthful bidding is not an equilibrium

- ➤ Bidder 2 and 3: bidding true value is a dominant strategy
- \triangleright But, bidder 1 will *not* bid her expected value ($\approx 3\epsilon$)
 - **\Lapprox** Equilibrium bid for bidder 1 is any $b \in (1 \epsilon, 1)$

		Bidder 1	Bidder 2	Bidder 3
State 1	prob: $1 - \epsilon$	2ϵ	ϵ	1
State 2	prob: ϵ	1	$1-\epsilon$	ϵ

Private scheme: full info to bidder 2 and 3; no info to bidder 1

Large revenue gap between public and private scheme

- \triangleright Claim: Revenue of above scheme $\geq 1 \epsilon$
- \triangleright Recall: revenue of optimal public signaling $\leq 3\epsilon$

		Bidder 1	Bidder 2	Bidder 3
State 1	prob: $1 - \epsilon$	2ϵ	ϵ	1
State 2	prob: ϵ	1	$1-\epsilon$	ϵ

Private scheme: full info to bidder 2 and 3; no info to bidder 1

This private scheme extracts almost full surplus

- ightharpoonup Rev $\geq 1 \epsilon$
- \triangleright Social surplus = 1

See [Badanidiyuru/Bhawalkar/Xu 18] for a general conclusion.

(Some) Works in Auctions

- One bidder/buyer
 - [Bergemann/Brooks/Morris 2015, Shen/Tang/Zeng 2018] characterize all possible revenue-welfare tradeoffs of persuasion
- Multiple bidders
 - ❖ [Fu et al. 12]: revealing full information is the optimal public scheme in Myerson's optimal auction
 - ❖ [Emek et al. 12] and [Miltersen/Sheffet 12]: how to compute optimal public scheme in second price auctions?
 - [Dughmi et al. 15]: contrained public scheme by revealing only a subset of item features
 - ❖ [Badanidiyuru/Bhawalkar/Xu 18]: both private and public schemes in a setting motivated by ad auctions

*****

Outline

- >Introduction
- ➤ Persuasion Through the Algorithmic Lens
- ➤ Applications of Persuasion
- ➤ The Bigger Picture and Future Directions

Influence equilibria by designing "who knows what"

	One receiver	Multiple receivers
No player private information	Bayesian persuasion & applications	
With player private information		

Main focus of this part (except auctions)

	One receiver	Multiple receivers
No player private information	Bayesian persuasion & applications	Many basic models & applications
With player private information		

- Basic models:
 - ❖ [Dughmi 2014]: two receivers playing a zero-sum game
 - ❖ [Taneva 2016]: two receivers, two actions, two states
 - ❖ [Arieli/Babichenko 2016, Dughmi/Xu 2018]: multiple receivers, no externalities, binary actions

Persuading Multiple Receivers: Applications

[Chan/Li/Wang '15] (private signals), [Alonso/Camara'15] (public signals), [Cheng et al.'15] algorithmic study

Recommendation systems [Mansour/Slivinks/Syrgkanis'15, Mansour et al. '16]

Routing games [Bhaskar et al.'16]

Queueing with strategic customers [Lingenbrink/lyer'17]

	One receiver	Multiple receivers
No player private information	Bayesian persuasion & applications	Basic models and applications
With player private information	Limited work, relate to mechanism design	

- > The receiver holds private information about the random state
- The sender may elicit receiver's private information
 - ❖ [Kolotilin et al. 2017] studies a basic model and relate its structure to mechanism design
 - [Xu et al. 2016] studies persuasion in Bayesian Stackelberg games

	One receiver	Multiple receivers
No player private information	Bayesian persuasion & applications	Basic models and applications
With player private information	Limited work, relate to mechanism design	Much less explored

	One receiver	Multiple receivers
No player private information	Bayesian persuasion & applications	Basic models and applications
With player private information	Limited work, relate to mechanism design	Much less explored

- See [Bergemann/Morris 2017] for a unified perspective and examples
- Models with multiple senders [Kamenica/Gentzkow 2017]

Future Directions

- Information structure design with multiple receivers
 - Basic questions: persuade multiple receivers with externalities, private information, and multiple actions
 - Dynamic/repeated settings
 - Constraints/costs on signaling schemes
 - Applications
- Value and pricing of information
 - Connects to the first part of this tutorial
 - ❖ Consider the "data → information" procedure
 - Relation between persuasion and information elicitation?

Thank You

Questions?

References (1/4)

- [Kamenica/Gentzkow 11]: Emir Kamenica and Matthew Gentzkow. Bayesian persuasion. American Economic Review, 2011.
- [DX'16]: Shaddin Dughmi and Haifeng Xu. Algorithmic Bayesian persuasion. STOC 2016.
- ➤ [Xu et al. 18]: Haifeng Xu, Kai Wang, Phebe Vayanos, Milind Tambe. Strategic Coordination of Human Patrollers and Mobile Sensors with Signaling for Security Games. AAAI 2018.
- ➤ [Xu et al. 2015]:Haifeng Xu, Zinovi Rabinovich, Shaddin Dughmi, Milind Tambe. *Exploring Information Asymmetry in Two-Stage Security Games*. AAAI 2015.
- [Hernández/Neeman 2017]: Penélope Hernández and Zvika Neeman. How Bayesian Persuasion can Help Reduce Illegal Parking and Other Socially Undesirable Behavior. Working paper, 2017.
- [Schlenker et al. 2018]: Aaron Schlenker, Omkar Thakoor, Haifeng Xu, Fei Fang, Milind Tambe, Long Tran-Thanh, Phebe Vayanos, Yevgeniy Vorobeychik. *Deceiving Cyber Adversaries: A Game Theoretic Approach.* AAMAS 2018.
- ➤ [Rabinovich et al. 2016]: Zinovi Rabinovich, Albert X. Jiang, Manish Jain, Haifeng Xu. *Information Disclosure as a Means to Security*. AAMAS 2015.
- [Badanidiyuru/Bhawalkar/Xu 18]: Ashwinkumar Badanidiyuru, Kshipra Bhawalkar, Haifeng Xu. Targeting and Signaling in Ad Auctions. SODA 2018.

References (2/4)

- ➤ [Bergemann/Brooks/Morris 2015]: Dirk Bergemann, Benjamin Brooks, Stephen Morris. *The Limits of Price Discrimination*. American Economic Review, 2015.
- ➤ [Shen/Tang/Zeng 2018]: Weiran Shen, Pingzhong Tang, Yulong Zeng. A Closed-Form Characterization of Buyer Signaling Schemes in Monopoly Pricing. AAMAS 2018.
- [Fu et al. 2012]: Hu Fu, Patrick Jordan, Mohammad Mahdian, Uri Nadav, Inbal Talgam-Cohen, and Sergei Vassilvitskii. Ad Auctions with Data? SAGT 2012.
- ➤ [Emek et al. 12]: Yuval Emek, Michal Feldman, Iftah Gamzu, Renato Paes Leme, Moshe Tennenholtz. Signaling Schemes for Revenue Maximization. EC 2012.
- [Miltersen/Sheffet 12]: Peter Bro Miltersen and Or Sheffet. Send mixed signals: earn more, work less. EC 2012.
- [Dughmi et al. 15]: Shaddin Dughmi, Nicole Immorlica, Ryan O'Donnell, and Li-Yang Tan.
 Algorithmic Signaling of Features in Auction Design. SAGT 2015.
- ➤ [Dughmi 2014]: Shaddin Dughmi. On the Hardness of Signaling. FOCS 2014.
- > [Taneva 2016]: Taneva, I. Information Design. Discussion paper, 2016.
- [Arieli/Babichenko 2016]: Itai Arieli, Yakov Babichenko. Private Bayesian Persuasion. Working paper, 2016.

References (3/4)

- [Dughmi/Xu 2018]: Shaddin Dughmi, Haifeng Xu. Algorithmic Persuasion with No Externalities. EC 2017.
- ➤ [Chan/Li/Wang '15]: Jimmy Chan, Fei Li, and Yun Wang. *Discriminatory Persuasion: How to Convince a Group.* Working paper, 2015.
- [Alonso/Camara'15]: Ricardo Alonso, Odilon Câmara. Persuading Voters. American Economic Review, 2016.
- ➤ [Cheng et al.'15]: Yu Cheng, Ho Yee Cheung, Shaddin Dughmi, Ehsan Emamjomeh-Zadeh, Li Han, Shang-Hua Teng. *Mixture Selection, Mechanism Design, and Signaling*. FOCS 2015.
- ➤ [Bhaskar et al.'16]: Yu Cheng, Umang Bhaskar, Young Kun Ko, Chaitanya Swamy. Hardness of Signaling in Bayesian Games. EC 2016.
- [Mansour/Slivinks/Syrgkanis'15]: Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis.
 Bayesian Incentive-Compatible Bandit Exploration. EC 2015.
- [Mansour et al. '16]: Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis., and Steven Wu. Bayesian Exploration: Incentivizing Exploration in Bayesian Games. EC 2016.

References (4/4)

- ➤ [Lingenbrink/Iyer'17]: D. Lingenbrink, K. Iyer, Optimal Signaling Mechanisms in Unobservable Queues with Strategic Customers, EC 2017.
- [Kolotilin et al. 2017]: Anton Kolotilin, Tymofiy Mylovanov, Andriy Zapechelnyuk. Persuasion of a Privately Informed Receiver. Econometrica 2017.
- [Xu et al. 2016]: Haifeng Xu, Rupert Freeman, Vincent Conitzer, Shaddin Dughmi and Milind Tambe. Signaling in Bayesian Stackelberg Games. AAMAS 2016.
- [Bergemann/Morris 2017]: Dirk Bergemann and Stephen Morris. Information Design: A Unified Perspective. Working paper, 2017.
- ➤ [Kamenica/Gentzkow 2017]: Emir Kamenica and Matthew Gentzkow. *Bayesian persuasion with multiple senders and rich signal spaces*. Games and Economic Behavior, 2017.