Rethinking Online Content Ecosystems through the Lens of Computational Economics

A Tutorial Talk at Sigecom Winter 25 Meeting

Haifeng Xu

Department of Computer Science and Data Science Institute

University of Chicago

Content Recommendation System (RS)

- > An indispensable component of our life
- Crucial to success of generative Als (GenAls)

Classic Research Paradigm in RSs

System learning/optimization in static environments

But... Still Many Pressing Issues

More Issues Arise with AI-Generated Content (AIGC)

Why?

Pure Learning Overlooks Creators' and Users' Autonomy

- Creators respond to incentives
 - E.g., Youtubers create longer videos when they are rewarded by view duration [MC'23])
 - AIGC significantly reshapes creators' incentives
- Users has adaptive, often myopic and suboptimal behaviors
 - Shown by much behavioral study, also affirmed by our own experience

How the YouTube Algorithm Works in 2023: The Complete Guide. Stacey McLachlan, Paige Cooper (2023)

Remainder of this talk will survey recent works that

- Model incentives and agency in content ecosystems
- Study equilibria, incentive mechanisms, and impact of AIGC

Part I: Diagnosing and Optimizing Existing Content Ecosystems

Part II: How Does AIGC Transform Future Content Ecosystems

A Game with Three Types of Players

Recent Advances: Supply Side

Recent Advances: Consumption Side

Produce for

Less studied; research mostly focuses on improving recommendation efficiency via "behavior-aware" system learning

- [Kleinberg et al., MS'23] considers platform's learning of user preferences and argues that sub-optimality comes from human's irrational behaviors
- Yao et al., ICML'22] designs platform's algorithms to learn from explorative users

Recent Advances: Ecosystem Perspective

Recent Advances: Ecosystem Perspective

Content creator's objective: (1) maximize traffic (i.e., attracted users), minus producing cost

Content creator's objective: (1) maximize traffic (i.e., attracted users), minus producing cost or (2) maximize welfare/happiness of their traffic

Content creator's objective: (1) maximize traffic (i.e., attracted users), minus producing cost or (2) maximize welfare/happiness of their traffic

 $\mathbb{E}_{x \sim F} \left[\mathbb{I}(x \text{ visits creator 2}) \cdot (\sigma(s_2, x) + \epsilon_2) \right] - c_2(s_2)$ Rewards from platform $\sigma(s_2, x) + \epsilon_2$ = Creator 2's utility (= welfare) $s_2 \in S_2$ $\overline{v_s v_s}$ $\sigma(s_2, x)$ > Platform cares about system efficiency – i.e. total welfare $\Sigma_i U(\text{creator } i) + \Sigma_x \left[U(\text{user } x) \right]$

This modeling structure is the backbone of many previously mentioned works, though details could be different

The Inefficiency of Rewarding Only Traffic or Welfare

Content creator's objective: (1) maximize traffic (i.e., attracted users), minus producing cost or (2) maximize welfare/happiness of their traffic $\mathbb{E}_{x \sim F} \left[\mathbb{I}(x \text{ visits creator 2}) \cdot (\sigma(s_2, x) + \epsilon_2) \right] - c_2(s_2)$

Can have large price of anarchy (though often smaller than 2) [Yao at el., ICML'23]

The Inefficiency of Rewarding Only Traffic or Welfare

Content creator's objective: (1) maximize traffic (i.e., attracted users), minus producing cost or (2) maximize welfare/happiness of their traffic $\mathbb{E}_{x \sim F} \left[\mathbb{I}(x \text{ visits creator 2}) \cdot (\sigma(s_2, x) + \epsilon_2) \right] - c_2(s_2)$

Can have large price of anarchy (though often smaller than 2) [Yao at el., ICML'23]

The Inefficiency of Rewarding Only Traffic or Welfare

Content creator's objective: (1) maximize traffic (i.e., attracted users), minus producing cost or (2) maximize welfare/happiness of their traffic $\mathbb{E}_{x \sim F} \left[\mathbb{I}(x \text{ visits creator 2}) \cdot (\sigma(s_2, x) + \epsilon_2) \right] - c_2(s_2)$

- Can have large price of anarchy (though often smaller than 2) [Yao at el., ICML'23]
- In fact, if creator reward mechanism satisfies certain monotone properties, it can never be welfare-maximizing [Yao at el., NeurIPS'23]

Q: Can we design/optimize the reward values *R* to "steer"/incentivize creators' collective behaviors towards better total welfare?

[Yao et al.'23] develops a new mechanism that introduces more competition for congested topics, and achieves optimal welfare at equilibrium

Core idea: reward based on how much a creator is better than the next

- Mechanism is fully described by these functions
- Reward = area of

[Yao et al.'23] develops a new mechanism that introduces more competition for congested topics, and achieves optimal welfare at equilibrium

Core idea: reward based on how much a creator is better than the next

- Mechanism is fully described by these functions
- Reward = area of

[Yao et al.'23] develops a new mechanism that introduces more competition for congested topics, and achieves optimal welfare at equilibrium

Core idea: reward based on how much a creator is better than the next

Advantages

✓ σ_1 's reward decreases when σ_2 becomes better (i.e., competition reduces rewards)

[Yao et al.'23] develops a new mechanism that introduces more competition for congested topics, and achieves optimal welfare at equilibrium

Core idea: reward based on how much a creator is better than the next

Advantages

✓ σ_1 's reward decreases when σ_2 becomes better (i.e., competition reduces rewards)

[Yao et al.'23] develops a new mechanism that introduces more competition for congested topics, and achieves optimal welfare at equilibrium

Core idea: reward based on how much a creator is better than the next

Advantages

- ✓ σ_1 's reward decreases when σ_2 becomes better (i.e., competition reduces rewards)
- ✓ Naturally handles top-*K* selection by setting $f_{K+1} = \cdots = f_n = 0$

[Yao et al.'23] develops a new mechanism that introduces more competition for congested topics, and achieves optimal welfare at equilibrium

Core idea: reward based on how much a creator is better than the next

Advantages

- ✓ σ_1 's reward decreases when σ_2 becomes better (i.e., competition reduces rewards)
- ✓ Naturally handles top-*K* selection by setting $f_{K+1} = \cdots = f_n = 0$

[Yao et al.'23] develops a new mechanism that introduces more competition for congested topics, and achieves optimal welfare at equilibrium

Theorem (informal).

- 1. Previous mechanism always induces a *potential game* among creators;
- 2. There is a choice of $f_1, f_2, ..., f_n$ that make the potential function precisely the system's welfare function (\Rightarrow welfare is maximized at a pure Nash)
- A variant of this mechanism was tested on Instagram Reels, with results reported in [Yao et al, KDD'24]
 - A "separated world" with ~10 millions users/creators
 - A/B testing for 8 weeks

Real-world Experimental Results from A/B Test

User Groups	1-5	6-20	21-74	75 +	TOTAL
Like-Through-Rate	+0.43%	+1.40%	+0.75%	+1.36%	+1.13%
Impression	+2.64%	+0.62%	+1.42%	+0.11%	+0.76%

Nice side effects

- \checkmark 3.7% increase in diversity of user impression
- ✓ Increased diversity of user consumption
 - 0.71 increase on average number of consumed topic per user

These improvements are significant even compared to launched methods

Part I: Diagnosing and Optimizing Existing Content Ecosystems

Part II: How Does AIGC Transform Future Content Ecosystems

Generative AI as a Forth Player Type

Interesting Recent Works; Huge Amount of Future Directions

37

Interesting Recent Works; Huge Amount of Future Directions

ou aregit interiore

Interesting Recent Works; Huge Amount of Future Directions

Natural and Important Mechanism Design Questions

Natural and Important Mechanism Design Questions

Preference aligned generation and new monetarization mechanisms

- [Duetting et al., WWW'24] studies how to generate texts that aligned with a group of users' preferences, with advertising as one motivation
 - Follow-up refinements and variants [Dubey et al. KDD'24, Soumalia et al'24] and position papers [Feizi et al 2023]

Natural and Important Mechanism Design Questions

Preference aligned generation and new monetarization mechanisms

- [Duetting et al., WWW'24] studies how to generate texts that aligned with a group of users' preferences, with advertising as one motivation
 - Follow-up refinements and variants [Dubey et al. KDD'24, Soumalia et al'24] and position papers [Feizi et al 2023]

Mechanism Design for LLMs

Motivations

In many applications, different parties prefer different generations

Research Question:

How to allow different parties to influence an LLM's generation by incentivizing them to express preferences "truthfully"?

Application 1: Internet Advertising

Currently, advertisers bid to have fixed ad creatives placed in certain slots in the page.

1 answer 15 votes: My wife and I spent two weeks on Maui last month (June, 2019), so I can p...

Go Hawaii H

https://www.gohawaii.com > planning-your-trip > before...

Before You Travel to Hawaii

The first step to an enjoyable trip to Hawai'i is being well-informed about what to bring and how to prepare before your visit.

Pet Restrictions · What To Pack · Airport Security

Application 1: Internet Advertising

Sponsored

Fly to paradise with <u>Maui Airlines</u> and experience the magic of Hawaii at <u>Stingray Resort</u>. Stunning views, luxurious accommodations, and endless activities await. Book your dream vacation today and create unforgettable memories.

Ess

In the future, it could be a creative co-branding ads!

Q Quora https://www.quora.com > What-is-the-estimated-cost-fo...

What is the estimated cost for a vacation in Hawaii for two ...

A excursion in **Hawaii** for two people will likely cost round \$3000-\$5000 for airfare, motel, food, and sports for 5-7 days.

1 answer \cdot 15 votes: My wife and I spent two weeks on Maui last month (June, 2019), so I can p...

Go Hawaii https://www.gohawaii.com > planning-your-trip > before...

Before You Travel to Hawaii

The first step to an enjoyable **trip to Hawai'i** is being well-informed about what to bring and how to prepare before your visit.

Pet Restrictions · What To Pack · Airport Security

Application 1: Internet Advertising

Sponsored

Fly to paradise with <u>Maui Airlines</u> and experience the magic of Hawaii at <u>Stingray Resort</u>. Stunning views, luxurious accommodations, and endless activities await. Book your dream vacation today and create unforgettable memories.

Ess

In the future, it could be a creative co-branding ads!

Even co-branding pictures!

Q Quora https://www.quora.com > What-is-the-estimated-cost-fo...

What is the estimated cost for a vacation in Hawaii for two ...

The first step to an enjoyable trip to Hawai'i is being well-informed about what to bring

A excursion in **Hawaii** for two people will likely cost round \$3000-\$5000 for airfare, motel, food, and sports for 5-7 days.

1 answer · 15 votes: My wife and I spent two weeks on Maui last month (June, 2019), so I can p...

Go Hawaii https://www.gohawaii.com > planning-your-trip > before...

Before You Travel to Hawaii

and how to prepare before your visit.

Pet Restrictions · What To Pack · Airport Security

The wish:

A way to auto-generate ad creative, which allows advertisers to express preferences and influence results via bids

Application 2: Enterprise LLMs

How to incentivize them to honestly express their preferences to be aggregated into final output?

Desired Properties We Want

- Avoid asking each agent (e.g., an advertiser) to report their value function or preferences over language outputs → unrealistic
 ✓ Use LLMs to encode each agent's preferences
- 2. Each agent should still be able to influence the output
 - Allow each agent use a single bid to influence outcome (bid captures their intent strength)
- Randomized token sampling → crucial for LLMs [Holtzman et al., 2019]
 ✓ True by design
- 4. Efficiency → cannot call LLMs too many times
 ✓ Each agent's LLM is called once
- 5. Technological compatibility → easy integration into current systems
 ✓ Our design is a lightweight layer over existing LLMs

A proposal:

The Token Auction Model

Each advertiser's preference over outputs is encoded by an LLM

• These LLMs are assumed publicly known (e.g., obtained via fine-tuning)

- >Auction runs when a prompt arrives
- >Each advertiser can influence output via a bid
 - One of the LLMs can be the organic output with a default bid

> Auction determines aggregated distribution $q(\mathbf{b}; \mathbf{p})$

>Auction determines aggregated distribution $q(\mathbf{b}; \mathbf{p})$ and payment $z_i(\mathbf{b}; \mathbf{p};)$

Repeat this process with the same bids but updated prefix

Core Designs under the Auction Protocol

Aggregated function $q(\mathbf{b}; \mathbf{p})$ + payment $z_i(\mathbf{b}; \mathbf{p};)$ for each *i*

Why not VCG?

- The auction did not elicit value functions from bidders
- We employ *indirect* mechanism design, with *robust* consideration of agent preferences

Incentive Design in Our Indirect Mechanisms

Reduce incentive design to aggregation design

Desired incentive properties

- 1. Higher pay \rightarrow robustly better distribution
- 2. Hold irrespective of others' bids

Aggregation function $q(\mathbf{b}; \mathbf{p})$ must be "monotone"

Proof employs Debreu's representation theorem

Incentive Design in Our Indirect Mechanisms

1. Training LLM based on combined data and KL-divergence loss Linear aggregation (monotone)

- 2. RLHF based on combined agent preferences
 - ---- Log-linear aggregation (not monotone)

Incentive Design in Our Indirect Mechanisms

A novel token sampling technique for monotone aggregation function that leads to natural "second-price" payment rule

Demonstration on Google's Bard LLM

- > Two advertisers
- Create their LLMs via prompting

You are an expert of writing texts that naturally combines two ads together. Your choice of words and sentences is full of artistic flair.

Write a one-sentence ad for _____.

- Agent A use: a flight to Hawaii using [Alpha Airlines].
- Agent B use: a vacation in Hawaii at the [Beta Resort].

Bard-Generated Texts ($\lambda = \frac{b_1}{b_1 + b_2}$)

λ	Linear aggregation function $q_{\rm KL}$	Log-linear aggregation function $ar{q}_{KL}$			
1	Alpha Airlines: Your ticket to paradise.				
0.75	Alpha Airlines: Fly to Hawaii and experience the beauty of the	Feel the magic of Hawaii with a flight on Alpha Airlines, now			
	islands with aloha.	offering 20% off all flights when you book with us today!			
	Beta Resorts: Stay at our resorts and enjoy the best of Hawaii.				
0.6	Alpha Airlines flies you to Hawaii, where you can enjoy a week-	Experience the magic of Hawaii with a flight on Alpha Airlines,			
	long stay at the Beta resort for just \$1000.	now offering 20% off all flights when you book with us today!			
0.55	Alpha Airlines flies you to Hawaii, where you can enjoy a week-	Escape to the tropical paradise of Hawaii with [Alpha Airlines]!			
	long stay at the Beta resort .				
0.5	Alpha Airlines flies you to Hawaii, where you can enjoy a beau-	Experience the magic of Hawaii with a stay at the luxurious [Beta			
	tiful sunset on the beach. Stay 3 nights and get the 4th free at the	Resort] and a refreshing flight on [Alpha Airlines].			
	Beta Resort.				
0.45	Fly Alpha Airlines to sunny Hawaii and enjoy the secluded	Experience the magic of Hawaii with a stay at the luxurious [Beta			
	beaches and private lagoons of the Royal Hawaiian Beta Resort.	Resort] and a special flight offer from [Alpha Airlines].			
0.4	Fly Alpha Airlines to sunny Hawaii and enjoy the first-class	Experience the magic of Hawaii at the [Beta Resort], where you'll			
	treatment that awaits you at Beta Resort , all for one low price.	feel like you're in a tropical paradise.			
0.25	Experience the magic of Hawaii at the Beta Resort, where the	Experience the magic of Hawaii at the Beta Resort , where you'll			
	sun shines brighter and the waves crash louder $-$ book your stay	be pampered like royalty and surrounded by breathtaking beauty.			
	today with our exclusive 20% off discount!				
0	Hawaii's Beta Resort: a paradise where the sun shines brighter, the waves sing sweeter, and the sand feels softer.				

- Linear aggregation function (monotone) does appear to more smoothly transit from favoring agent A to favoring agent B
- Log-linear aggregation tends to say less and repeat more

Other Works in EconCS Space

This talk is biased towards algorithmic studies of non-cooperative competitions and mechanism design

- Many recent works from economic/operational perspective
- GenAl for social choice [Fish et al., EC'24] and preference alignment [Conitzer et al. ICML'24]
- GenAl for peer prediction [Lu et al., EC'24]

Many Questions Remain to Be Understood/Solved

- Better and sustainable monetization of GenAI technology
- > Fair and more equitable creator compensations
- Escape echo chamber
- Preserve/increase content diversity
- Sustainable human-GenAl co-evolution

≻...

Incentives and agency are crucial to both learning algorithms and market mechanisms for resolving these pressing issues

Summary

63

Thank You

Questions? haifengxu@uchicago.edu

