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Abstract

We study the second-price auction in which bidders have
asymmetric information regarding the item’s value. Each bid-
der’s value for the item depends on a private component and a
public component. While each bidder observes their own pri-
vate component, they hold different and asymmetric informa-
tion about the public component. We characterize the equilib-
rium of this auction game and study how the asymmetric bid-
der information affects their equilibrium bidding strategies.
We also discover multiple surprisingly counter-intuitive equi-
librium phenomena. For instance, a bidder may be better off
if she is less informed regarding the public component. Con-
versely, a bidder may sometimes be worse off if she obtains
more accurate estimation about the auctioned item. Our re-
sults suggest that efforts devoted by bidders to improve their
value estimations, as widely seen in today’s online advertis-
ing auctions, may not always be to their benefit.

1 Introduction
Thanks to convenient access to information and the signifi-
cant advances of machine learning techniques, we can now
make unprecedentedly accurate predictions about various
uncertain quantities. Naturally, these predictions have also
changed how our decisions are made. One prominent exam-
ples, among many others, is the significant effort devoted by
both Internet companies and online advertisers to predicting
an Internet user’s interest in their ads. Such predicted level
of interest, typically characterized by the click through rate
(Richardson, Dominowska, and Ragno 2007), will then af-
fect the advertiser’s value, and thus the bid, for the user’s
impression. More generally, when we make many other pur-
chases (e.g., a house, used car or an artwork), we tend to
collect as much data as possible in order to reduce our un-
certainty about the item’s value estimation.

An important question, however, is whether such more ac-
curate estimations always benefit us. At a first glance, this
answer might seem obvious — how could knowing more
ever be harmful? Certainly, if an agent’s payoff, with possi-
ble uncertainty, only depends on its own decision and is not
affected by any other agent’s actions (i.e., there are no ex-
ternalities), then more accurate estimations always improve
the agent’s decision (Blackwell 1953). However, the answer
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turns out to be highly non-trivial once an agent’s payoff
has externalities, and specifically, is affected by other self-
interested agents’ actions in a strategic setup. This raises the
following basic and intriguing question:

In real-world strategic settings with uncertainty, does
more accurate estimation always benefit the agent?

In this paper, we investigate the above question in the
fundamental sealed-bid second price auction (a.k.a., Vick-
rey auction) which is widely used in the online advertising
industry (Edelman, Ostrovsky, and Schwarz 2007).1 Specif-
ically, we consider a second-price auction with n + 1 bid-
ders 0, 1, · · · , n. The valuation of the auctioned item for
each bidder i is the sum of a private component Vi and a
public component C that is common to all bidders. While
Vi’s and C are all drawn from publicly known distributions,
bidders have asymmetric information about the public com-
ponent C; that is, (only) bidder 0 can observe the realized
C. As a motivating example, consider an ad auction among
insurance companies who all bid for an Internet user search-
ing the keyword of “insurance”. The common component C
here captures the total profit any insurance company could
earn from this particular user, which depends on the user’s
attributes and typically does not differ much across insur-
ance companies. The private component Vi describes the
specific operational cost of insurance company i. Bidder 0
could be a performance-driven advertiser who delegates her
bidding to professional marketing agencies which indeed
have much more accurate information about Internet users.

This work aims at understanding how the special bidder
0’s extra information may affect the equilibrium as well as
agents’ utilities by comparing two different situations: (1)
the asymmetric world as we described above; and (2) the
symmetric world in which bidder 0 also cannot observe C.
Summary of results. As a necessary step, we first charac-
terize the equilibrium of the above game under information
asymmetry. Specifically, when there are only two bidders, 0
and 1, we provide an explicit characterization of the equi-
librium under mild assumptions. As an application of this
characterization, we prove that there exists a critical value t

1More precisely, second-price auctions are used when there is
only a single ad slot for sale, e.g., for display ads (Korula, Mirrokni,
and Nazerzadeh 2015).



for the uninformed bidder 1 such that he bids more conser-
vatively than his bid in the symmetric world whenever his
value v1 ≤ t, but bids more aggressively when v1 ≥ t. For
n > 1, we derive differential equations that characterize the
bidding equilibrium. As an application of this characteriza-
tion, we show that uninformed bidders’ bids decrease as n
increases; that is, more competition leads to more conser-
vative bidding in the asymmetric world, whereas bidders’
equilibrium bid remain the same in the symmetric world.

We then leverage our equilibrium characterization to dis-
cover multiple quite surprising facts, which illustrate the in-
tricate role of information asymmetry in auctions. We show
that the informed bidder 0 may be worse off in the asym-
metric world — i.e., bidder 0’s information advantage may
be harmful to her. Surprisingly, we also find that an unin-
formed bidder may be better off in the asymmetric world
— i.e., ignorance of her value may increase a bidder’s util-
ity at equilibrium. Finally, we observe that the auctioneer’s
revenue may decrease as the uninformed bidders learn ad-
ditional information about C. This gives rise to a simple
counter example to the celebrated “linkage principle” (Mil-
grom and Weber 1982), which posits that the auctioneer’s
revenue always increases as bidders become more informed.
We remark that such a counter example was discovered re-
cently in (Syrgkanis, Kempe, and Tardos 2015) as well, but
with a much more involved analysis than ours.

Related work. The study of information asymmetry in auc-
tions has a long history, dating back to the seminal work of
Wilson (1967). Most previous works have focused on first
price auction, and like us, have assumed that one bidder is
fully informed whereas all other bidders are not informed
(Wilson 1967; Milgrom and Weber 1982; Engelbrecht-
Wiggans, Milgrom, and Weber 1983). However, our focus
in this work is a different yet similarly basic auction format,
the second price auction.

The seminal work of Milgrom and Weber (1982) proved
the linkage principle (as mentioned above) for commonly
seen auction formats with symmetric bidders and positively
correlated (a.k.a., associated) bidder signals. Hausch (1987)
and another interesting recent work (Syrgkanis, Kempe, and
Tardos 2015) analyze the equilibrium of both first and sec-
ond price auctions but with non-symmetric bidders. Both
works consider only two bidders and demonstrate the fail-
ure of the linkage principle in their models. Most of these
previous works assume common value. However, our model
can have many bidders and uses a more general bidder value
model (which includes the common value model as a special
case with Vi ≡ 0 for each bidder i). On the other hand, the
information structure in our model is simpler by assuming
one bidder fully observes C while all others observe no in-
formation. Therefore, our results are not quite comparable.
Moreover, these previous works are all primarily focused on
the auctioneer’s revenue, whereas we mainly study bidders’
bidding behavior and utility changes at equilibrium. To our
knowledge, this perspective has not been investigated much
before.

Our work is also related to recent literature on design-
ing signaling schemes to influence bidders’ bidding strategy

(Emek et al. 2012; Badanidiyuru, Bhawalkar, and Xu 2018;
Li and Das 2019; Bergemann et al. 2021). However, these
works also focuses on the auctioneer’s revenue. Our work
can be viewed as understanding the equilibrium under one
particular signaling scheme, i.e., with full information re-
vealed to exactly one bidder.

2 Preliminaries
Basic Setup. We consider a single-item second-price auc-
tion with n + 1 bidders, denoted by set [n] = {0, 1, ..., n},
and correlated bidder values. Bidder i has value Vi + C for
the item where Vi is the private value that depends only
on i, and C is the common value that is the same for ev-
ery bidder. For any i ∈ [n], Vi is a random variable drawn
from a continuous distribution with strictly positive proba-
bility density function (PDF) fi(v) supported on [li, ui] for
some 0 ≤ li < ui. Let Fi(v) be the corresponding cumu-
lative distribution function (CDF). The common value C is
also a random variable drawn from a continuous distribu-
tion with strictly positive PDF g(c) supported on [lc, uc] for
0 ≤ lc < uc;G(c) is the CDF. By convention, we use capital
letters (e.g., Vi) to denote random variables and small letters
(e.g., vi) denote the realization. As a standard assumption,
Vi’s and C are assumed to all be independent.

In the second-price auction, each bidder i ∈ [n] submits a
bid bi. The highest bid wins, receives the auctioned item, and
pays the second highest bid. Let i∗ be the winning bidder and
bi− be the second highest bid. The payoff of i∗ is vi∗+c−bi−
and the payoffs of all other bidders are 0.

Information Structure. All distributions are common
knowledge, i.e., known to all bidders. Each bidder i can ob-
serve the realization of his own private value vi. However,
bidder 0 is the only special bidder who additionally observes
the realized common value of c. So the game exhibits infor-
mation asymmetry — bidder 0 has more accurate estimation
of c. As widely known in the literature (Milgrom and We-
ber 1982), under information asymmetry, truthful bidding
ceases to be an equilibrium in second-price auctions. Nev-
ertheless, the following lemma shows that truthful bidding
remains a dominant strategy for bidder 0 (but not for other
bidders; see examples later). Its proof follows the same ar-
gument as the truthfulness proof in a standard VCG mecha-
nism, and thus is omitted.

Lemma 1. Truthful bidding is a dominant strategy for bid-
der 0.

Consequently, we shall assume throughout the paper that
bidder 0 always bids truthfully. Our equilibrium characteri-
zation is therefore focused on finding the bidding strategy of
the uninformed bidders.
Additional discussion on our model. When studying in-
formation asymmetry in auctions, it is common to consider
correlated bidder values since when values are independent,
one bidder’s information would not affect any other bidders’
valuations. In this literature, the valuation model with a com-
mon and a private component is prevalent (Milgrom and We-
ber 1982; Abraham et al. 2013; Li and Das 2019). Moreover,
it also strictly generalizes the classic common-value auction



model (when Vi ≡ 0,∀i) originating from the seminal work
of Wilson (1966; 1967). Most related to our specific model
is that of (Arnosti, Beck, and Milgrom 2016), motivated by
online advertising, in which C captures the attributes of the
auctioned user impression that are valuable to all advertis-
ers (i.e., bidders), Vi captures bidder i’s private value per
impression, and they are independent. In another motivat-
ing domain of art auction, C captures the resale value of the
auctioned artwork and Vi captures bidder i’s personal pref-
erences about the artwork (Goetzmann and Spiegel 1995).
Theme and structure of the remainder. A main theme of
this paper is to study whether bidder 0’s more accurate value
estimation would necessarily benefit herself and harm other
bidders. To do so, we first characterize the equilibrium of the
game in Sections 3 and 4 for the cases of two bidders and
many bidders, respectively. Section 5 presents our findings
and insights by analyzing the equilibrium.

3 Equilibrium Analysis: Two-Bidder Cases
To understand bidder payoffs at equilibrium, we must be
able to characterize the equilibrium in the first place. In this
section, we focus on the setting with two bidders, i.e., bidder
0 and bidder 1, and provide an explicit equilibrium charac-
terization under reasonable distribution assumptions.

Since bidder 0 always bids her true value, we only need
to characterize bidder 1’s equilibrium bidding function, de-
noted as b∗(v1), which maps her realized private value v1 to
the optimal bid b∗(v1). Particularly, given any private value
v1 ∈ [l1, u1], the equilibrium bid of bidder 1 is the b∗ that
maximizes her expected utility, as a function of v1 and b,
expressed as follows:

U(b; v1)

= E
C,V0

[v1 + C − (V0 + C)|b ≥ V0 + C] ·Pr(b ≥ V0 + C)

=

∫
v0+c≤b

(v1 − v0)f0(v0)g(c)dv0dc

=

∫ b

0

∫ b−v0

0

(v1 − v0)f0(v0)g(c)dc dv0

=

∫ b

0

(v1 − v0)f0(v0)G(b− v0)dv0 (1)

Since V0 has support [l0, u0]. If v1 ≥ u0, for any v0 we
have (v1−v0)f0(v0)G(b−v0) ≥ 0. Therefore, U(b; v1) will
be maximized by any b ≥ u0 + uc. That is, bidder 1 simply
bids high enough to secure a winning position. On the other
hand, if v1 ≤ l0, bidder 1 will bid as low as possible as any
winning will result in negative utility. Therefore, in the rest
of this section we focus on the non-trivial case v1 ∈ (l0, u0).

By definition, the equilibrium bidding function b∗(v1) =
argmaxb U(b; v1) for any v1. Unfortunately, we show that
the optimal bid b∗ generally does not admit tractable struc-
ture and may have multiple maxima because the function
U(b; v1) as a function of b is non-convex in general for a
fixed v1. This is illustrated in the following example.

Example 1. Consider the problem with V0 ∼ U
(
[0, 3

4 ]
)

where U(I) denotes the uniform distribution over set I . The
common component C ∼ 1

2 (Beta(2, 7) + Beta(7, 2)), i.e.,

the uniform mixture of Beta(2, 7) and Beta(7, 2). Simple
calculation shows that g(c) = 28[c(1− c)6 + c6(1− c)] for
all c ∈ [0, 1]. In this case, the explicit expression of bidder
1’s expected utility U(b; v1), as a function of b, is already
rather complicated and thus omitted here. The following fig-
ure plots U(b; v1) for v1 = 3/8. As we can see, U(b; v1) is
neither convex nor concave, and has multiple local maxima.
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Example 1 reveals some intricacies in characterizing bid-
der 1’s equilibrium bidding strategy due to multiple optimal
bids. Generally, the optimal bidding function does not admit
an explicit characterization. Our main result in this section
is to identify a fairly general condition, under which bidder
1’s optimal bidding strategy can be explicitly characterized
and also easily computed.
Theorem 1. If g(c) is log-concave2, then b∗(v1) is bidder
1’s equilibrium (i.e., optimal) bid for v1 if and only if b∗(v1)
satisfies equation v1 = E(V0|V0 + C = b∗(v1)). Moreover,
E(V0|V0 + C = b) is non-decreasing in b, therefore b∗(v1)
can be efficiently computed for each v1 via binary search.

Theorem 1 shows that the bid b∗ is optimal for bidder 1
if and only if conditioning on bidder 0 bidding b∗, the ex-
pected private value of bidder 0 equals v1. It provides an
explicit characterization of all the equilibrium bids for bid-
der 1. Besides revealing structural insights, this characteri-
zation also implies an efficient binary-search algorithm due
to monotonicity of E(V0|V0 + C = b) as a function of b.

The proof of Theorem 1 is rather involved and is deferred
to Appendix A. Key to our proof is to rule out all bad situ-
ations similar to Example 1, for which a characterization of
the optimal bid is challenging. To overcome this issue, we
leverage the log-concavity assumption to prove the follow-
ing crucial property of random variables, which may be of
independent interest.
Lemma 2. If g(c) is log-concave, then E(V0|V0 + C = b)
is non-decreasing in b.

This property allows us to show that bidder 1’s utility
function must increase first and then decrease. This allows
us to characterize the optimal bid as the one with derivative
equaling 0, leading to the condition in Theorem 1.

We remark that the log-concavity assumption in Theorem
1 is widely adopted for modeling value distributions (Bag-
noli and Bergstrom 2006). In fact, many commonly used
distributions — e.g., normal, exponential, logistic, Laplace
and uniform distributions over a convex set — are all log-
concave. It is easy to verify that the density function g(c) in
Example 1 is not log-concave. The following example is an
application of Theorem 1.

2A function g is log-concave if log(g) is a concave function.



Example 2. Consider the case where V0 is drawn from the
log-concave distribution U([0, α]) for some α ∈ (0, 1] and
C ∼ U([0, 1]). Applying Theorem 1, we have

b∗(v1) =


2v1 v1 ∈ [0, α/2);

any bid in [α, 1] v1 = α/2;

2v1 + 1− α v1 ∈ (α/2, α].

Example 2 already reveals interesting insights regard-
ing bidding behaviors under information asymmetry. When
v1 <

1
2α, bidder 1 bids 2v1 which is less than v1 + E(C),

despite knowing that the common valueC has high expected
value E(C) = 0.5. On the other hand, when v1 >

1
2α, bid-

der 1 dramatically increases her bid to 2v1 + 1 − α > 1,
which is much larger than both her private component v1

and the expectation of the common value. That is, bidder 1
bids conservatively when her private value is small but bids
aggressively otherwise. It turns out that this intuition can be
made precise, as shown in the following proposition.

Proposition 1. If f0(v0) and g(c) are both log-concave,
then there exists a critical value t ∈ [l1, u1], such that
b∗(v1) ≤ v1+E(C) for any v1 < t and b∗(v1) ≥ v1+E(C)
for any v1 > t.

Notice that if bidder 0 cannot observe the realized com-
mon value c either (so both bidders have equal informa-
tion regarding C), then bidder 1’s equilibrium bid will be
v1 + E(C). Proposition 1 shows that the critical value t
is precisely the value which determines whether bidder 1
will bid more conservatively or aggressively, compared to
the case where both bidders do not observe C.

Proof of Proposition 1. We start with a corollary of Lemma
2. In particular, by exchanging the role of V0 and C, we have
the following conclusion.

Corollary 1. If f0(v) is log-concave, then E(C|V0+C = b)
is non-decreasing in b.

By Theorem 1, we know that the optimal bid b∗ for v1

satisfies v1 = E(V0|V0 + C = b∗) = b∗ − E(C|V0 + C =
b∗). So b∗ = v1 + E(C|V0 + C = b∗). Therefore,

b∗ − (v1 + E(C)) = E(C|V0 + C = b∗)−E(C). (2)

Observe that limε→0+ b∗(l0 + ε) = l0 + lc, i.e., if bidder
1’s value equals the minimum possible bidder 0 value l0, the
l0 = E(V0|V0+C = b∗(l0)) condition implies that b∗(l0) =
l0 + lc. Thus limε→0+ E(C|V0 + C = b∗(l0 + ε)) = lc <
E(C). Similarly, limε→0+ E(C|V0 + C = b∗(u0 − ε)) =
uc > E(C). By Corollary 1, if we increase v1 from l0 to u0,
the sign of b∗(v1) − (v1 + E(C)) will change from being
negative to being positive. There must exist a critical point t
such that b∗(t) = t+ E(C), while b∗(v1) ≤ v1 + E(C) for
all v1 < t and b∗(v1) ≥ v1 + E(C) for all v1 > t.

4 Equilibria Analysis: Many-Bidder Cases
In this section, we consider the case with n ≥ 2 unin-
formed bidders. Like most previous works (Milgrom and
Weber 1982; Engelbrecht-Wiggans, Milgrom, and Weber

1983; Arnosti, Beck, and Milgrom 2016), we focus on sym-
metric uninformed bidders — i.e., Vi’s are independent and
identically distributed (i.i.d.). They are drawn from the same
continuos distribution f(v) supported on the entire interval
[l, u] for all bidder i = 1, 2, ..., n. However, we do allow
f0 6= f to be different. Note that if bidder i(> 0) has a value
v less than l0, he would always prefer to not win the auction
and thus bid 0. Therefore, we shall w.l.o.g. assume l ≥ l0.
Also similar to these previous work, we focus on symmetric
equilibria among uninformed bidders. By “symmetric equi-
librium” we mean the same bidding strategy b∗(v) for any
uninformed bidder i > 0.3

Before characterizing the equilibrium, we first show a
useful property of any symmetric equilibrium. That is, the
equilibrium bid strictly increases in the private value v. Its
proof is technical and deferred to Appendix B.
Lemma 3. (Strict Bid Monotonicity) Any symmetric equi-
librium b∗(v) is strictly increasing in the private value v. In
particular, for any l0 < v < v′, b∗(v) < b∗(v′).

Lemma 3 implies some structural properties of the equi-
librium bidding function b∗(v). First, b∗(v) is almost every-
where differentiable, since it is a bounded strictly increas-
ing function. Moreover, the distribution of the bid b∗(V ),
denoted as P (b), is atomless since b∗(v) is strictly increas-
ing. Next, we characterize the symmetric equilibrium by
providing a first-order characterization of the bid distribu-
tion P (b). We can easily recover b∗(v) from P (b) since
F (v) = P (b∗(v)), i.e., b∗(v) = P−1(F (v)).
Theorem 2. Suppose a symmetric equilibrium exists, then it
is the unique symmetric equilibrium. Moreover, the bid dis-
tributionP (b) of this symmetric equilibrium is characterized
by the following first-order differential equation:

P ′ = −
P
∫ b

0
(F−1(P )− x)f0(x)g(b− x) dx

(n− 1)
∫ b

0
(F−1(P )− x)F0(x)g(b− x) dx

, (3)

for any b ∈ [min∗, uc + u] with boundary condition
P (min∗) = 0, where min∗ is the maximum b satisfying
b = l + E(C|C + V0 ≤ b).

A proof sketch of Theorem 2 goes as follows. We start
by characterizing the equilibrium utility of any uninformed
bidder, as a function of the functional P (b). By definition
of equilibrium, we know that the bid b must be the optimal
bid for the bidder value v = F−1(P (b)) for any b, implying
that the derivative of the revenue, viewed as a function of
b for the corresponding given v, must equal 0. This gives
rise to a differential equation as stated in Equation (3). The
formal proof is technical, and is deferred to Appendix C, in
which we also provide a numerical algorithm for computing
an approximation of the distribution P (b) based on the finite
element method.

In the next section, we shall derive a closed form solution
to the above differential equation for uniformly random dis-
tributions. Before concluding this section, we briefly men-
tion how Equation (3) is related to our equilibrium charac-
terization for two bidder cases (n = 1) as in Theorem 1.

3Recall that bidder 0 has more accurate estimation of C and
always bids truthfully due to Lemma 1.



Since the value v and the corresponding equilibrium bid b
satisfies v = F−1(P (b)), when n = 1, we must have the
numerator of the RHS of Equation (3) equal to 0, in order
to yield bounded P ′. With v = F−1(P (b)), this exactly im-
plies

∫ b
0

(v − x)f0(x)g(b− x) dx = 0, or equivalently,

v =

∫ b
0
xf0(x)g(b− x) dx∫ b

0
f0(x)g(b− x) dx

= E(V0|V0 + C = b)

The above condition is precisely the characterization of The-
orem 1.

5 Strange Roles of Information Asymmetry
Armed with the equilibrium characterization in Section 3
and 4, we are now ready to study how information asym-
metry affects bidders’ utilities in a second price auction. We
shall compare the following two different situations:
• Asymmetric World: only bidder 0 observes realized c

(our current model).
• Symmetric World: none of the bidders observe the real-

ized c.

5.1 The Harm of Overtly Possessing Information
At a first glance, one may think that bidder 0, as the only in-
formed bidder, would always get higher utility in the asym-
metric world. Our first surprising finding is that this is not
the case. In fact, more accurate value estimation may be
harmful for all possible bidder value realizations.
Proposition 2. Suppose all bidders know that they are in
the asymmetric world. There are instances in which bidder
0 in this asymmetric world has strictly less utility than her
utility in the symmetric world for any possible bidder 0 type.
That is, overtly possessing information can be harmful to the
informed bidder 0.

Proof. Our proof constructs such an instance with two bid-
ders, and then utilize our equilibrium characterization in
Theorem 1 and Proposition 1. Our main insight is that if the
uninformed bidder’s valuation is close to 0 with high prob-
ability, then the uninformed bidder will tend to bid aggres-
sively under information asymmetry. Specifically, the criti-
cal value in Proposition 1 would be very small. So that with
almost probability 1, bidder 1 will over bid compared to the
case when bidder 0 is not informed and thus causes utility
decrease for bidder 0. Next, we provide a formal construc-
tion.

Consider the case where the valuation density of bidder 0

is λe−λv0

1−e−λ for v0 ∈ [0, 1], i.e., a truncated exponential dis-
tribution. We will mostly think of λ as large enough. The
density function for bonus value c and bidder 1’s valuation
is the same — the uniform distribution on [0, 1]. Notice that
these two distributions are both log-concave.

By Proposition 1, we know that there exists a critical value
v̂, such that the uninformed bidder bids strictly more than
v0 + E(C) = v0 + 1

2 . We now show that in the constructed
example, v̂ < 1

λ . In fact, as λ → ∞, bidder 1 will almost
always bid v1 + 1.

Specifically, based on Theorem 1, we can derive the rela-
tion between value v1 and its corresponding bid b1 for bidder
1, as follows:

v1 =
1

λ
− b1
eλb1 − 1

, ∀b1 ∈ [0, 1] (4)

v1 =
1

λ
+

(b1 − 1)eλ(2−b1) − 1

eλ(2−b1) − 1
, ∀b1 ∈ [1, 2] (5)

By Equation (4) we know that, for any b1 ≤ 1, we must
have v1 < 1

λ . Therefore, for any v1 ≥ 1
λ , its bid b1 must

be decided by Equation (5). As λ → ∞, the right hand side
of Equation (5) tends to b1 − 1. This induces that bidder 1
tends to bid v1 + 1 for all v1 ≥ 1

λ as λ → ∞. In addition,
the probability that v1 ≤ 1

λ also tends to 0, since v1 is drawn
from a uniform distribution over [0, 1]. Therefore, as λ →
∞, bidder 1 almost surely bids v1+1 and the utility of bidder
0 tends to∫

v0+c≥v1+1

(v0 + c− v1 − 1)f(v1)g(c) dv1 dc =
1

6
v3

0

Notice that if bidder 0 is not informed, both bidders will
“truthfully” bid vi + 1

2 , in which case bidder 0, with value
v0, gets expected utility

∫
v0≥v1(v0 − v1)f(v1) dv1 = 1

2v
2
0 ,

which is greater than 1
6v

3
0 for any v0 ∈ [0, 1].

Intuitively, the proof of Proposition 2 illustrates that when
a “weak” bidder (with generally smaller private value) is
publicly known to be informed, a “strong” bidder (with gen-
erally larger private value) will tend to bid more aggres-
sively, and this may cause utility loss to the weak bidder.

Notably, it is important to assume all bidders know that
they are in the asymmetric world, i.e., bidder 0 overtly
possesses information. A simple observation reveals that if
bidder 0 is covertly informed,4 her utility will always in-
crease. This is because when she is covertly informed, bid-
ding the true value v0 + c dominates the strategy of bidding
v0 + E(C), under which she will already get utility that is
equal to her utility when she is uninformed. This suggests
that any bidder may prefer covertly acquiring information,
especially for weak bidders.

5.2 Possible Blessing of Less Information
Next, we continue to explore uninformed bidders’ utilities.
A natural conjecture would be that uninformed bidders may
always prefer the symmetric world, i.e., perhaps the asym-
metric world always leads to utility decrease for the disad-
vantaged uninformed bidders.

Unsurprisingly, this can indeed happen. For instance, con-
sider previous two-bidder Example 2 with α = 1, i.e., f0(x)
and g(c) are both uniform distribution on [0, 1]. We have
shown that in the asymmetric world, bidder 1’s bidding func-
tion is b(v1) = 2v1 for all v1 ∈ [0, 1]. Basic algebraic cal-

4More precisely, all bidders thought that they are in the symmet-
ric world but bidder 0 covertly gets information to make it actually
the asymmetric world .



culation yields that in the asymmetric world, bidder 1’s ex-
pected utility is as follows:5

ExpU1 =

{
2
3v

3
1 v1 ∈ [0, 0.5];

− 2
3v

3
1 + 2v2

1 − v1 + 1
6 v1 ∈ [0.5, 1].

On the other hand, in the symmetric world, it is straightfor-
ward to verify that bidder 1’s equilibrium bid is v1 + 0.5, re-
sulting in expected utility v2

1/2, which turns out to be larger
than the above utility in the asymmetric world for any v1.

What is surprising, however, is that the above “disadvan-
taged” situation for uninformed bidders is not always harm-
ful. There are situations where the uninformed bidders can
do better in the asymmetric world.

Proposition 3. There are instances in which an uninformed
bidder of certain type derives strictly more utility in the
asymmetric world than her utility in the corresponding sym-
metric world.

Proof. We consider the setting with n + 1 bidders and all
distributions (fi, g) are the uniform distribution over [0, 1].
Due to valuation symmetry among uninformed bidders, let
i(> 0) denote a generic bidder of our interest and v denote
i’th private value.

We start by analyzing the simpler case, i.e., the symmet-
ric world. In this case, bidder 0 does not observe c; it is easy
to see that the bidder i bids v + 1

2 at the unique dominant-
strategy equilibrium. Therefore, the expected utility for bid-
der i with basic value v is

∫ v
0

(v − x)nxn−1dx = 1
n+1v

n+1.
More intricate is the equilibrium analysis in the asymmet-

ric world in which bidder 0 observes c. We will use the equi-
librium characterization in Theorem 2, and first pin down
the boundary condition. Since l = 0, it is easy to see that
the only b that satisfies b = E(C|C + V0 ≤ b) is b = 0.
Therefore, the bid for the smallest value of bidder i is 0.

Next, we analyze bidder i’s bidding function b(v). Since
V ∼ U [0, 1], b has a corresponding distribution, with ran-
domness inherited from V , with CDF P (b). Equation (3) is
a differential equation that characterizes P (b). We now solve
for P (b) for the special case that fi, g are all uniform distri-
bution over [0, 1]. Note that P (b) = Fi(v) = v, we thus
have

F−1
0 (P (b)) = F−1

0 (Fi(v)) = F−1
0 (F0(v)) = v = P (b)

Plugging the above equality into Equation (3), and utilize
the fact that f0, g are both uniform distribution over [0, 1],
we have

P ′(b) = − P (b)[P (b)b− b2/2]

(n− 1)[P (b)s(b)− t(b)]
(6)

with boundary condition P (0) = 0, where function s(b) =∫ b
0
F0(x)g(b− x)dx is

s(b) =

{
1
2b

2 b ∈ [0, 1];

− 1
2b

2 + 2b− 1 b > 1

5The different utility formats come from different integral
bounds when b(v1) = 2v1 is larger or smaller than 1.

and function t(b) =
∫ b

0
xF0(x)g(b− x)dx is

t(b) =

{
1
3b

3 b ∈ [0, 1];
1
6 (−2b3 + 9b2 − 6b+ 1) b > 1

It turns out that when b ≤ 1, differential inequality has
a closed form unique solution P (b) = 2n+1

3n+3b, which can be
verified simply by plugging it into the function. When b > 1,
it appears intractable to have a closed form solution due to
much more intricate format of function s(b), t(b). However,
our argument next will only need to focus on b ≤ 1 – or
equivalently, v ≤ 2n+1

3n+3 – for the generic bidder i.
The above derivation shows that at the symmetric equi-

librium the uninformed bidder i’s bidding strategy is 3n+3
2n+1v

for private value v satisfying v ≤ 2n+1
3n+3 (i.e., the bid is at

most 1). We are now ready to compute bidder i’s utility at
such a private value v. For convenience, let α = 3n+3

2n+1 , so
b(v) = αv. We then have

U(v)

=

∫
v≥u,αv≥v0+c

(v + c−max{v0 + c, αu})

×(n− 1)un−2du dv0 dc

=

∫
v≥u≥ 1

α (v0+c)

(v + c− αu)(n− 1)un−2du dv0 dc

+

∫
v≥ 1

α (v0+c)≥u
(v − v0)(n− 1)un−2du dv0 dc

=

∫
v≥u≥ 1

α c

(v + c− αu)(n− 1)un−2(αu− c)dc du

+

∫
αv≥v0+c

(v − v0)(
v0 + c

α
)n−1dc dv0

=

∫
v≥u

(
v(uα)2

2
− (αu)3

3
)(n− 1)un−2du

+

∫
αv≥v0

(v − v0)
α

n
(vn − (

v0

α
)n)dv0

=

[
α2(n− 1)

2(n+ 1)
− α3(n− 1)

3(n+ 2)

]
vn+1

+
αvn+1

n

[
α− α2

2
− α

n+ 1
+

α2

n+ 2

]
We now compare U(v) with the bidder’s utility 1

n+1v
n+1

in the symmetric world at v = 1
α . Considering sufficiently

large n and omitting o(1) terms, we have

U(v)− 1
n+1

vn+1

vn+1

=
α2(n− 1)

2(n+ 1)
− α3(n− 1)

3(n+ 2)
+
α2 − α3/2

n
−O(

1

n2
)− 1

n+ 1

= α2[ 1

2n
+
α2 − α3/2

n

]
−O(

1

n2
)− 1

n+ 1

When n is large, α ≈ 3
2 , so the above quantity tends

to 9
16n > 0, omitting O( 1

n2 ) term. Therefore, U(v) >



1
n+1v

n+1. In other words, an uninformed bidder with value
v = 1/α gets strictly larger utility in the asymmetric world
than her utility in the symmetric world.

Our next result shows that the above phenomenon may be
due to the intense competition among many bidders, under
which: (1) each bidder derives little utility in the symmetric
world; whereas (2) more conservative bidding among unin-
formed bidders in the asymmetric world helps them to in-
crease utility when their private values are high. It turns out
that with two bidders, the uninformed bidder will always be
worse off in the asymmetric world.

Proposition 4. When there are two bidders (one informed
and one uninformed), the utility of the uninformed bidder 1
in the asymmetric world is always less than her utility in the
symmetric world, for any private value v1.

Proof. We have

U(b)

= E([v1 + C]− [V0 + C]|V0 + C ≤ b)× P (V0 + C ≤ b)

=

∫ b

0

(v1 − v0)f(v0)G(b− v0)dv0

=

∫ v1

0

(v1 − v0)f(v0)G(b− v0)dv0

+

∫ b

v1

(v1 − v0)f(v0)G(b− v0)dv0

≤
∫ v1

0

(v1 − v0)f(v0)dv0 + 0

The last term
∫ v1

0
(v1 − v0)f(v0)dv0 is precisely bidder

1’s utility in the symmetric world.

5.3 Welfare, Revenue, and Failure of the Linkage
Principle

Finally, we make a few simple observations about the effect
of information asymmetry on revenue and welfare.

Observation 1. The auction’s welfare in the asymmetric
world is always weakly less than that in the symmetric
world.

Proof. This is because if bidder 0 was not informed as in the
symmetric world, the second price auction is socially opti-
mal — it always allocates the item to the bidder with higher
private values, which is also the bidder with the highest total
value since the common component is shared among bid-
ders.

Example 3 (Winner’s curse and revenue collapse). Con-
sider the degenerate case where Vi ≡ 0 and bidders have
only the common value C, drawn from the uniform distri-
bution on [0, 1]. In the asymmetric world, bidder 0 always
bids his true value c whereas every other bidder’s equilib-
rium bid is always 0. This is due to the winner’s curse —
had any bidder i(> 0) won, she must have bid higher than
bidder 0’s bid which is the true value c for everyone. The
revenue in this asymmetric world is 0, while the revenue in
the symmetric world is E(C) = 0.5.

In auction theory, a seminal result of (Milgrom and We-
ber 1982) is the well-known linkage principle. That is, when
bidders are symmetric and values are associated, revealing
private information of the auctioneer (if she has any) always
increases revenue in most commonly seen auctions, includ-
ing the second-price auction. In other words, transparency
always favors revenue.

Recent result by (Syrgkanis, Kempe, and Tardos 2015)
shows that this principle fails in setting with two asymmetri-
cally informed bidders, however their proof is involved due
to intricate equilibrium analysis under asymmetric informa-
tion. Next, we use a much simpler example in our setting to
give another piece of evidence for the failure of the linkage
principle, also with two asymmetrically informed bidders.
The key intuition is that the uninformed bidder tends to bid
aggressively, which leads to higher revenue for the auction-
eer, compared to the situation in which bidder 1 knows ex-
actly the realized c. Therefore, the auctioneer may prefers
(some) less informed bidders.

Example 2 Cont’d. (Failure of the Linkage Principle) Re-
call the Example 2 setup with two bidders. Now consider f1
as a point-distribution with all point mass at v1 = 0.8α.
Bidder 1’s equilibrium bid is (deterministically) b1 = 2v1 +
1 − α = 1 + 0.6α. Given full information, bidder 0’s dom-
inant strategy is to bid true value b0 = v0 + c. Note that
Pr(V0 + C ≥ 1 + 0.6α) = Pr(1 − C ≤ V0 − 0.6α) =∫ α

0.6α
(v0 − 0.6α)dF0(v0) = 0.08α. Therefore,

Rev =

∫
v0+c≤1+0.6α

(v0 + c)f0(v0)g(c)dv0dc

+(1 + 0.6α) · 0.08α
= 0.5 + 0.5α− 0.0107α2

Now suppose the auctioneer has private information and
can observe realized c. If the auctioneer reveals c to bidder
1, then both bidders will bid truthfully, leading to revenue

E
V0,C

min{V0 + C, 0.8α+ C} = E
V0

min{V0, 0.8α}+E[C],

which equals 0.5+0.48α after basic calculation. Therefore,
for any α ≤ 1, the revenue under no information is larger
than that under full information, leading to the failure of the
linkage principle.

6 Conclusion
In this paper, we study how information asymmetry affects
the equilibrium of a second price auction. The key message
revealed from our results is that in strategic interactions as
the second-price auction, competition among bidders makes
the role of asymmetric information intricate. For instance,
less information could be beneficial whereas more informa-
tion could be harmful. Our work thus leads to new insights
about bidders’ behaviors, and shed light on the situations
under which bidders may or may not want to obtain fine-
grained information about the auctioned item. This leaves
many open directions for future research, e.g., understand-
ing the role of information asymmetry in other auction mod-
els with different bidder value models and more generally,
in other strategic games.
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Appendix for “The Strange Role of Information Asymmetry in Auctions”

A Proof of Theorem 1 and Proposition 1
Our proof of Theorem 1 crucially relies on the following notion of affiliation between two random variables, which is introduced
by Karlin and Rubin (1956).

Definition 1 (Affiliation (Karlin and Rubin 1956)). Let (V,W ) be a two-variate random variable and π(v, w) be the density
function of (V,W ). V and W are affiliated if for all v < v′ and w < w′,

π(v, w)π(v′, w′) ≥ π(v, w′)π(v′, w) (7)

We will think of V as the private value in a bidder’s valuation and W = V + C as the bidder’s total valuation. If V and W
are affiliated, intuitively it means that it is more likely that a bidder’s private value and total valuation are both high or low than
that one of them is high while another is low. Interestingly, it turns out that the affiliation relation between Vi and Wi = Vi +C
is equivalent to the log-concavity of g(c), and surprisingly, does not depend on the distribution of Vi. This also illustrates the
rationale of our log-concavity assumption of g(c).

Lemma 4. For any i ∈ [n], Vi and Wi = Vi + C are affiliated if and only if g(c) is log-concave.

Proof. In this proof, we will drop the subscript i and work with v, w, π(v, w) for notational convenience. Observe that
π(v, w) = f(v)g(w − v) is the density function of the two-variate random variable (V,W )6. Given any v < v′ and w < w′,
w.l.o.g., assume v, v′ all have strictly positive probability density, since otherwise the affiliation equation is naturally satisfied.
Equation (7) then induces

π(v, w)π(v′, w′) ≥ π(v, w′)π(v′, w)

⇔ f(v)g(w − v)f(v′)g(w′ − v′) ≥ f(v)g(w′ − v)f(v′)g(w − v′)
⇔ g(w − v)g(w′ − v′) ≥ g(w′ − v)g(w − v′)

Let c = w− v, c′ = w′− v′, s = w′− v and s′ = w− v′. Therefore, we have c+ c′ = s+ s′. Moreover, v < v′ and w < w′

imply that s > max(c, c′) and s′ < min(c, c′). We only consider the case c ≥ c′ since the case c < c′ is similar. When c ≥ c′,
we have s > c ≥ c′ > s′ and s− c = c′ − s′ > 0. Using these facts, we have

g(w − v)g(w′ − v′) ≥ g(w′ − v)g(w − v′)
⇔ g(c)g(c′) ≥ g(s)g(s′)

⇔ log g(c) + log g(c′) ≥ log g(s) + log g(s′)

⇔ log g(c′)− log g(s′)

c′ − s′
≥ log g(s)− log g(c)

s− c
(8)

for all s > c ≥ c′ > s′. However, since v, v′, w, w′ can take any value in their supports, the values of s, c, c′, s′ can therefore
span the whole support of C. As a result, Inequality (8) is equivalent to that log g(c) is concave, i.e., g(c) is log-concave.
Therefore, V and W = V + C are affiliated if and only if g(c) is log-concave.

We now prove the monotonicity of E(V0|V0 + C = b) as a function of b.7 At a high level, utilizing the affiliation relation
between V0 and W0, we will show the stochastic order of the random variable V0 conditioned on W0 = b for different b’s. We
then prove the monotonicity of the conditional expectations based on the stochastic order.

Lemma 5. [Restatement of Lemma 2] If g(c) is log-concave, then E(V0|V0 + C = b) is non-decreasing in b.

Proof. With some abuse of notation, let Vb denote the random variable V0 after conditioning on V0 + C = b, i.e., Vb =
(V0|V0 + C = b). We now prove that Vb is stochastically increasing in b. That is,

Pr(Vb ≤ t) ≥ Pr(Vb′ ≤ t), ∀ b′ > b, t ∈ R. (9)

Let π(v0, w0) = f(v0)g(w0−v0) be the density function of the two-variate random variable (V0,W0), π(w0) be the marginal
distribution of W0, and π(v0|w0 = b) be the conditional distribution. Note that, π(v0|w0 = b) is precisely the distribution of

6Recall that V and C are independent.
7Note that this is not true in general. See, e.g., the setting of Example 1.



the random variable Vb. We will use Π to denote the CDF of these distributions. Since g(c) is log-concave, by Lemma 4 we
know that V0 and W0 are affiliated. Therefore, for all v < v′ and b < b′, we have

π(v, b)π(v′, b′) ≥ π(v, b′)π(v′, b)

⇒ π(v′, b′)π(v, b)

π(b′)π(b)
≥ π(v, b′)π(v′, b)

π(b′)π(b)

⇒ π(v′|b′)π(v|b) ≥ π(v|b′)π(v′|b)

⇒
∫ v′

0

π(v′|b′)π(v|b)dv ≥
∫ v′

0

π(v|b′)π(v′|b)dv

⇒ π(v′|b′)Π(v′|b) ≥ Π(v′|b′)π(v′|b)

⇒ π(v′|b′)
Π(v′|b′)

≥ π(v′|b)
Π(v′|b)

⇒
∫ ∞
t

π(v′|b′)
Π(v′|b′)

dv′ ≥
∫ ∞
t

π(v′|b)
Π(v′|b)

dv′

⇒ 0− ln Π(t|b′) ≥ 0− ln Π(t|b)
⇒ Π(t|b′) ≤ Π(t|b)
⇒ Pr(Vb′ ≤ t) ≤ Pr(Vb ≤ t)

for any t ∈ R. This shows that Vb is stochastically increasing in b. Therefore, we must have E(Vb) ≤ E(Vb′) for any b′ > b.
This is precisely E(V0|V0 + C = b) ≤ E(V0|V0 + C = b′) for any b′ > b, as desired.

Proof of Theorem 1.

From Equation (1) we know that bidder 1’s expected utility, given private value v1 ∈ (l0, u0), is

U(b; v1) =

∫ b

0

(v1 − v0)f(v0)G(b− v0)dv0

The equilibrium bid b∗ must maximize the above utility. We now compute the derivative of U(b; v1) with respect to b for any
b ∈ (l0 + lc, u0 + uc), as follows:

U ′(b; v1) = (v1 − b)f(b)G(b− b) +

∫ b

0

(v1 − v0)f(v0)g(b− v0)dv0

= v1

∫ b

0

f(v0)g(b− v0)dv0 −
∫ b

0

v0f(v0)g(b− v0)dv0

=

[∫ b

0

f(v0)g(b− v0)dv0

]
×

[
v1 −

∫ b
0
v0f(v0)g(b− v0)dv0∫ b

0
f(v0)g(b− v0)dv0

]

=

[∫ b

0

f(v0)g(b− v0)dv0

]
× [v1 −E(V0|V0 + C = b)] (10)

Note that for any b ∈ (l0 + lc, u0 +uc), the event V0 +C = b has strictly positive probability density. Therefore,
∫ b

0
f(v0)g(b−

v0)dv0 > 0 and E(V0|V0 + C = b) =
∫ b
0
v0f(v0)g(b−v0)dv0∫ b

0
f(v0)g(b−v0)dv0

is well-defined. As a result, by setting U ′(b) = 0 we have

v1 = E(V0|V0 + C = b).

By Lemma ??, we know that E(V0|V0 + C = b) is monotonically non-decreasing in b. Moreover, limε→0+ E(V0|V0 + C =
l0 + lc + ε) = l0 < v1 and limε→0+ E(V0|V0 + C = u0 + uc − ε) = u0 > v1. By the continuity of E(V0|V0 + C = b) as a
function of b, there must exist an interval [b1, b2] (b1 may equal b2), such that v1 = E(V0|V0 + C = b) for all b ∈ [b1, b2], and
v1 > E(V0|V0 +C = b) if b < b1, v1 < E(V0|V0 +C < b) if b > b2. In other words, U(b; v1) is strictly increasing for b < b1,
has a constant value for b ∈ [b1, b2], and is strictly decreasing for b > b2. Therefore it must achieve the global maximum at any
b∗ ∈ [b1, b2], which satisfies v1 = E(V0|V0 + C = b∗). This concludes our proof.

�



B Proof of Lemma 3

Let i denote a generic uninformed bidder with private value vi. We first prove that his bid is weakly increasing in vi. That is,
for any vi < v′i, we have b∗(vi) ≤ b∗(v′i).

Let Q(b) denote the probability that the highest bid among all the uninformed bidders, excluding bidder i, is b. We use bi
to denote bidder i’s bid. With private value vi, the expected utility of bidder i by bidding bi is U(bi; vi) = vi × P (bi) − z(bi)
where P (bi) = Q(bi)

[ ∫
bi≥v0+c

f(v0)g(c)dv0 dc
]

is the probability that bidder i wins the auction by bidding bi, and z(bi) is
the expected payment which only depends on bi. Observe that P (bi) is strictly increasing in bi, becauseQ(bi) is non-decreasing
in bi while

∫
bi≥v0+c

f(v0)g(c) dv0 dc is strictly increasing in bi(≤ u0 + uc).

We now prove the weak monotonicity of b∗(v) by contradiction. If this is not true, then there exists vi < v′i such that
b∗(vi) > b∗(v′i). For notational convenience, let bi = b∗(vi) and b′i = b∗(v′i). We must have U(bi; vi) ≥ U(b′i; vi) and
U(b′i; v

′
i) ≥ U(bi; v

′
i) by the definition of equilibrium, therefore

U(bi; vi) + U(b′i; v
′
i) ≥ U(b′i; vi) + U(bi; v

′
i)

⇒ viP (bi)− z(bi) + v′iP (b′i)− z(b′i) ≥
viP (b′i)− z(b′i) + v′iP (bi)− z(bi)

⇒ viP (bi) + v′iP (b′i) ≥ viP (b′i) + v′iP (bi)

⇒ [vi − v′i] [P (bi)− P (b′i)] ≥ 0

On the other hand, bi > b′i induces P (bi) > P (b′i) since P (bi) is strictly increasing. Therefore we should also have
[vi − v′i] [P (bi)− P (b′i)] < 0, which yields a contradiction to the above Inequality.

We now argue that the symmetric equilibrium b∗(v) is strictly increasing in v. Our proof is still by contradiction. If b∗(v) is not
strictly increasing, then there exist two valuations vl < vr, such that the equilibrium bid for vl, vr is the same (denoted as b̃). Due
to weak monotonicity, for all v in interval [vl, vr], the equilibrium bid has to be the bid b̃. This means, U(b; v) = vP (b) + z(b),
as a function of b, achieves maximum at b = b̃ for any v ∈ [vl, vr]. We show that this is impossible.

Observe that the event that bid b̃ is the winning bid and there is a tie among uninformed bidders has positive probability,
because Pr(V0 + C ≤ b̃) > 0 and Pr(v ∈ [vl, vr]) > 0. We derive a contradiction by analyzing the competition among the
uninformed bidders at the tie bid b̃. In particular, we will next show that the equilibrium condition must imply v+E(C|V0+C ≤
b̃) = b̃ for any v ∈ [vl, vr], which however is not possible because b̃−E(C|V0 +C ≤ b̃) is a constant while v ∈ [vl, vr] varies.
This contradiction shows the strict monotonicity of b∗(v).

When b̃ is a tie, equilibrium condition implies that bidder i is not interested in bidding slightly higher to win the tie. This
must be because her private value vi plus the expected common value C, conditionning on that bidder 0 bids at most b̃ (i.e.,
V0 + C ≤ b̃), is at most her payment b̃ at the tie, therefore winning the tie does not give bidder i extra utility. This gives a
necessary inequality of equilibrium bidding: vi + E(C|V0 + C ≤ b̃) ≤ b̃ for any vi ∈ [vl, vr]. Oppositely, that equilibrium
must also satisfy vi +E(C|V0 +C ≤ b̃) ≥ b̃ for any vi ∈ [vl, vr] since otherwise the bidder would not want to bid b̃ to win the
auction. As a result, given that bid b̃ is the equilibrium bid for all vi ∈ [vl, vr], we must have vi +E(C|V0 +C ≤ b̃) = b̃ for all
value vi ∈ [vl, vr].

C Proof of Theorem 2

Let b(v) be any symmetric equilibrium bidding strategy (superscript ∗ is omitted for notational convenience). Let P (b), p(b)
be the corresponding CDF and PDF of the bid distribution. Thus, P (b(v)) = F (v). Notice that Lemma 3 implies that P (b) is
a continuous function. Given vi, we first compute the expected utility when bidder i bid bi, assuming all the other uninformed
bidders follow the equilibrium strategy b(v). Note that the density function of the highest bid among all uninformed bidder,
excluding i, is (Pn−1(b))′ = (n− 1)Pn−2(b)p(b).



U(bi; vi) =

∫
bi≥b,bi≥v0+c

(vi + c−max{v0 + c, b})(n− 1)Pn−2(b)p(b)f0(v0)g(c)db dv0 dc

=

∫
bi≥b≥v0+c

(vi + c− b)(n− 1)Pn−2(b)p(b)f0(v0)g(c)db dv0 dc

+

∫
bi≥v0+c≥b

(vi − v0)(n− 1)Pn−2(b)p(b)f0(v0)g(c)db dv0 dc

=

∫
bi≥b≥c

(vi + c− b)(n− 1)Pn−2(b)p(b)F0(b− c)g(c)db dc

+

∫
bi≥v0+c

(vi − v0)Pn−1(v0 + c)f0(v0)g(c) dv0 dc

=

∫ bi

0

∫ b

0

(vi + c− b)(n− 1)Pn−2(b)p(b)F0(b− c)g(c)dc db

+

∫ bi

0

∫ bi−v0

0

(vi − v0)Pn−1(v0 + c)f0(v0)g(c) dc dv0

Now, computing the derivative of U(bi; vi) over bi we have

U ′(bi; vi) =

∫ bi

0

(vi + c− bi)(n− 1)Pn−2(bi)p(bi)F0(bi − c)g(c)dc

+

∫ bi

0

(vi − v0)Pn−1(bi)f0(v0)g(bi − v0) dv0

=

∫ bi

0

(vi − x)(n− 1)Pn−2(bi)p(bi)F0(x)g(bi − x)dx

+

∫ bi

0

(vi − x)Pn−1(bi)f0(x)g(bi − x) dx (11)

where the second equality is due to the following change of variables: (bi − c)→ x in the first part; v0 → x in the second part.
Notice that, assuming b(v) is the symmetric equilibrium strategy, we must have that for any vi, bi = b(vi) as a function of

vi makes U ′(bi; vi) = 0. As a result, Equation (11) must always equal 0 for b = b(vi). Using the equation P (bi) = F (vi), we
have vi = F−1(P (bi)) where F−1 is the classical definition of the reverse function of CDF. As a result

0 =

∫ bi

0

(vi − x)(n− 1)p(bi)F0(x)g(bi − x)dx+

∫ bi

0

(vi − x)P (bi)f0(x)g(bi − x) dx

=

∫ bi

0

(F−1(P (bi))− x)(n− 1)p(bi)F0(x)g(bi − x)dx+

∫ bi

0

(F−1(P (bi))− x)P (bi)f0(x)g(bi − x) dx (12)

This yield the following first-order differential equation

p(b) = −
P (b)

∫ b
0

(F−1(P (b))− x)f0(x)g(b− x) dx

(n− 1)
∫ b

0
(F−1(P (b))− x)F0(x)g(b− x) dx

.

For the boundary condition, we derive the bid for the smallest private value l. Note that, when the private value is l with the
optimal bid b, if bidder iwins, it must be the case that all the other uninformed bidders also bid b (since b is their smallest bid) and
bidder 0 bids b0 = v0 + c ≤ b. Therefore, bidder i also pays b due to ties. In this case, bidder i does not want to increase the bid
to win the tie and neither wants to lower her bid to intentionally lose. This means his expected gain l+E(C|C+V0 ≤ b)−b = 0.
That is, l = b−E(C|C + V0 ≤ b).

Note that such a b exists because when b = 0, the right-hand side (RHS) is at most l where as when b is large enough the
RHS will be greater than l. Since both sides are continuous, such a b exists. When there are multiple b which all satisfy l =
b−E(C|C+V0 ≤ b), the bid at l will be the largest such b. Otherwise, suppose b′(< b) also satisfies l = b′−E(C|C+V0 ≤ b′)
and at equilibrium all uninformed bidder’s bid at l is b′. We claim that any bidder i strictly benefit by deviating to b. This is
because in this case bidder i will have strictly positive utility, as opposed to utility 0 when bidding b′, since her probability of



winning yet paying less than b becomes strictly positive due to other uninformed bidders bidding b′(< b) at l. Therefore, at
equilibrium, the bid at l must be the largest b such that l = b−E(C|C + V0 ≤ b).

Denote the right hand side as a function H(b, P ). It is easy to see that H(b, P ) and ∂H(b,P )
∂P are both continuous. Therefore,

There exists a unique solution to the differential equation in a small open interval centered at the boundary value above (denoted
as min), and this solution can be extends to a solution over [min, uc + u].

C.1 A Simple Numerical Algorithm
As an application of Theorem 2, it leads to a numerical algorithm for computing the equilibrium bid. From Equation 12 we
have,

vi =
(n− 1)p(bi)

∫ bi
0
xF0(x)g(bi − x)dx+ P (bi)

∫ bi
0
xf0(x)g(bi − x) dx

(n− 1)p(bi)
∫ bi

0
F0(x)g(bi − x)dx+ P (bi)

∫ bi
0
f0(x)g(bi − x) dx

(13)

Before proceeding, it is worthwhile to take a look at Equation 13 for a moment. First notice that, when n = 1, it degenerates
to the two player equilibrium in Theorem 1. Second, it is interesting that the left hand side of Equation 13 only depends on bi
and the bidding probability density p(b), and importantly does not depends on vi at all. This observation gives rise to a very
clean numerical way to compute the distribution p(b), assuming bi is increasing in vi.

Without loss of generality, assume v supports on [0, 1] and c supports on [0, 1]. So b must supports on [0, 2], as there is no
incentive for a player to bid above 2. Now we divide the bid interval [0, 2] into a uniform grid with 2N + 1 points 0 = z0 <
z1... < z2N where ∆ = 1

N is the interval length between neighboring points. Let pi = P (zi) for all i = 0, ..., 2N denote the
accumulated probability P(b ≤ zi). We wish to compute pi.

First notice that p0 = 0. This is because a bidder with valuation 0 will always bid 0 – any bid above 0 gives her some
probability to win the item, in which case she will only get strictly negative utilities. Now, observe that we can approximate
p(zi) by pi−pi−1

∆ , while P (zi) simply equals pi. Importantly, at equilibrium vi should equal F−1(pi) since we have F (vi) =
P (b(vi)). Therefore, Equation 13 at bi = zi (for all i ≥ 1)can be approximated by

F−1(pi−1) =
(n− 1)pi−pi−1

∆

∫ zi
0
xF0(x)g(zi − x)dx+ pi

∫ zi
0
xf0(x)g(zi − x) dx

(n− 1)pi−pi−1

∆

∫ zi
0
F0(x)g(zi − x)dx+ pi

∫ zi
0
f0(x)g(zi − x) dx

(14)

Therefore, if we compute pi in a recursive manner, starting from p1 (given that p0 = 0), the only variable in the Equation 14
is pi.


