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Abstract

This paper studies a function fitting problem which we coin
first-order convex fitting (FCF): given any two vector se-
quences {@; }ic(r) and {p, }icr) in R%, when is it possible
to efficiently construct a convex function f () that “fits” the
two sequences in the first-order sense, i.e, its (sub)gradient
V f(x;) equals p, forall ¢ € [T] = {1,---,T}? Despite a
basic question of convex analysis, FCF has surprisingly been
overlooked in the past literature. With an efficient construc-
tive proof, we provide a clean answer to this question: FCF
is possible if and only if the two sequences are permutation
stable: Z?:l T p; > Zle T; - P,(;) for any permutation
o of [T].

We demonstrate the usefulness of FCF in two applications.
First, we study how it can be used as an empirical risk mini-
mization procedure to learn the original convex function. We
provide efficient PAC-learnability bounds for special classes
of convex functions learned via FCF, and demonstrate its ap-
plication to multiple economic problems where only function
gradients (as opposed to function values) can be observed.
Second, we empirically show how it can be used as a surro-
gate to significantly accelerate the minimization of the origi-
nal convex function.

1 Introduction

A natural application of first-order convex fitting (FCF) is
in the theory of revealed preferences, which starts from the
seminal work of (Samuelson 1938) and has formed a cele-
brated subfield of consumer theory (Varian 2006). Consider
a buyer who looks to buy fractional bundles of d goods re-
peatedly from a seller and generates a sequential purchase
history of (py,®1),--- , (P, zr) where p; € R? is the
price vector at time i € [T] and x; € R? is the cus-
tomer’s purchase bundle. Classic economic research of re-
vealed preferences studies when it is possible to find a buyer
value function v(«) that “explains” (a.k.a., rationalizing)
the observed data {(p;, z;)}~_; assuming a rational utility-
maximizing buyer. It turns out that, under the standard as-
sumption of concave value function v(x) and quasi-linear
utility v(x) — @ - p, the utility-maximizing buyer purchase
x; = argmax,[v(x)—x-p] precisely satisfies p, = Vu(x;)
for any 4 (Roth, Ullman, and Wu 2016; Dawkins, Han, and
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Xu 2021). Therefore, data {(p;, z;) }’_, can be rationalized
if and only if there is a concave value function v(x) that fits
the data in the first-order sense. Notably, we will primar-
ily work with convex functions later due to the convention
in convex analysis; however, all our results apply equally to
concave functions, simply by negating the function.

Recent computational research has studied the problem of
learning from revealed preferences but has focused on learn-
ing the revenue-optimal prices from data (Roth, Ullman, and
‘Wu 2016; Roth et al. 2020). In contrast, this work aims at fit-
ting, and learning, the underlying value function directly.

Given any data (p;,x1),- - , (P, TT), when can we
efficiently construct a convex function so that its gra-
dients fit the observed dataset? How many data points
are needed in order to guarantee the fitted convex
function is “close” to the underlying true function?

Notably, the above objective is also more aligned with the
original motivation of the revealed preference literature,
which is to explain consumer behaviors as opposed to learn
optimal prices. Concretely, we consider a dataset with two
vector sequences {x; };c[r] and {p; }ier). Our goal is to de-
termine if there exists a convex function f(x) whose first-
order gradients fit the given dataset, i.e. Vf(x;) = p;.
For learning-theoretic questions, suppose the sequence of
{Zi}ic[) is drawn from a fixed distribution D, and the se-
quence {p; }ie(r) is their first-order gradients generated ac-
cording to some unknown convex f(x). We seek to under-
stand whether one can with high probability learn an approx-
imately correct hypothesis convex function such that when a
new x is drawn from the same distribution D, the hypothesis
correctly determines the function’s gradient at  with small
expected error.

1.1 Our Results and Techniques

We aim to characterize when a dataset of two vector se-
quences can be “first-order” fitted by an underlying convex
function. Our first main result is a sufficient and necessary
characterization of the question. That is, first-order convex
fitting is possible if and only if the dataset is permutation
stable, or formally, Z?:l P, - x; > ZiT:1 D; - To(p for
any permutation o of [T]. We provide a proof that can ef-
ficiently construct such a convex function to fit the given
dataset. As an application of this result, we leverage the



technique to accelerate convex optimization and propose an
optimization scheme that experimentally matches or outper-
forms both state-of-the-art and classical solvers for large-
scale optimization problems arising from machine learning.

Next, we turn to the learning-theoretic question. Suppose
the dataset was generated by an unknown convex function.
Our next set of results study the efficient learning of the un-
derlying convex function so as to predict test data with small
error and high confidence, i.e., in the PAC learning sense.
Here, for both separable and piecewise linear convex func-
tions, we prove polynomial sample complexity results. This
illustrates that one can use our proposed method to provably
rationalize the agents’ behaviors and learn the agents’ pri-
vate utility information with high precision. We then illus-
trate how this can be used in various economic applications
including learning from revealed preferences, traffic predic-
tion and contract theory.

1.2 Related Work

Our work is motivated by the literature of revealed prefer-
ences started by Samuelson (1938). Classic research on re-
vealed preference asks a similar question as us, i.e., how
to construct a function to fit a sequence of purchase his-
tory from a buyer with unknown value function (Beigman
and Vohra 2006; Zadimoghaddam and Roth 2012; Balcan
et al. 2014). However, their buyer behaviour model differs
slightly from us. They assume that the buyer has some bud-
get B and would like to maximize value within budget, i.e.
T; = argmax,.,, < p u(x). This different buyer model turns
out to lead to quite different answers from us. More related
to our problem is the learning from revealed preferences un-
der quasi-linear buyer utility model (Roth, Ullman, and Wu
2016; Roth et al. 2020). However, these works study how to
learn the revenue-maximizing price for the seller, whereas
we are learning the value function directly. Going beyond
pricing problems, there has also been researches studying
learning from revealed preference in other classes of games
such as general Stackelberg games (Letchford, Conitzer, and
Munagala 2009; Peng et al. 2019) and Stackelberg secu-
rity games (Blum, Haghtalab, and Procaccia 2014; Marecki,
Tesauro, and Segal 2012; Peng et al. 2019). In these cases,
the revealed preferences are simply the follower’s best re-
sponses to the leader’s strategy at each round.

Another area of relevant literature is with machine learn-
ing problems. The study of revealed preferences is intrin-
sically a function fitting problem. However, different from
standard function fitting for (variable, value) sequences, here
we look for a function f(x) to fit the (variable, gradient) se-
quences. (Beigman and Vohra 2006) also studied the predic-
tion aspects of the revealed preferences theory. They con-
sidered the PAC-learning model and introduced the sam-
ple complexity and learnability of different classes of value
functions. (Zadimoghaddam and Roth 2012) then proposed
specific efficient learning algorithms for linearly separable
concave value functions in the PAC-learning model. Their
sample complexity bound was later improved by (Balcan
et al. 2014), and (Balcan et al. 2014) also provided efficient
algorithms for other specific classes of value functions in-
cluding linear, separable piecewise-linear concave (SPLC),

CES and Leontief (Mas-Colell et al. 1995). Our work con-
siders a different buyer behavior model without budgets and
deals with more general classes of value functions. We first
consider any separable convex functions, i.e. the buyer’s
value over different goods are independent. What’s more,
we also consider a more general piecewise linear value func-
tion which doesn’t need to be separable. We provide effi-
cient sample complexity for the PAC-learning model in both
cases.

2 The Problem of First-order Convex Fitting

We start with some preliminaries. Let f S:c) : X — Rbe any
function where the compact set X C R is the domain of f.
A vector p € R? is called a sub-gradient for f at x € X if
forany ' € X we have f(2’) > f(x)+p-(z’ — x). Func-
tion f is called convex if for any , 2’ € R® and any « €
[0,1] we have auf () + (1 — ) f(2') > fax+ (1 —a)x’).
The function is strictly convex if the above inequality is al-
ways strict, except for & = «’. Sub-gradients do not al-
ways exist. However, a convex function has at least one sub-
gradient at any € X. For a differentiable convex func-
tion f, its gradient V f(x) is the only sub-gradient at  for
any x € X.If f is convex but not differentiable, it may
have multiple sub-gradients at some . In this case, we use
Of(x) to denote the ser of all sub-gradients of f at x. For
convenience of stating our results, we will mostly work with
differentiable convex functions in this paper though most of
our results easily generalize to non-differentiable functions.

This paper studies a very basic problem of using a convex
function to fit two vector sequences in the first-order sense,
formally stated as follows.

Problem. [First-order Convex Fitting (FCF)] Given any two
vector sequences {x;};cir) and {p; }icir) in RY, when is it
possible to efficiently construct a convex function f(x) such
that p; is a sub-gradient at x;, i.e., p; € 0f(x;), for any
ielT)={1,---,T}?

A “stronger” version of the above function fitting prob-
lem is to require the convex function f to be strictly convex.
In this case, the problem is referred to as strict first-order
convex fitting, or strict FCF.

3 A Complete Characterization of FCF

In this section, we provide a necessary and sufficient condi-
tion on the two sequences {Z; };c|1], {P; }ie[r)> under which
there exists a convex function f(x) to fit the two sequences
in the sense of FCF. To state our result, we only need the
following notion, which we coin permutation stability. Let
Y1 denote the set of all permutations over the set [T']. Recall
that a permutation o € X is a bijection from [T] to [T]].
Definition 1. [Permutation Stability] Any two vector se-
quences {x;}icir) and {p;};cT) are permutation stable if
for any permutation o € X, the following holds

Doxipi =) Ty P e)
1€[T] 1€[T]
{xi}icir) and {p;}icir) are strictly permutation stable if

the above inequality is strict for any o that is not the identi-
cal mapping.



Intriguingly, it turns out that FCF is fully characterized

by the permutation stability of any two data sequences
{@:}icir) and {p,}ic[r) in R%
Theorem 1. For any T > 1 and any two vector sequences
{@:}icir) and {p;}icir) in RY, there exists a convex function
f(x) that first-order fits these two sequences — i.e., p; €
Of (x;) for any i € [T] — if and only if the two sequences
are permutation stable.

Before proceeding to proving Theorem 1, we make a few
remarks. First, Theorem 1 generalizes to strictly FCF in a
straightforward way: strictly FCF is possible if and only if
the two sequences are strictly permutation stable (see Ap-
pendix A for a formal proof).!

Second, our proof of Theorem 1 is constructive. That is,
whenever f(x) exists, we can construct such a f(x) effi-
ciently in polynomial time. More concretely, the construc-
tion only needs to solve a linear inequality system with T’
variables and O(T?) constraints. The main technical chal-
lenge, however, is to prove the equivalence between the fea-
sibility of this linear system that we set up and permutation
stability. Our proof employs interesting techniques such as
Farkas’ lemma and network flow decomposition, which does
not appear to be apparently relevant at the first glance.

Third, though FCF appears a quite basic question even
for its own sake, we are not aware of any previous study.
To the best our knowledge, the characterization question
of FCF was studied only in the mathematical literature by
Rockafellar (1966; 1970), but from a completely different
perspective. Rockafellar considers an abstract relation be-
tween two (typically continuum) Banach spaces, and iden-
tifies a property of this relation termed cyclical monotonic-
ity that captures the existence of a convex function that fits
the two Banach spaces in the sense of FCF. The major dif-
ference between our Theorem 1 and Rockafellar’s result is
that our result is constructive — i.e., we can efficiently con-
struct such a convex function whenever it exists. However,
the proof technique used by Rockafellar, when adapted to
our problem, will require (7'!) time to construct a feasible
convex function. The efficiency of our approach is due to
the aforementioned novel techniques in our proof, which is
clearly not applicable in the abstract Banach space studied
by Rockafellar. Moreover, our characterization of permuta-
tion stability is much simpler and intuitive than the cyclically
monotonicity condition of Rockafellar.

Finally, a close relative of the FCF Problem is the zeroth-
order fitting question, which is perhaps more commonly
seen in machine learning. That is, given variable sequence
{xi}ier) and function value sequence {z; };c[r], when is it
possible to find a convex function f such that f(x;) = 2;?
We are not aware of previous studies on this question neither.
For the reader’s curiosity, in Appendix B we derive condi-
tions on {x; };c[7] and {2;};¢[r) to decide whether the two
sequence can be fitted by a convex function.

3.1 Proof of Theorem 1

The proof of necessity direction, given any convex function
f(x) : R — R, we show that any sequence {x1,--- , 1}

!The full appendix of this paper can be found online.

and {p;,--- ,pr} where p, € 9f(x;), Vi € [T] are permu-
tation stable, is relatively easy, we refer the reader to Ap-
pendix C for a complete proof.

Proof of Sufficiency

Much more involved is the proof of the other direction of
Theorem 1, i.e., to prove that permutation stability implies
the existence of a convex function f that fits the given
sequences. Our proof is constructive as shown in Algo-
rithm 1. At a high-level, we construct such a convex func-
tion as follows. For any ¢, we consider a linear function
li(x) = p; - (x — x;) + ¢; where p,;,x; are from the
given sequence and c; is the only parameter to be deter-
mined. The convex function we will construct is precisely
f(x) = max;¢c() li(x), i.e., the maximum of 7" linear func-
tions. The maximum of linear functions is known to be con-
vex. What remains is that with carefully chosen parameters
¢i’s, the constructed f indeed satisfies p, € df (x;). Specifi-
cally, key to this argument is to prove that under permutation
stability there always exists ¢;’s such that [;(x;) = f(x;) =
max;e () li(x), ie., li(x;) > lj(x;) for any i # j. That
is, when & = x;, max;¢ |7 [;(x) achieves the maximum at
l;(x). Consequently, the gradient of /;(x) at x = =; (i.e.,
p,;) will be a subgradient to f(x) at © = x;, completing the
proof.

The remainder of this proof is thus devoted to prove that
permutation stability implies the existence of ¢;’s such that
li(x;) > lj(x;) for any ¢ # j. This can be formulated as a
linear feasibility problem. The main challenge of the proof
is to prove that permutation stability of the given sequences
implies feasibility of the linear system. Our argument fea-
tures an elegant connection to network flow decomposition
and permutation.

Our starting point is to formalize the existence of ¢;’s as
a linear feasibility problem. Recall that [;(x;) = p, - (z; —
x;)+ ¢ =c;and [j(x;) = pj- (x; — x;) + ¢;. Therefore,
the constraints [;(x;) > [;(z;) becomes ¢; —c; > p; - (x; —
x;). The desirable ¢;’s exist if the following linear system is
feasible.

ci—cj > p;-(x;i —x;), fori#j. (2)
Consequently, the desired convex function can be con-
structed by Algorithm 1.

So far we have not seen any connection to permutation
sequences yet. The key step of our proof is to instead in-
vestigate the dual program of the above linear system (2)
— with dual variable y; ; for the primal constraint with re-
spect to i, 7 — via the Farkas’ lemma (Farkas 1902). Our
major insight is to realize that the dual program can be in-
terpreted as network flows where: (1) each y;; can be in-
terpreted as directed flow from node j to node ¢; (2) dual
constraints are precisely the flow conservation constraints,
plus an additional constraint with coefficients depending on
{@i}icir) and {p; }ie 1.

Here then comes the crux of the proof. The well-known
flow decomposition theorem (Williamson 2019) says that
any feasible flow {y; ;}:; can be decomposed into cy-
cle flows. Notably, any permutation can also be decom-
posed into cycles (e.g., (2,1,5,3,4), as a permutation of



Algorithm 1: Construction of the FCF Convex Function

Input: X =[x, ---x7], P =[py, -, D7)

Function main ():

Solve the following linear system to find any feasible
C=ley--cr)

ci—ci>p;-(xi—x;) Vi,je[Tli#j
Construce T linear function l; - - - [ where
li(x) =p; - (x —x;) +¢;, Vi € [T]
Return function

flx) = max li(z)

(1,2,3,4,5), can be viewed as two cycles: 1 — 2 — 1
and 3 — 5 — 4 — 3). Leveraging this connection, we are
able to prove via a somewhat sophisticated argument that
any feasible flow must violate the additional linear constraint
when the permutation stability is satisfied. This shows that
the dual program is infeasible, which implies the feasibility
of the primal program (2) by Farkas’ lemma. We refer the
reader to the detailed proof of this theorem in Appendix C.

3.2 Efficient Verification of Permutation Stability

The permutation stability condition fully characterizes FCF,
a key challenge in verifying this condition is that it re-
quires the comparison between all the T'! permutations. For-
tunately, it turns out that carefully designed algorithm can
efficiently verify permutation stability in polynomial time,
as shown in the following proposition.

Proposition 1. Checking whether any two vector sequences
{p;}ierr) and {xi};cr) satisfy the permutation stability
condition (1) or not can be computed in polynomial time.

The key idea is to reduce the verification of permutation
stability to compute the maximum weighted matching of a
carefully constructed bipartite graph. It is well-known that
bipartite matching can be solved efficiently in polynomial
time, e.g., by solving LPs. This proves our proposition. De-
tailed proof can be seen in Appendix D.

4 Learning Convex Functions via FCF

Abstractly, most machine learning problems look to gener-
ate a hypothesis function that fits the input data. Naturally,
FCF can also be employed as a procedure to generate a hy-
pothesis function, i.e., the output convex function, to fit any
given data sequence. In this section, we study how FCF and
its efficient computation can be employed to efficiently learn
convex functions.

PAC-Learning of Gradients. To formally study the learn-
ability problem, we adopt the well-known Probably Ap-
proximately Correct (PAC) learning framework. Specifi-
cally, suppose vector sequence {Z; } jc[7] in R? are indepen-
dent and identically distributed where each x; is drawn from
distribution D and the corresponding sequence {p, };c[r] is
generated by a ground-truth convex function f such that

p; € Vf(zx;). We examine the natural learning question of
generating a hypothesis function h € H that is “close” to
f. We first restrict both the hypothesis class 7 and concept
class C to be the set of all convex functions.

To describe the learning objective, we remark that since
our input data does not contain the zeroth order information,
i.e., function values, it is generally impossible to learn from
{@:}ieir) and {p;}icr) to fit the function values.” There-
fore, in out setting, the more natural objective will also be
learning to gradients of the original function f. We thus aim
at finding a hypothesis h € H that minimize the expected
discrepancy with high probability, or formally

Objective: IIVf(x) = Vh(@)|2>€] <5 (3)

Pr
x~D
where || - ||2 is the 3 norm of a vector. Similar to the stan-
dard PAC-learning framework, we are interested in identi-
fying the number of samples needed in order to guarantee
Objective (3) with high probability. Notably, we will always
focus on continuous distribution D. In this case, the above
objective is well-defined even for non-differentiable convex
functions, since all convex functions is differentiable almost
everywhere and the measure of non-differentiable points is
zero and thus has no effect in Objective (3).

FCF as Empirical Risk Minimization. A natural approach
for learning is to employ FCF as a empirical risk mini-
mization procedure that, given data sequence {x; };c[] and
{p;}icim) as input, outputs a function / that first-order fits
these data, i.e., achieving the minimum empirical risk. Note
that, by our assumption, the ground truth is convex and thus
FCF will be able to find a convex h that perfectly fits the
given data with 0 empirical risk (in classification, this is also
known as the separable case).

Obviously, it is generally difficult to learn the gradients
of an arbitrary convex function since without any additional
structure, it will essentially need the learner to query the gra-
dient at every point in the entire feasible region. In the next
two subsections, we show that efficient sample complexity
can be derived for two special class of convex functions. We
then demonstrate the application of PAC learning of gradi-
ents in the last subsection.

4.1 Learning Separable Convex Functions
Separable convex functions are defined as f(x) =

Zle fi(x;). In this section, we show an algorithm that out-
puts any gradient that is consistent with the observations, i.e.
an empirical risk minimization algorithm, learns the ground
truth efficiently. Moreover the sample complexity of any em-
pirical risk minimization algorithm is optimal up to a fac-
tor of poly(e, §). Let my (e, d) be the sample complexity of
learning i € H with error € and confidence 1 — §, we show:

Theorem 2. The sample complexity of learning h € H with
error ¢ and confidence 1 — § is

2In(L) +In(2 +1) +1n(§)>

ma(g,0) =0 (d =

For example, for any learned hypothesis h, adding any con-
stant to h will shift the function value but will not change its gradi-
ent at any point.



Throughout this subsection, we assume that the gradi-
ent space is in P = [0, 1]¢ without loss of generality (we
can always normalize the space). A hypothesis takes as in-
put the function’s variable value € R<, which it uses
to choose a gradient outcome. We denote the gradient as
p € P, which is an element of an infinite set. We learn
the separable convex function f(x) by learning each di-
mension f;(z;) separately. In each dimension, we propose
covering the gradient space using a e—discretized set P,
over [0, 1], by which we mean a finite set cover of points
in [0,1] such that for all p € [0,1], there exists a point
p' € P such that ||[p — p'|l2 < €. More concretely, we
let P. = {0, ﬁ7 ﬁ, +++,1}. We prove this theorem by
posing a multi-class PAC learning problem to fit the function
at a discrete set of values. The key to our proof is to argue
that any input data sequences satisfying the permutation sta-
bility must have Natarajan dimension (Natarajan 1989) at
most 1/e. We defer the formal proof to Appendix E.

4.2 Learning Piecewise Linear Convex Functions

When the value function is not separable, the learning be-
comes more complicated. it is generally difficult to learn
the gradients of an arbitrary convex function since with-
out any additional structure. However, when the function
is k-piecewise linear convex, we show that with just gra-
dient information, polynomial samples are enough to learn
the function gradient given arbitrary confidence and error.
The hypothesis class 7 and concept class C are the set of
k-piecewise linear convex functions. We now present two
learning results based on the kind of data provided to the
learner. We first consider the case where the learner is only
provided with gradient information.

Theorem 3. Let samples x,p be selected from distribution
D where p = V f(x). Given € and 6, an inferred hypothesis
h € H can be constructed with

5 =0(" (mk+ml 4
mnlend) =0 (5 (wiamy)) @

samples such that
PIPp(Vh(m) # V(z)) > ] < 6 5)

One may wonder since the ground-truth function is the
max of k piecewise linear function, would the learning sim-
ply only need to sample the point and corresponding gra-
dient (i.e., coefficients of the linear function) until at least
one point is sampled from each region. We remark that the
learning is more intricate than this since we also need to
learn the boundaries where these k regions intersect. This
explains why our sample complexity in the above theorem
is larger than k /2.

It turns out that when we have access to the zeroth order
information during the learning process, we can indeed im-
prove the sample complexity since the function value can
help us very quickly identify where the k regions intersect.
We attach the proofs for both of these results in Appendix F
for completeness of the result.

Theorem 4. Let samples x, (y, p) be selected from distri-
bution D where y = f(x) and p = V f(x) is given by the

true function f. Given € and 6, an inferred hypothesis h can
be constructed with

myu(e,8) = O <l: (lnk—Hn ;)) (6)

samples such that
P[Pp(h(z) # f(x) vV Vh(z) #Vf(z)) 2] <6 (D)

4.3 Economic Applications of Gradient Learning

As we have seen in the revealed preferences literature, the
seller wants to learn and predict the buyer’s behavior from
their purchase history. It turns out this kind of scenario also
exists in other economic problems besides the pricing prob-
lem. In this section, we show that our PAC learning via FCF
technique can be applied to learn and predict the agent’s be-
havior in some typical economic scenarios.

In a pricing game, there is a single buyer who repeatedly
buys a bundle of d types goods & = {z;}ic(q) € RY, with
z; denotes the specific amount of good ¢ purchased by the
buyer from the seller. Let X C R? be the set of feasible
goods. The buyer has a private concave value function v(x)
over the goods. On each round i, the seller posts a price p; €
R?. Then the buyer purchase a bundle x; of goods. Then the
buyer receives an instantaneous utility of v(x;) — p, - ;. A
rational buyer would buy the bundle x; that maximizes their
utility again the posted price p; at round 7:

x; = argmaxv(x) —x - p;
T

which indicates Vu(z;) = p;. Note as (Beigman and Vohra
2006) have showed that without any other assumptions on
the utility function besides concavity, the sample complex-
ity of learning the utility function is infinite. Though there is
no hope for efficiently learning the general utility function
and predict the buyer’s behavior, our previous results still
shows that we can learn and predict the buyer’s behavior
well when there is only a single good for sell (Amin, Ros-
tamizadeh, and Syed 2013, 2014; Devanur, Peres, and Sivan
2014; Immorlica et al. 2017; Vanunts and Drutsa 2019) or
when the buyer’s utility function is the Leontief-type piece-
wise linear function (R. G. D. 1967), both settings have been
welled adopted in the literature.

Similar analysis can be applied to the routing game to
learn and predict the traffic flow, and to the contract the-
ory problem (principal-agent game) to learn and predict the
agent’s effort level. See Appendix G for more description
about the other economic applications of our techniques.

5 Application of FCF in Convex Optimization

In this section, we demonstrate another potential application
of FCF, i.e., accelerating convex optimization, by presenting
a set of thorough empirical studies. Our promising empiri-
cal results give rise to an intriguing future research direction
of rigorously understanding how FCF can accelerate convex
optimization. We note that this is outside of the scope of the
present paper which aims at studying the FCF problem itself
and demonstrating its potential usefulness.



The study of efficiently minimizing a convex function has
a long history and is also of significant importance espe-
cially given today’s large machine learning models (see a re-
cent survey by Bubeck (2015)). Among various approaches
for accelerating convex optimization, one widely used tech-
nique is to use a “surrogate” function to approximate the
original convex function and then minimize the (hopefully
much simpler) surrogate function (Lange, Hunter, and Yang
2000; Mairal et al. 2010; Lee and Seung 2000; Mairal 2013).
Intuitively, a good surrogate should: (1) be easy to opti-
mize; (2) approximate the gradients of the original function
well. The former requirement makes the computation effi-
cient whereas the later requirement makes sure that the sur-
rogate can roughly preserve the optimal solution since the
optimal solution has the smallest gradient.

To use FCF for convex minimization, we observe that the
convex function identified by FCF is a natural candidate for
the surrogate of the original convex function, defined as fol-
lows.

Definition 2. (FCF Surrogate) For any convex function
f(x) and any sequence of data {x;}cir) and {p; =
V f(i)}icpr), the function output by Algorithm 1 is called
an FCF surrogate.

Recall that the proof of Theorem 1 guarantees that feasi-
ble ¢y, - - -, cr always exists for Equation (2) and thus FCF
surrogate always exists for convex f(x). When there are
many feasible values for {c;};c[r], one particular choice
is the optimal solution to the following linear program,
with variables {c;};c7) and 1, which maximizes the min-
imum gap between the highest and the second highest hy-
perplanes at different data points (note ¢; = [;(«;) and
p; - (@i —xj) + ¢ = lj(=:)):

max 1)

8
s.t. ¢ — [pj-(mi—wj)—kcj] >, fori # j ®

Figure 1: An example when T' = 2. We want to avoid finding
the surrogate formed by the dashed green line and blue line
which makes n = 0. If so, we can’t find new optimal point
by optimizing the FCF surrogate function. On the other hand,
the FCF surrogate formed by the solid green line and blue
line is a good surrogate function to optimize.

Since FCF surrogate max;c7] [;(x) is the maximum of 7'
linear functions, minimizing this convex function can be re-
duced to the a simple linear program with variable z, x —

minimizing z, subject to z > I;(x) for all ¢ € [T'] — which
can be solved efficiently by LP solvers. Moreover, though
our learnability results in the previous section are not appli-
cable here due to the violation of i.i.d. data sample assump-
tion, their conceptual messages that the FCF surrogate can
approximate the gradients of the original function provide
good reasons for the usefulness of the FCF surrogate. This
insight is also demonstrated in our extensive experiments.
Specifically, we consider Algorithm 2, denoted as Surrogate
Minimization using Convex Fitting (SMCF). The algorithm
simply uses the current data to compute the the FCF surro-
gate g(x) 3 and then minimize g(z) by solving a linear pro-
gram until the gradient of the underlying function f(x) has
small enough norm (i.e. smaller than parameter ¢).

Algorithm 2: Surrogate Minimization using Convex Fitting

parameter: resolution ¢ = e~4, integer k
Function SMCF () :

Initialize: pick k random samples 1, - - - , Tk
Let X = {mlv e 7.’1}k}, P = {Vf(ml), e ,Vf(mk)}
Letxz = Ty

while |V f(Z)||3 < e do

Compute FCF surrogate g(x) using available data
from X, P with {¢;} solved by LP (8)

Minimize the FCF surrogate to compute the

Z = argmin g(x)
zeX

Add Z,V f(Z) to X, P accordingly

end
Return =

FCF surrogate with zeroth order information. Notably,
the FCF surrogate generally cannot closely approximate the
function value (i.e., zeroth order information) since it only
relies on first-order information of gradients.* Neverthe-
less, zeroth order information are not essential for con-
vex minimization’, though it could be helpful if available
(e.g., the celebrated gradient with backtracking line search
method due to Armijo (1966)). Specifically, if additionally
we happen to also have the zeroth order information, i.e.,
{f(z:)}£,, it is easy to show that ¢; = f(x;), Vi is a fea-
sible solution to Equation (2) as well. In this case, we can
similarly plug in this FCF surrogate into Algorithm 2, lead-
ing to SMCF with 0’th order information, or FMCFO.

5.1 Experiment Setup

Optimization task. We consider large scale experiments
for optimizing the loss of logistic regression over data points
{(ws,ys) }sein) Where wy is the data feature and y; is the

3A simple trick we used in our implementation to accelerate
computation is to use only the last 100 data points to construct the
surrogate since data points that are far before become redundant as
the sequence converges to the minimum.

“For instance, any constant shift of the function shall not change
the FCF surrogate at all.

>For instance, the vanilla gradient descent works without zeroth
order information



Name SMCFO | SMCF

QS | MISO1

MISO2 | GD

SGD | GD-B

Zeroth order information Yes No

Yes Yes

Yes No

No Yes

Table 1: Different algorithms’ requirements of zeroth order information. “Yes” means zeroth order information is required

corresponding label. Given a set of [V data points, logistic re-
gression looks for the parameters & € R¢ which minimizes
the following convex loss function:

N
1
— : _ —YsWws T
fie) = i | 7 L togt1 47 ) e o)
where () is a convex regularization function. Our experi-
ment uses the standard /o norm as regularization.

Benchmarks. We compare with various classic optimiza-
tion algorithms including: (1) gradient descent (GD); (2)
stochastic gradient descent (SGD); (5) GD with backtrack-
ing line search (GD-B) that dynamically sets the step size
according to the zeroth order information. Additionally, we
also compare our algorithms with similar surrogate-based
algorithm. Specifically, (Mairal 2013) proved convergence
guarantees (to the optimal solution) for surrogate-based con-
vex minimization algorithms when the surrogate functions
are carefully chosen. Most prominent versions of their al-
gorithms are: (4) quadratic surrogates (QS); (5) incremental
scheme using first-order surrogate with two variants, MISO1
and MISO?2, designed particularly for functions with addi-
tive form like that in (9).® Some of these algorithms require
zeroth order information, while some do not. See Table 1 for
a summary.

Data sets and computing system. We use two classical
datasets: (1) covtype’ from UCI which has N = 581,012
data points and d = 54 features dimensions; (2) ijcnnl®
which has N = 49,990 data points and d = 22 features
dimensions. All the algorithms are coded in Python and the
experiments were run on a single core of a 2.20GHz Intel
Xeon Silver 4210 CPU using 256 GB of RAM.

5.2 Experimental Results

In this section, we present the experiment results for the
larger dateset covtype in Table 2. All entries are averaged
over 50 trials, unless performance is significantly worse than
the best algorithm or cannot be solved within 24 hours (in-
dicated as “N/A” in tables).

Each set of experiments has three regularization regimes,
high (A = 0.1), medium (A = 0.01), and low (A = 0.001).
Though Table 2 only presents two regularization regimes,
the entire experimental results for covtype and ijcnnl with
three regularization regimes are presented in Appendix H.

The advantage of our approach is quite evident in both
sets of experiments. Specifically, for experiments on cov-
type dateset in Table 2, both SMCF and SMCFO can achieve
close to optimal solution and run efficiently. The MISOI

8Code available at http://spams-devel.gforge.inria.fr/
"https://archive.ics.uci.edu/ml/datasets/covertype
8http://www.geocities.ws/ijcnn/nnc_ijenn01.pdf

Name Time (s) Opt. Value
SMCFO | 5247 £+ 1967 | 0.00133 4+ 0.00018
SMCF | 4634 + 2455 | 0.00136 + 0.00015
QS 67052 0.00003
MISO1 | 0.819 4+ 0.103 0.3380 £ 0.0
MISO2 | 0.807 + 0.011 0.3380 + 0.0
GD N/A N/A
SGD N/A N/A
GD-B N/A N/A
(aA=0.1
Name Time (s) Opt. Value
SMCFO | 7962 + 5801 | 0.00112 + 0.00040
SMCF 4023 £ 783 0.00400 +0.00105
QS 83090 0.00003
MISO1 | 0.868 4+ 0.025 0.3380 £ 0.0
MISO2 | 0.757 +0.137 0.3380 + 0.0
GD N/A N/A
SGD N/A N/A
GD-B N/A N/A
(b) A =0.01

Table 2: covtype Dataset: Experimental results with
different regularization regimes.

and MISO2, which is the primary algorithm used for ex-
periments in (Mairal 2013), converges very fast but the so-
lution quality of their objective values are not satisfactory,
i.e., a bit far from optimality.” The surrogate-based QS al-
gorithm can achieve solution quality but takes at least 10
times more time than our algorithm. Finally, GD/SGD/GD-
B cannot finish within 24 hours. One interesting observation
is that SMCFO with zeroth order information is not neces-
sarily always faster than SMCF. This is because the careful
choice of {¢; }ie[r) solved by LP (8) in SMCF may lead to
faster convergence (and thus less number of iterations) than
directly using the function values for {c; };c[r}-

Finally, the advantages of our methods in the ijcnnl
dataset is similar, except that GD/SGD/GD-B now can solve
the optimization problem due to the smaller size of this
dataset. It is also worth to mention that GD-B is indeed much
faster than GD and SGD because of the usage of zeroth or-
der information. Nevertheless, SMCF, which doesn’t require
zeroth order information of the objective function, performs
much better than GD-B.

The value of 0.338 is the converged optimal value of their al-
gorithms and can’t be improved even if we continue running the al-
gorithm. Moreover, in our experiments, we found MISOs are quite
unstable with respect to the values of label y;. Wheny; € {—1,1},
the algorithms perform even worse. We used label y; € {0,1} in
the experiments, which is a relatively better choice for them.
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A Strict First-Order convex Fitting

A “stronger” version of Theorem 1 concerns the fitting with
a strictly convex function u(x). It turns out that the charac-
terization in Theorem 1 naturally generalizes to this version.
In particular, using a similar proof of Theorem 1, we can
prove that there exists a strictly convex function u(x) that
first-order fits these two sequences, i.e., p; = Vu(x;) for
all t € [T, if and only if the two sequences are strictly per-
mutation stable: 23;1 p: - X¢ > 23:1 Pt - Xq(¢) for any
non-identical permutation o € X(T'). The proof is mostly
similar to the proof of Theorem 1, modulo some modifica-
tions to the weak and strong inequality labels. The only ma-
jor difference is the use of a different version of the Farkas’
lemma for strict inequalities.

The necessity proof is the same except that we need the
strict convexity condition to obtain strict permutation stabil-
ity, as follows:

w(xt) + pr - (xp — x¢) < u(xy),Vt' € [T] (10)

The proof of sufficiency also follows a similar procedure,
except that we now require that there always exists ¢;’s such
that I;(x;) = u(x¢) = max,c|7)l¢(X) in a stronger sense:
ly(x¢) > ly(xy) for any t # t'. That is, when x = xy,
I¢(x) is the only hyperplane that achieves max;c[7 l+(x)
and thus the gradient at x; is unique, i.e., p;. Note that u(x)
is not a strictly convex function yet. However, one can easily
“smooth” it by maintaining the gradients at all x; whereas
make other parts strictly convex.

What remains is to prove that strict permutation stability
implies the existence of ¢;’s such that l;(x:) > Iy (x¢) for
any t # t'. The proof also uses Farkas’ lemma and flow
decomposition. However, here we need a slightly different
version of Farkas’ lemma to count for the strict inequalities.
‘We were not able to find this version of Farkas’ lemma, so
we state formally the lemma as follows and also give a proof
for completeness.

Lemma A.1. Let A € R™*" be a real matrix and b € R™
be a vector. Then exactly one of the following linear system
is feasible:

1. There exists x € R™ such that Ax < b;

2. There exists y € R™ such that ATy = 0,bTy <
0,>", y;=1, andy > 0.

Proof. Note that system (1) is feasible if and only if there
exists large enough ¢ > 1 such that Ax + %1 < b, or equiv-
alently

tAx +1 < tb. (11)

Note that ¢ here is viewed as a large constant and the only
variable in Inequality (11) is x. Now utilizing the standard
Farkas’ lemma (a slight variant of (C.1)), we know that
among Linear System (11) and the following linear system,
exactly one of them is feasible: tATy = 0, (tb — 1)Ty <
0,y > 0. We slightly re-arrange this linear system as fol-

lows:
ATy =0, (12)
by < Z;’ Yi (13)
y=>0 (14)

If linear system (11) is feasible for some large ¢, then lin-
ear system (12)-(14) is infeasible, which implies that the sec-
ond linear system in the stated lemma is infeasible as well
since it is more constrained (i.e., any of its feasible solutions
is also feasible to linear system (12)-(14)).

If the first linear system in the stated lemma is infeasible,
then linear system (11) is infeasible for any ¢ > 1 which im-
plies that linear system (12)-(14) is feasible for any ¢ > 1.
Therefore, the second linear system in the stated lemma
must be feasible. This follows an argument via contradic-
tion. Suppose the second linear system in lemma is infeasi-
ble, that is, for any y € R™ such that ATy = 0,31 | y; =
1, and y > 0, we always have bTy > (. Then for any non-
zeroy € R™ such that ATy = 0, andy > 0, we always
have b7’y > 0 and thus there always exists a large * to make
bTy < Z% infeasible, which contradicts the fact that lin-
ear system (12)-(14) is feasible forany ¢t > 1. Clearly,y = 0
does not make linear system (12)-(14) feasible neither. This
contradiction shows that the second linear system in lemma

must be feasible. O

With Lemma A.1, the remainder just mimics the proof of
Theorem 1.

B Feasibility of Zero’th-Order convex Fitting

In this section, we consider a close relative to the convex
fitting problem as considered in Theorem 1. However, in-
stead of considering the first-order gradients, we are given
the function values (i.e., zero’th order information). Specif-
ically, given any two finite sequences {x; };c|7) where x; €
R and {z; }+c[r) where z; € R, when is it possible to con-
struct a convex function u such that u(x;) = z for all
t =1,---,T7 We term this problem the zero’th order con-
vex fitting problem. We also provide a necessary and suffi-
cient characterization for this question, though we are not
aware of any nice interpretation for this characterization any
more and the proof is also much simpler.

Theorem B.1. [Feasibility of Zero’th Order convex Fitting |
For any two finite sequences {X;}¢c[r) where x; € R% and
{2t }te[r) where z; € R, there exists a convex function u(x)
that “fits” these two sequences — i.e., u(X)|x=x, = 2t for
all t € [T] — if and only if the following linear system with
variables {W}.c[r) is feasible:

(Xt*Xt/)'Wfl ZZt*Zt/, fOI"t#t/. (15)

Proof. First of all, we start the proof from the direction
that if the linear system (15) is feasible, then there exists
a desirable convex function u(x). We provide a construc-
tive proof for the above theorem, and the way to construct
the convex function is as follows. First of all, we define
ly(x) = wy - (x — x¢) + 2z forany ¢ = 1,--- T where



x; and z; are from the given sequences and wy; is the only
parameter to be determined. Then we construct the convex
function as u(x) = max;c (7] l¢(x). It's known that the max-
imum of linear functions is convex, so what remains is care-
fully choosing w; such that the constructed u(x)|x—x, = 2t
which is equivalent to max;ci7) l¢(x¢) = li(X¢) = 2z, i.e.
ly(x¢) > lp (x¢) for any ¢ # ¢.

Next, we formalize the existence of w;’s as a linear feasi-
bility problem. Recall that I;(x;) = wy - (x¢ — x¢) + 2t = 2¢
and [y (x;) = wy - (x; — Xy ) + 2. Therefore, the constraint
lt (Xt) > lt/ (Xt) becomes 2t > Wy - (Xt — Xt/) + 24 which
is equivalent to (x¢ — X¢) - Wy > zp — z. The desirable
w,’s exists if the following Linear System is feasible:

(x¢ — X)Wy > 2 — 2y, fort #t'. (16)

proving our claim that if the linear system (15) is fea-
sible, there exists a desirable convex function u(x) =
max;e(r] L ().

On the other hand, what remains to prove in Theorem B.1
is the necessity condition, i.e. if there exists a convex func-
tion u(x) that “fits” the given two sequences {X; };c[r) and
{2t }+e[r)> then we must have the linear system (15) is feasi-
ble. To prove this, define the convex function u(x) such that
u(xy) = 2, Vt € [T, then let w; = Vu(x;) be any element
of the supergradient of u(x) at x;. Thus, by the definition of
the convexity, we have

w(xy) +wy - (xp —x¢) <u(xy), foranyt £t (17)
Substituting u(x;) with z; from (17), we can get
(x4 — Xyr) - Wy > 2z — 2y, foranyt #t/ (18)

which implies that system (15) is feasible, proving the state-
ment. O

C Proof for the Characterization of FCF

Theorem C.1. ForanyT > 1 and any two vector sequences
{@:}icir) and {p;}icr) in R, there exists a convex function
f (@) that first-order fits these two sequences — i.e., p; €
Of (x;) for any i € [T] — if and only if the two sequences
are permutation stable.

C.1 Proof of Theorem C.1
Proof of Necessity

We start from the easier direction, i.e., the necessity of
permutation stability. Given any convex function f(x) :
R? — R, we show that any sequence {x,--- ,x7} and
{py, -+ ,pr} where p, € 0f(x;),Vi € [T] are permuta-
tion stable. This follows from the definition of subgradients.
In particular, we have for any ¢

flx)+p, - (x—x;) < f(z),Ve e X (19)

Let o € X7 be any non-trivial permutation over [T']. Instan-
tiating Inequality (19) with * = x,(;) and summing over
the inequalities over 7 we have

Sier) Pit (Toy —®i) < Sierr) (f(®@o@)) — f(:))

Siern f(®o@y) — Bierr) f(2:)

0.

This implies, 3;e (1) P; - o) < Lic[rP; - T; for any per-
mutation o, proving the necessity of permutation stability.

Proof of Sufficiency

Much more involved is the proof of the other direction of
Theorem 1, i.e., to prove that permutation stability implies
the existence of a convex function f that fits the given
sequences. Our proof is constructive as shown in Algo-
rithm 1. At a high-level, we construct such a convex func-
tion as follows. For any ¢, we consider a linear function
li(x) = p; - (& — x;) + ¢; where p,;,x; are from the
given sequence and c; is the only parameter to be deter-
mined. The convex function we will construct is precisely
f(x) = max;¢c () li(x), i.e., the maximum of 7" linear func-
tions. The maximum of linear functions is known to be con-
vex. What remains is that with carefully chosen parameters
¢i’s, the constructed f indeed satisfies p, € 9f (x;). Specifi-
cally, key to this argument is to prove that under permutation
stability there always exists ¢;’s such that [;(x;) = f(x;) =
max;e (7] li(x), ie., li(x;) > lj(x;) for any i # j. That
is, when & = x;, max;¢ |7 [;(x) achieves the maximum at
l;(x). Consequently, the gradient of /;(x) at x = =; (i.e.,
p,;) will be a subgradient to f(x) at © = x;, completing the
proof.

The remainder of this proof is thus devoted to prove that
permutation stability implies the existence of ¢;’s such that
li(x;) > l;j(x;) for any ¢ # j. This can be formulated as a
linear feasibility problem. The main challenge of the proof
is to prove that permutation stability of the given sequences
implies feasibility of the linear system. Our argument fea-
tures an elegant connection to network flow decomposition
and permutation.

Our starting point is to formalize the existence of ¢;’s as
a linear feasibility problem. Recall that [;(x;) = p, - (z; —
x;)+ ¢ =c;and [j(x;) = pj- (z; — x;) + ¢;. Therefore,
the constraints /;(x;) > [;(z;) becomes ¢; —c; > p; - (x; —
x;). The desirable ¢;’s exist if the following linear system is
feasible.

¢i—¢ 2p;-(xi—x;), fori#j  (20)

Consequently, the desired convex function can be con-
structed by Algorithm 3.

Algorithm 3: Construction of the FCF Convex Function

Input: X = [ml o 'mT]’ P = [plv' o 7pT]

Function main () :

Solve the following linear system to find any feasible
C = [Cl'-'CT]Z

ci—¢=pj-(®i—w;) Vi,je[Thi#]
Construce T linear function [y - - - [ where
li(z) =p; - (& — ;) + ¢;,Vi € [T)
Return function

flx) = max li()




It turns out that directly arguing the feasibility of Lin-
ear System (2) is difficult. Therefore, the second step of the
proof is to transform the feasibility of (2) to its dual space
via the Farkas’ lemma (Farkas 1902).

Lemma C.1. [Farkas’ Lemma] Let A € R™*"™ be a real
matrix and b € R™ be a vector. Then exactly one of the
following linear system is feasible:
1. There exists x € R™ such that Ax < b;
2. There exists y € R™ such that ATy = 0, bTy <
0, andy > 0.
Utilizing Lemma C.1, we reduce the feasibility of linear
system (2) to the infeasibility of the following linear system:

Zyi,j - Zy” =0

foranyi e [T] (21

j#i j#i

Yij >0 for any i # j (22)
> pi(xi—x;) y; >0  foranyic[T]  (23)
J#

Interestingly, we observe that Constraint (21) and (22) can
be interpreted as the feasibility constraints of flow on the
directed complete graph. In particular, consider the directed
complete graph K1 = (V, E') with T nodes. For any i, j €
[T, there is a directed edge (4, j) pointing from node i to j.
We can interpret y; ; as the flow going through edge (i, 7).
Constraint (21) is precisely the flow conservation condition
at node ¢ — the flow amount Z#i 1;,; entering ¢ equals
the flow amount ) | i Yi,j existing ¢. Constraint (22) simply
means that the flow must be non-negative.

Here comes the crux of our proof. We now leverage
the classic flow decomposition theorem (Williamson 2019)
to show that any {y; ;}i»; satisfying Constraints (21) and
(22) must violate Constraint (23), implying the infeasibil-
ity of linear system (21)-(23). The flow decomposition theo-
rem says that any feasible flow satisfying conservation con-
straints at all nodes can be decomposed into at most 7'(7'—1)
cycles. That is, for any {y; ; }i; satisfying Constraints (21)
and (22) can be decomposed into m(< T'(T—1)) cycles: cy-
cle C*, represented as i — ik — ... — sz where i} € [T
is a node and sz = i}f, has flow amount yk > 0. That is, any
feasible flow {y; ; }i»; can be decomposed such as

vii= >, Y (24)
k:(i,f)eck
for any directed edge (k, k’). Here, with slight abuse of no-
tation, we use (i,j) € C* and i € C* to denote edge (i, §)
and node ¢ is in the cycle.

Crucially, each cycle C¥ : i% — i — ... — sz naturally
corresponds to a permutation o* by mapping each node to
its parent. Formally, o* is defined as follows: o* (i}, ;) = i}
for I < (¥ and 0% (i) = i for any i ¢ C*. By permutation
stability with respect to o, we thus have ZiT:1 p; - (x; —
Tk (;)) > 0, which implies

k-1

Z plz+1 Zz+1

— @) >0 (25)

for all cycles C* where k = 1,--- ,m.

It turns out that Inequality (25) leads to contradiction to
Constraint (23), derived as follows:

O<Zzp3 “Yij

i=1 i#j
= > plam-z) Y
’,jG[T]'ﬁfi k:(i,5)€Ck
=3 Y pmw) o
k=1 (i,j)eck
m -1
_ k
- Z [ Z pzl+1 iy zz+1)] Y
o
S0

I
)
I

which is a contradiction. This proves that any {y; ; }i»; sat-
isfying Constraints (21) and (22) must violate Constraint
(23). This shows that Linear System (21) (23) is infeasible
and thus Linear System (2) is feasible.

D Proof for Efficient Verification of
Permutation Stability

Proposition D.1. Checking whether any two vector se-
quences {p, }icir) and {x; } ;|| satisfy the permutation sta-
bility Condition (1) or not can be computed in polynomial
time.

Proof. First, observe that the permutation stability can
be reduced to computing the o* that maximizes the

T
erm S°7 p, -
argmax, s, . ZlT 1 Pi*To(;). After computing o, we know

T,(;) over all permutations, i.e., ¥ =

that the condition is satisfied if and only if Z 1D

Lox (i) = Ei:l p;-

Next, we show that o* can indeed be computed efficiently
by computing the maximum weighted matching of a care-
fully constructed bipartite graph. Consider a complete bi-
partite graph G = ([T] U [T], E') where both sides have
nodes indexed by ¢ € [T]. Each edge e = (4,j) € E has
weight (p, - «;) for any 4, j € [T]. It is not difficult to see
that each bipartite matching corresponds to a permutation o
(0; = 7 if ¢ on the left is matched to j on the right) and
the weight it has is ZiT:1 D; * To(;)- Therefore, the matching
that maximizes total weight is precisely the permutation that
maximizes ZZ;I D; " To(s), as desired. It is well-known that
bipartite matching can be solved efficiently in polynomial
time, e.g., by solving LPs. This concludes the proof of this
proposition. O



E Proofs for Learning One-Dimensional
Convex Functions

Theorem E.1. The sample complexity of learning H with
error € and confidence 1 — § is

maule,9) = o(””(i) tin(t 1)+ zn(;)>

2

Proof. We prove this theorem by posing a multi-class PAC
learning problem to fit the function at a discrete set of val-
ues. First of all, we investigate the Natarajan dimension of a
hypothesis class H, as defined below:

Definition E.1 (Natarajan dimension (Natarajan 1989)).
The Natarajan dimension of H, denoted as dn(H), is the
maximal size of a shattered set C' C X. A set C is shattered
by H if there exists two functions fo, f1 : C — P. such that

o Foreveryx € C, fo(x) # f1(x)
e For every B C C, there exists a function h € H such
that

Vo € B,h(zx) = fo(x) andVx € C/B,h(x) = f1(x)

The Natarajan dimension is a generalization of the VC
dimension to multiclass predictors. In additon, let mqy (e, 0)
denote the sample complexity of learning H with error ¢
and confidence 1 — §. With these definitions, an important
theorem in multiclass PAC learning is shown by Ben-David
et al. (Bendavid et al. 1995) and Daniely et al. (Daniely et al.
2011) is the following:

Theorem E.2 ((Bendavid et al. 1995; Daniely et al. 2011),
rephrased). For every concept class H C [P.]*

mH(E, 5) =
<dN<H> (In(2) + In(|Pe|) + In(dn (H)) + ln(%)))

€

)

where dn(H) is the Natarajan dimension of H and k =
|YZ | This upper bound is attained by any ERM algorithm.

Using this result, we can derive an upper bound on the
sample complexity for our hypothesis class . From Theo-
rem E.2, we know the sample complexity is determined by
the Natarajan dimension of the hypothesis class . Next, we
show the Natarajan dimension of our hypothesis class:

Lemma E.1. Let d = 1. Then the Natarajan dimension of
H as defined above has an upper bound dy(H) < %

Proof. Let S = {x1,--- 2, } be the set of unique inputs and
let T C S be any subset of S. Let fo, fi : RY — P. be
functions such that fo(z;) # fi(x;) for all {z;}ic[n), and
let h(x;) = fo(z;) if v; € T and h(z;) = f1(x;) otherwise.
Now, because this is a special case with d = 1, we note the
following relationship implied by the permutation stability
constraint.

Ty > T; — h(xz) > h(l‘])
Let S be sorted such that if ¢ < j then x; < x;. Suppose
fo(xz1) = 0and fi(x1) = €. In other words, the two smallest

values in P.. Note that we have the following constraints on
fo(z2) and f1(x2) by permutation stability over i

Jo(z2) > fo(z1)
fo(x2) > fi(z1)
Ji(z2) > fi(x1)
fi(z2) > fo(x1)
fi(z2) # fo(z2)

Now, note that if fo(x2) = 0 or f1(z2) = 0, these con-
straints are violated. Because fo(z2) > € and f1(z2) > €, at
least one of fo(x2) or f1(x2) must be a value yo € P, such
that yo # 0, y2 # € and fo(x2) # fi(x2). In other words,
it must be a new value from the hypothesis class such that
ya2 > e. If we extend this argument, we get that for each
z; € S, fo(z;) or f1(x;) must take on a value of y; € P.
such that for all x; < z;, y; > fo(z;) and y; > fi(z;).
Thus, if |S| >= |P|, fo and f1 cannot exist. This gives

1

dn(H) < -

O

Thus, Theorem E.2 and Lemma E.1 let us prove our main
Theorem 2 on the sample complexity. O

F Proofs for learning £-piecewise convex
functions

When d is greater than 1, the learning becomes more compli-
cated. We hypothesize that we need infinite number of sam-
ples to learn the function. However, when the function is k-
piecewise linear convex, we show that polynomial samples
are enough to probably learn the approximately correct func-
tion. Additionally, the construction methods for the learned
hypotheses match the construction methods presented in the
our convex optimization algorithms.

First, we define a few preliminaries. Let examples be
drawn from input space z € X = R¢ according to distri-
bution D. As stated in the main paper, to guarantee the exis-
tence of V f(x) for some & drawn from D, we only consider
continuous distributions on D. The proof methods shown
here, however, are extensible to additional distributions with
some modification. Once again, we let the hypothesis space
‘H and concept class C be the set of all k-piecewise linear
convex functions. This class of function can be uniquely de-
fined by the following property.

Vf e ¢, 3L € P(RHY)

st. f(x) = max p-x+y
(y,p)el
In other words, every element of C can be written as the
maximum over a set of k hyperplanes in R*t1. We denote
this set of planes as Ly for f € C. Additionally, for each
i € [k], let r; C X denote the subset of inputs such that
l;(x) = f() if and only if & € r;. We note that each region
r; must be a convex polytope in R? due to the convexity of



- Define the full set of regions as Ry such that | J, Ry Ti =

X. Finally, we note that the set of n-piecewise linear convex
functions is a subset of C for any n < k.

Theorem F.1. Let samples x,p be selected from distribu-
tion D where p = V f(x). Given € and 0, an inferred hy-
pothesis h € H can be constructed with

§) =0 L log & + log - 26
my(e,d) = (ﬁ(og +0g6)) (26)

samples such that
PIPp(Vh(z) # Vi(z) 2| <6 @D

Proof. We first show the construction of A’ in terms of a
given set of samples m. Define C = [c¢1---¢p] as a se-
quence of arbitrary constants and solve for any C such that
the following holds.

ci—cj > pj- (i —x5),ViF# ]

After solving for C, construct m linear function
l1+++1,, € L where

li(x)=pi(x—xi) +c

And define h'(x) = max;cpy,) li(x). Now, uppose two
samples x;,x; fall in the same region r € Ry. The con-
straints on ¢; and c; give the following.

Pj - (xi —xj) < ¢ —c; < pi- (x5 — x5)

Because x;,x; € 1., we get p; = p;. This gives ¢; —
¢; = p; - (&; — x;), which can be rewritten as

Ci —Pi Ti =Cj —Pj Ty

Thus showing that [; = [; in the construction of A’ if both
samples are from the same region. Then, because there are
at most k hyperplanes that can be constructed from a sam-
ple, b’ € H must hold. The remainder of the proof involves
first finding the number of samples we need per region (de-
noted as m’), followed by the number of samples needed to
guarantee m’ samples per region, m.

Let S./r C Ry denote the subset of regions such that
Vs; € Sek, Po(r € s;) > €/k. Consider two different
regions s;,5; € S/, and let there be two samples x; €
s; and ; € s;. Furthermore, denote the two hyperplanes
constructed from these samples as I; and [; respectively and
let p; and p; denote the gradients for regions s; and s;. If
we assume [;(x) < [;(x), then we get the following.

pi- (x —xi) + ¢ <pj(x —z5) + ¢
(pj —pi) x> (i — ¢j) + Pjxj — Piw;
(pj —pi) x> (pj — i) %

Now, let X, be the set of all samples in [m] such that
Vo € Xs,,x € s;. Then, for any admissible choice of C' and
any choice of x, [;(x) < l;(z) holds only if (p; —p;) -« >
max,scx. (p; — ps) - «’. Conversely, if

(pj —pi) & < max (pj —p;) -z’
' €X,

holds, then [;(x) > [;(x) must be true. If for every region
ry € R, l;(x) > l;(x) holds for x, then VI/(x) = Vf(x).
Now, for each region r; € R, define di such that the follow-
ing conditions hold.

Pp((pj —pi) -z < d ANz € 5;) = e/ k>

Note that di must exist because s; € S, /i and because the
distribution D is continuous. Now, let F} denote the event
that none of m’ samples in region s; satisfy (p; — p;) - & <
di. If F} does not happen for any r; € R, then we are
guaranteed that Pp(Vh/ (z) # Vf(z) Ahx € s;) < €/k.
Note that the boundaries between regions are the only points
where the gradient is undefined and because the boundaries
are R9~! dimensional, they have zero measure under D.
Now, we solve for m’ such that this happens with proba-
bility 1 — §/2k.

Po(|J F)) < Po(F))

te(k] te(k]
< Z (1 _ 6/k2)m’
telk]
< ‘l{:ef?n'e/k:2

and by setting ke~™'¢/%* < 0/2k, we get m' =
%(QIng + log %) Thus, for any region s; € Sy, if at
least m’ samples fall within s;, then Pp(h/(x) # f(x)Ax €
s;) < €/k with probability 1 — 6/2k. Now, assume for all
Si € Sk at least m' samples out of m fall within region
s;- We then get the following.

Pp (VR (z) #V f(z)) =
> Pp(VH(z) # V() Az €ry)

rER
< ) Pp(VH(x)# Vf(z) A€ si)
Si€Se/k
€
+ Z %
re€R\Sc
€ €
< > 7T > €
SZ'ESE/)C T"teR\Se/k

Then, by applying the union bound on the confidence, we
get that P[Pp(VH'(z) # Vf(2)) > ] < Y, cs., o5 <
g. Put together, this gives

P[Pp(VI (@) # V(@) < d > 1-§/2

Finally, to achieve the desired error with probability at
least 1 — 9, we need at least i’ samples per region s; € Sy,

with probability at least 1 — 6/2. Define v = 1 — Em’ and

€ m



let | X, ,, | = ming,es, ,, |Xs,|. We then get the following.
P(IXs,, | <m)< Y P(X.|<m)
8i€Se/k
< Y P(X,|<(1- )Em)
S; ESF/k

< ke~ m?/2
< ke 3imem’
1— ke 25me™ > 1-§/2
ke 2Eme™ < 52

2 2
m > —k(log?k—l—m’)

2k . 2k k? 2
m > —(log — + — (210gk+10g7))
€ ) )
The third inequality is an application of the Chernoff bound
on a bernoulli random variable with p = 1 — ¢/k. O

As stated in the main body, it turns out that when we have
access to the zero’th order information during the learn-
ing process, we can improve the sample complexity up to
O(%(log k + log #)). The proof for this is shown here.

Theorem F.2. Let samples x, (y, p) be selected from distri-
bution D where y = f(x) andp = Vf(x) is given by the
true function f. Given € and 6, an inferred hypothesis h' can
be constructed with

#(e,8) =0 <]: (1ogk + log ;)) (28)

samples such that

P[Po(h(x) # f(x) v Vh(z) # V(@) > €] <5 (29)

Proof. First, we describe the construction of i’ in terms of
a set of m samples. Let x;, (y;, p;) be a sample and output
pair for ¢ € [m]. This pair forms the hyperplane /;(z) =
(x — x;) - p; + y;. Now, construct h’ as follows.

W (2) = max li(a) (30)

Recall that for each ¢ € [k], we define region r; € Ry
such that ; C R¢ defines a convex polytope with unique and
constant gradient. As a result, A’ can have at most k unique
gradient values and must be k-piecewise linear convex, or in
other words, we get h' € H.

Let region r; have total probability mass p; according to
distribution D. If for any j € [m], x; falls within region r;,
then hyperplane /; is in the set of planes for »’. Furthermore,
for every x € 1, h/(x) = f(x) because the set of unique
hyperplanes used to construct k' is a subset of those used
to define f. Because we are assuming continuous D and the
boundaries between regions are in R?~!, for any x € X
such that V f(x) or V1/(z) has zero probability of being
sampled. As a result, all of the probability mass p; is cap-
tured by i assuming [; € Ly. Finally, let S,/ denote the

set of regions that have probability mass p; > ¢/k. We then
get the following.

P(Fie Sﬁ//@,i ¢ [m]) <

1
%m>10gk+logg

k 1
> Y(logk + log =
6(og +og5)

G Additional Economic Applications of
Gradient Learning

Application I: Estimating Routing Traffic. A routing
game involves a single agent who wants to route some goods
from their sources to their destinations. Specifically, a rout-
ing game G(G, ¢) is defined by a graph G(V, E) and a pri-
vate convex latency function ¢ over the traffic. Let d = |E)|
be the number of edges in the graph. The agent’s routing de-
cision induces a d-dimension traffic flow f = {f.}ecr €
R?, with f, denotes the specific amount of traffic routed on
every edge e € E. Let F C R? be the set of feasible flows.
In addition, there is an authority who has the power to im-
pose constant tolls 7 = {7.}.cx € R? on every edge. On
each round ¢, the authority impose tolls 7; over the edges of
the network. Then the agent chooses the aggregated traffic
flow f, € F to route the goods. The agent suffers from a
total loss of ¢(f;) + > . Tt - fi,e. A rational agent would
minimize their loss against the posted tolls 7, at each round:

fi=argmax —¢(f) —7¢- f
fEF

which indicates Vo(f,) = T4.

Application II: Predicting Agent Efforts in Contract De-
sign. In a contract theory problem, the principal (the leader)
defines a contract by which the agent (the follower) will be
paid, as a function of work produced by the agent. Suppose
the principal has m products M = {1,--- ,m} for the agent
to produce and the agent’s outcome space will have size
exponential in m. Each outcome S is a subset of M rep-
resenting the items in M produced by the agent. On each
round ¢, the agent can make some effort e; to work and pro-
duce probabilities ¢; 1, -, qt.m € [0, 1] for all the m items.
Since the agent knows how effort is stochastically mapped
to realizations, we abstract away the agent’s choice of an
“effort” level, and instead view the agent as choosing a “tar-
get contribution” — the expected probability of the agent’s
ultimate contribution. Thus, we consider a 2% -dimensional



principal-agent problem, in which the agent produces work
w € R?"” where each w; represents the probability of all
the items in subset S; € M are produced. The agent experi-
ences some private convex costs ¢(w) for producing a target
contribution of w. On each round ¢, the principal posts the
contract ¢, and a rational agent would produce work w; that
maximizes their utility:

w; = argmax y, - w — c(w)
w
which indicates Ve(w;) = vy,

H Experimental Results

Table 3: covtype Dataset: Experimental results with
different regularization regimes.’

Name Time (s) Opt. Value
SMCFO 249 £ 51 0.00127 + 0.00056
SMCF 240 + 136 0.00183 + 0.00060
QS 763 £+ 101 0.00036 £ 5¢=20
MISO1 12.4 £ 0.101 0.1839 £ 0.0
MISO2 | 0.926 + 0.009 0.1839 £ 0.0
GD 24211 0.00044
SGD 22895 0.00049
GD-B 12970 0.00044
(@A=0.1
Name Time (s) Opt. Value
SMCFO0 197 + 59 0.00118 + 0.00064
SMCF 217 £ 97 0.00136 + 0.00066
QS 764 + 93 0.00028 £ 520
MISO1 11 +£0.244 0.1832 £ 0.0
MISO2 | 0.939 + 0.009 0.1832 £ 0.0
GD 26333 0.00036
SGD 23634 0.00036
GD-B 13177 0.00036
(b) A = 0.01
Name Time (s) Opt. Value
SMCFO 178 + 61 0.00228 £ 0.00262
SMCF 217 £ 117 0.00209 £ 0.00340
QS 770 + 97 0.00027 + 0.0
MISO1 12 +0.131 0.1831 £0.0
MISO2 | 0.928 + 0.0046 0.1831 £ 0.0
GD 27910 0.00035
SGD 23214 0.00035
GD-B 13321 0.00035
(¢) A =0.001

Name Time (s) Opt. Value
SMCFO | 5247 + 1967 | 0.00133 + 0.00018
SMCF | 4634 + 2455 | 0.00136 + 0.00015
QS 67052 0.00003
MISOI1 | 0.819 £+ 0.103 0.3380 £ 0.0
MISO2 | 0.807 £ 0.011 0.3380 £ 0.0
GD N/A N/A
SGD N/A N/A
GD-B N/A N/A
(@AXx=0.1
Name Time (s) Opt. Value
SMCFO | 7962 + 5801 | 0.00112 + 0.00040
SMCF 4023 + 783 0.00400 +0.00105
QS 83090 0.00003
MISOI1 | 0.868 + 0.025 0.3380 £ 0.0
MISO2 | 0.757 £ 0.137 0.3380 £ 0.0
GD N/A N/A
SGD N/A N/A
GD-B N/A N/A
(b) A = 0.01
Name Time (s) Opt. Value
SMCFO | 6230 + 3842 | 0.03449 + 0.03366
SMCF | 4503 £ 1659 | 0.00058 + 0.00066
QS 82555 0.00003
MISOI1 | 0.887 £+ 0.033 0.3380 £ 0.0
MISO2 | 0.933 £+ 0.037 0.3380 +£ 0.0
GD N/A N/A
SGD N/A N/A
GD-B N/A N/A
(c) A = 0.001

Table 4: ijecnnl Dataset: Experimental results with different
regularization regimes.



