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Abstract

This paper studies defender patrol deception in general Stack-
elberg security games (SSGs), where a defender attempts to
alter the attacker’s perception of the defender’s patrolling
intensity so as to influence the attacker’s decision making.
We are interested in understanding the complexity and ef-
fectiveness of optimal defender deception under different at-
tacker behavior models. Specifically, we consider three dif-
ferent attacker strategies of response (to the defender’s de-
ception) with increasing sophistication, and design efficient
polynomial-time algorithms to compute the equilibrium for
each. Moreover, we prove formal separation for the effective-
ness of patrol deception when facing an attacker of increasing
sophistication, until it becomes even harmful to the defender
when facing the most intelligent attacker we consider. Our
results shed light on when and how deception should be used
in SSGs. We conduct extensive experiments to illustrate our
theoretical results in various game settings.

Introduction
SSGs are a well-known class of games which are used in
various real-world security domains (Basilico, Gatti, and
Amigoni 2009; Letchford and Vorobeychik 2011; Tambe
2011). This paper investigates the complexity and effective-
ness of a basic patrol deception strategy of the defender in
SSGs, where the defender can conduct patrols in a deceptive
manner to mislead the attacker. In particular, we assume that
the defender can strategically disguise or exaggerate (to a
limited extent) the protection status at each target to fool the
attacker. One of our major motivating domains, among oth-
ers, is the wildlife conservation where SSG models have been
deployed (Fang et al. 2016) and where deception approaches
have been considered in previous work (Bondi et al. 2020;
Xu et al. 2018). For example, rangers can hide themselves
from being seen by poachers (Guo et al. 2017). They can
also hire local villagers or use conservation drones to make
the patrolling appear more intense (Bondi et al. 2020).

Motivated by these practices, we study a new and basic
deception game model, coined Security Games with Decep-
tive Coverage (SeGDCs), which augments an arbitrary se-
curity game with the additional deception component. In
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SeGDCs, the defender can make the attacker observe a dif-
ferent (deceptive) patrolling intensity rather than the true
ones. Concretely, the defender can deceit the attacker’s per-
ception of the protection probability of each target, and the
deceptive probability lies within an interval, containing the
true protection probability. The interval bounds at each tar-
get capture the defender’s capability limit in influencing the
attacker’s perception at that target. The defender’s deception
capability at each target is usually determined by the target’s
own characteristics such as terrain features and thus can be
considered to be independent of other targets’. Under this
scenario, we aim to answer the following research question:

How do the complexity and effectiveness of the opti-
mal deception evolve as the attacker becomes increas-
ingly more sophisticated?

We consider three natural types of attack strategies, with in-
creasing sophistication: (i) Ignorant attack strategy — the
attacker is unaware of defender’s deception and simply re-
sponds to the deceptive strategy; (ii) Maximin attack strategy
— the attacker is aware of the defender’s deception and ad-
dresses it via a robust maximin approach; and (iii) Equilib-
rium attack strategy — the attacker is aware of and reasons
about the defender’s deception, leading to a sequential equi-
librium of the game. Our models of attacker strategies are
motivated by real-world domains such as wildlife protection
in which different types of poachers with different levels of
sophistication exist, ranging from local villagers to profes-
sional groups (Uhm 2016).

Within these three natural attack models, we provide a
complete set of answers to the aforementioned question. We
show that the optimal equilibrium deception strategy can be
computed in polynomial time whenever the standard SSG
(without deception) can be solved efficiently. This conveys
a clean message that deception against more sophisticated
attackers is “no harder”. Furthermore, we show that the de-
fender deception becomes strictly less powerful, in terms of
securing the defender’s expected utility, as the attacker be-
comes more sophisticated, until to the point where deception
even leads to a decrease in the defender’s utility. Indeed,
deception may cause the defender to lose her commitment
power (as the attacker cannot observe defender’s underly-
ing true strategy any more due to her deception) and leads
to a harmful outcome when facing a sophisticated attacker.
To our knowledge, this is the first quantitative study on un-



derstanding the effectiveness of deception in SSGs against
attackers of different levels of sophistication. This illustrates
another conceptual message: deception may be a double-
edged sword for the defender, and needs to be carefully used.

Finally, we conduct extensive experiments to evaluate the
impact of the defender’s deception. Our empirical results
align with our theoretical findings, which show that the de-
fender obtains a significant benefit while the attacker suf-
fers a significant loss due to the defender’s deception when
the attacker plays the Ignorant or Maximin strategies. Con-
versely, the defender suffers a substantial loss when the at-
tacker chooses the equilibrium-based strategy.

Additional Discussions on Related Work
For the study of deception in general security domains, we
refer curious readers to a recent survey (Fraunholz et al.
2018) and references therein. Within SSGs, many recent
works have investigated the problem of deception from var-
ious perspectives. Such deception typically originates from
the asymmetric information among players (Guo et al. 2017;
Rabinovich et al. 2015; Sinha et al. 2018; Xu et al. 2015).
On one hand, the attacker can strategically change his attack
behavior to mislead the defender given that the defender is
uncertain about some of the attacker’s characteristics (Gan
et al. 2019; Nguyen and Xu 2019; Nguyen et al. 2019).
On the other hand, the defender can also strategically re-
veal or disguise her information to the attacker (Guo et al.
2017; Rabinovich et al. 2015; Xu et al. 2015; Zhuang, Bier,
and Alagoz 2010). Our work belongs to this second line of
research, i.e., the defender’s deception. However, different
from previous works which all focus on designing the op-
timal deception strategy for a particular model, our work
seeks to understand the power of deception under different
attacker response models.

Among existing works, the work in (Guo et al. 2017)
is the closest to ours in the sense that they also consider
a defender who can disguise security resources. However,
they take a Bayesian approach and assume that there is a
prior probability distribution over the defender’s types (each
corresponds to a particular number of resources). The de-
fender then commits to a signaling mechanism to influence
the attacker’s belief over the types. However, the defender
in our setting does not have the power to commit to signal-
ing schemes, and thus deception and the attacker’s inference
are simultaneously. Such simultaneous move makes the de-
fender to lose commitment power to mixed strategies and
is the intrinsic reason for why deception can sometimes be
harmful to the defender.

Preliminaries
Stackelberg security games. (Tambe 2011) In SSGs,
a defender (she) allocates limited number of security re-
sources to protect a set of critical targets {1, , 2, . . . , n} =
[n] from the attack of an attacker (he). When the attacker
attacks a target i, if the defender is protecting i, the attacker
receives a penalty P ai while the defender gets a reward Rai .
Conversely, if i is not protected, the attacker obtains a reward
Rai (> P ai ) while the defender receives a penalty P di (< Rdi ).

A pure strategy of the defender can be viewed as a sub-
set of targets that can be covered by her security resources.
We consider generic SSGs with arbitrary resource alloca-
tion constraints. We use a binary vector e ∈ {0, 1}[n] to
represent a defender pure strategy where ei = 1 if and only
if target i is protected by e. Let E ⊂ {0, 1}[n] denote a set
of all these strategies. A defender mixed strategy is a dis-
tribution over E . The set E is typically exponentially large.
Nevertheless, previous work shows that the optimal defender
strategy may still be computed efficiently through optimiza-
tion techniques when E is nicely structured (Tambe 2011).

An important concept in SSGs is the marginal protection
probability. Let {pe}e∈E denote any mixed defender strat-
egy where pe is the probability of taking pure strategy e.
Then x =

∑
e∈E pe ·e is the vector of marginal probabilities

where xi is the marginal probability that target i is protected
by mixed strategy {pe}e∈E . Let

X={x=
∑
e∈E

pe · e :
∑
e∈E

pe = 1, pe ≥ 0,∀e} (1)

denote the set of all possible marginal probability vectors.
In SSGs, both players’ utilities only depend on the marginal
probabilities. Therefore, for convenience, we will use x as a
defender mixed strategy from the feasible set X. The ratio-
nal attacker is assumed to be able to observe the defender’s
mixed strategy and then choose one target to attack. Given
x, the defender’s and attacker’s expected utility when the at-
tacker attacks a target i is computed as follows:

Udi (xi) = xi(R
d
i − P di ) + P di

Uai (xi) = xi(P
a
i −Rai ) +Rai

Strong Stackelberg equilibrium (SSE). Given x, we de-
note by Γ(x) = {i : Uai (xi) ≥ Uaj (xj),∀j} the set of
targets that maximize the attacker’s expected utilities. For-
mally, a pair of strategies (x0, i0) forms an SSE if: (i) The
attacker plays a best response to x0, i.e., i0 ∈ Γ(x0),
and breaks ties in favor of the defender, i.e., Udi0(x0

i0) ≥
Udi (x0

i ),∀i ∈ Γ(x0); and (ii) x0 is optimal for the defender:
Udi0(x0

i0) ≥ Udi (xi),∀i ∈ Γ(x) and x ∈ X.

Nash equilibrium for simultaneous-move security games.
We denote by q = (q1, q2, . . . , qn) the attacker’s mixed
strategy where qi ∈ [0, 1] is the probability target i
is attacked. We also denote by Q = {q : qi ∈
[0, 1] and

∑
i qi = 1} the set of these strategies. For-

mally, a pair (x0,q0) forms a Nash equilibrium if:
(i) The defender plays an optimal strategy, given q0:∑
i q

0
iU

d
i (x0

i ) ≥
∑
i q

0
iU

d
i (xi),∀x ∈ X; and (ii) The at-

tacker plays an optimal strategy, given x0:
∑
i q

0
iU

a
i (x0

i ) ≥∑
i qiU

a
i (x0

i ),∀q ∈ Q.

The Model of Patrol Deception Games
This work studies the problem of defender patrol deception
in which the defender can alter the attacker’s perception of
the defender’s strategy. Essentially, for each strategy, x, the
defender can make the attacker observe a different strategy
c. Formally, xi−αi ≤ ci ≤ xi+βi and ci ∈ [0, 1] for all tar-
gets i. The parameter αi ∈ [0, 1) represents the defender’s



ability to disguise resources and βi ∈ [0, 1) captures her
ability to exaggerate resources at i. This include a special
case where the defender can only disguise or only exagger-
ate the coverage. It is usually difficult to significantly alter
attacker’s perception, so {αi, βi}i can be very small. Nev-
ertheless, we show later that a tiny αi can at times be more
powerful than having (n− 1) additional resources.

Given x, we denote by Ω(x) = {c : max{xi − αi, 0} ≤
ci ≤ min{xi + βi, 1}}) the set of possible implementable
deceptive strategies. Here, we assumed that the defender’s
deception capabilities at each target are independent, i.e., ci
only depends on xi, αi, βi. These αi, βi are typically small
and are determined by the characteristics of the target. For
example, in wildlife conservation areas with more curvy or
hilly terrain, it is easier for the rangers to hide. For areas
with more nearby local villagers and bushy terrains, it is eas-
ier to get villagers or to use drones to exaggerate the cover-
age intensity. Moreover, despite such flexibility of picking a
deception strategy, we show later that the defender’s decep-
tion may nevertheless become harmful to herself when play-
ing against a sufficiently sophisticated attacker. Therefore, a
more constrained deception strategy will only do worse.

Definition 1 (Defender strategy). The defender strategy in
our SeGDC model is a pair (x, c) where x is the defender’s
actual strategy and c is the deceptive strategy that the de-
fender intends the attacker to perceive. Let Ω={(x, c) :x∈
X, c ∈ Ω(X)} be the set of all feasible defender strategies.

One interesting property of our deception game is that it
has both “Stackelberg component” and “Nash component”.
In particular, c is always “observed” (more precisely, per-
ceived) by the attacker, which consequently leads to the de-
fender’s commitment to c. However, the mapping from true
coverage x to c, which is precisely the deception strategy,
is unobservable by the attacker.1 This results in a simul-
taneous move between the leader’s deception strategy and
the attacker’s response to c. Our study of the defender’s pa-
trol deception will focus on: (i) computing the optimal de-
fender strategy; and (ii) investigating the benefit and loss of
the players as a result of the defender’s patrol deception.

Deception Against Ignorant Attacks
Our study starts with the basic situation where the attacker is
unaware of the defender’s deception, and thus would believe
the deceptive protection coverage c. We refer to such an at-
tacker as ignorant attacker. Note that the attacker here does
not respond to true x simply because he does not know that
the coverage he observed is deceptive (thus the term “igno-
rance”). The ignorant attacker will respond optimally to his
observation c. Examples of ignorant attackers include native
poachers in conservation domains who are local agricultural
villagers and tend to conduct simple hunting activities (Uhm
2016). We first study the algorithmic question of computing
the equilibrium defender strategy in SeGDCs against an igno-
rant attacker (Theorem 1).

1An alternative way is to assume the defender can commit to
a mapping from x to c. However, this assumption requires the at-
tacker to observe the entire mapping, which is unrealistic.

Theorem 1 (Efficient Solvability). If the standard SSE
(without deception) can be computed in polynomial time,
then the optimal defender strategy against an ignorant at-
tacker in SeGDCs can also be computed in polynomial time.

All formal proofs in this paper are deferred to the ap-
pendix due to space limit. Proof sketches are provided for
a representative subset of the results.

Next, we investigate the power of the defender’s decep-
tion. We compare the following two situations, which repre-
sent two different types of defender capabilities:

1. Situation 1: The defender has unlimited security re-
sources to implement any marginal probabilities in
[0, 1]n, but cannot deceive the attacker about protection.

2. Situation 2: The defender can hide at most an ε amount
of her protection at a target.2

One might think that in this situation, the defender can do
a “perfect job” by simply fully covering all the targets. Sur-
prisingly, we show that deception — particularly, the capa-
bility of hiding security resources — can yield strictly bet-
ter utility than such perfect protection, illustrating that the
ability of deception can be more powerful than getting more
resources. Intuitively, this comes from the following insight:
perfect protection may not be ideal as that may “scare away”
the attacker from those targets, of which the payoffs are bet-
ter for the defender. However, deceptively hiding security
resources can achieve this goal by making those targets ap-
pear more attractive.

Theorem 2 (The Power of Deception). For any ε, there are
game instances such that:

1. The defender uses 1 resource in Situation 2 but at least
(n− 1) resources in Situation 1;

2. Nevertheless, the defender achieves strictly higher utility
in Situation 2 than in Situation 1.

Proof Sketch. Given any ε, the proof proceeds by construct-
ing such a game instance with n targets and only one secu-
rity resource. Pick any n > max{3, 1/ε2}. The proof con-
structs the players’ payoffs as in the following table where
target 2 to n have identical payoffs. Target 1 is the only spe-
cial target with larger payoff scales for both players.

Targets Rdi P di Rai P ai
1 n3 2− 2n 2n− 2 −(n− 1)(n− 2)
2 0 −n n 0
· · · · ·
n 0 −n n 0

What remains is to compute the defender utilities in the
two situations. In Situation 1, simple calculation shows that
the optimal defender strategy is to protect target 2 to n with
probability 1 and target 1 with probability 2/n. This makes
all targets to have an attacker utility of zero. The defender
achieves utility 2

n ·n
3− n−2

n · 2(n− 1) > 0 (since n > 3) at
target 1 whereas the defender utility at other targets is 0 due

2The defender may be able to exaggerate her protection as well,
but that is not necessary for our next result.



to their zero-sum payoff structure. Therefore, the attacker
will break ties in favor of the defender and attacks target 1.3

In Situation 2, the defender can hide protection prob-
ability by at most ε. Calculations show that in this case,
the defender can cover target 1 with probability p1 =
1
n + ε (n−1)2

1+(n−1)2 and other (n − 1) targets with probability
(1 − p1)/(n − 1). These probabilities are chosen such that
p1 − ε protection of target 1 is equally attractive to the at-
tacker as (1− p1)/(n− 1) protection for each of target 2 to
n, and moreover the attacker will break ties by attacking tar-
get 1 as well. Since n > max{3, 1/ε2}, and thus ε > 1/

√
n.

Therefore, we obtain p1 = 1
n + ε (n−1)2

1+(n−1)2 ≥
1
n + 1√

n
· 9

10 >
2
n , which is target 1’s protection probability in Situation 1.
Therefore, the defender’s utility here is strictly higher than
Situation 1, concluding our proof.

Deception Against Sophisticated Attacks
We now turn to the case of a more sophisticated attacker
who is aware of the defender’s deception. We consider two
natural types of attack strategies to combat the defender’s
deception: (i) Maximin attack strategy — the attacker is
aware of the defender’s deception and take a Maximin-based
robust approach to deal with his uncertainty about the de-
fender’s true strategy; and (ii) Equilibrium attack strategy
— the attacker follows an equilibrium strategy approach to
counteract the defender’s deception.

Maximin Attack Strategy
When the attacker is aware of the defender’s deception, one
natural approach for the attacker to counteract is to consider
the possible set [ci−βi, ci+αi] that xi is from, given that ci
is observed. The attacker can attempt to deal with the worst-
case scenario within this uncertainty set.

Computing Optimal Defender Deception. To compute
an optimal deception strategy, we first analyze the attacker’s
attack maximin strategy. Given the observed {ci}, the at-
tacker chooses the target i∗ that maximizes his worst-case
utility over all possible x’s, defined as follows:

i∗ ∈ argmaxi [minz Rai (1− zi) + P ai zi]

s.t. 0 ≤ zi ≤ 1, ci − βi ≤ zi ≤ ci + αi,∀i.
Despite such more intricate behavior of the attacker, we

show that the optimal defender strategy can still be com-
puted efficiently in very general setups.
Theorem 3. If the standard SSE can be computed in poly-
nomial time, then the optimal defender strategy against a
maximin attacker can also be computed in polynomial time.

Proof Sketch. The proof starts with a characterization of the
optimal solution to the following maximin problem:

i∗ ∈ argmaxi [minz Rai (1− zi) + P ai zi]

s.t. 0 ≤ zi ≤ 1, ci − βi ≤ zi ≤ ci + αi,∀i.
3It is worthwhile to mention that if the defender tries to protect

target 1 with a probability higher than 2/n, the attacker will then
attack a target i > 1, reducing the defender utility to 0. This is the
reason why more security resources are not necessarily helpful.

We observe that for any given target i, the optimal solution
of the inner minimization in the above maximin problem is
zworst
i = min{ci+αi, 1}. Therefore, the attacker will choose

the target i which has the highest expected utility w.r.t the
worse case coverage min{ci + αi, 1}.

Utilizing this observation, we can formulate the problem
of finding the optimal defender strategy against a maximin
attacker as an optimization program (OP).

max
x,pe,q

Ud

s.t. max{xi − αi, 0} ≤ ci ≤ min{xi + βi, 1},∀i
Ud ≤ xiRdi + (1− xi)P di + (1− qi)M,∀i

x =
∑
e∈E

pee,
∑
e∈E

pe = 1, pe ≥ 0 ∀e ∈ E∑
i
qi = 1, qi ∈ {0, 1},∀i

Ua ≤ min{ci+αi, 1}(P ai −Rai )+Rai +(1−qi)M,∀i
Ua ≥ min{ci+αi, 1}(P ai −Rai )+Rai ,∀i

There are two major difficulties in solving the above OP.
First, it has a non-convex constraint, i.e. the last constraint,
since min{ci + αi, 1} is a concave function. To overcome
this barrier, we analyze the above OP and show that it al-
ways admits an optimal solution where min{ci + αi, 1} =
ci + αi for any i. This property allows us to substitute all
the min{ci + αi, 1} in the above OP by linear term ci + αi,
resulting in a MILP with q as the only integer variable. Since
q only takes at most n different values, we can enumrate
each possibility and solve the corresponding LP it induces
(Conitzer and Sandholm 2006). The second challenge is that
this LP however has exponentially many variables due to
{pe}e∈E . To resolve this challenge, we leverage linear pro-
gram duality to devise a polynomial-time Turing reduction
from solving this large LP to solving the standard security
game version without deception, i.e., the special case with
αi, βi = 0,∀i.

We now study the power of deception against a maximin
attacker. Let x̄ be the defender SSE strategy in Situation
1. Note that even though the defender can use as many re-
sources in Situation 1, it is not always beneficial for the de-
fender to protect all targets all the time. In other words, typi-
cally x̄ 6= 1. Recall that Γ(x) = {i : Uai (xi) ≥ Uaj (xj),∀j}
is the attack set, containing all targets at which the attacker
has the highest expected utility with respect to a strategy x of
the defender. Similarly, we denote by Γd(x) = {i ∈ Γ(x) :
Ud(xi) ≥ Ud(xj),∀j ∈ Γ(x)} the set of equally good tar-
gets within Γ(x) for the defender.4 When the attacker breaks
tie in favor of the defender, the attacker will attack one of the
targets in Γd(x). We define the following quantity:

L = min
i∈Γd(x̄):x̄i≥αi

[
x̄i+

∑
j 6=i

max{0, x̄j−αj−βj}
]

(2)

If x̄i < αi for all i ∈ Γd(x̄), then we simply set
L = +∞ (for the sake of presentation). Note that x̄

4Note that Γd(x) can have multiple targets. For example,
Γd(x) = Γ(x) in zero-sum games.



is the defender SSE strategy in Situation 1, therefore the
term

[
x̄i+

∑
j 6=i max{0, x̄j−αj−βj}

]
is roughly the total

amount of resources needed in x̄, lessened by the deception
capabilities. Theorem 4 compares the effectiveness of de-
ception to that of using more resources as in Situation 1.
Theorem 4 (The Power of Deception). For any (αi, βi) 6=
0, the utility the defender obtains for playing deceptively
does not exceed the utility she would achieve in Situation
1. In particular, if the total number of defender resources in
SeGDC: k < L, the defender’s utility in Situation 1 is strictly
better than in SeGDC. If k ≥ L, her utility is the same in both
cases when there is no resource-allocation constraint.

Proof Sketch. The proof of Theorem 4 is rather involved.
Our argument for the situation of k ≥ L proceeds by (i)
first showing that we can carefully craft a deceptive strategy
(x, c), based on the SSE strategy x̄ in Situation 1, which
leads to a greater defender utility in SeGDC, leveraging that
we have enough resources, i.e., k ≥ L for the crafted strat-
egy, and (ii) then showing that we can do the same for
crafting a defense strategy x1 which leads to a greater de-
fender utility in Situation 1, based on the equilibrium strat-
egy (x∗, c∗) in SeGDC. First, let i′ be the target which corre-
sponds to the value of L in (2). Based on x̄, we can generate
the defender’s strategy (x, c) to play in SeGDC as follows:

xi′ = x̄i′

xj = max{0, x̄j − αj − βj},∀j 6= i′

ci′ = max{xi′ − αi′ , 0} = x̄i′ − αi′ (since x̄i′ ≥ αi′ )
cj = xj + βj = max{βj , x̄j − αj},∀j 6= i′.

When the defender plays this (x, c) in SeGDC, the maximin
attacker responds w.r.t the worst case coverage, c + α. Ac-
cording to the definition of the target i′, we can easily obtain
i′ ∈ Γ(c + α). As a result, the defender will receive an util-
ity that is at least Udi′(xi′), which is exactly the defender’s
equilibrium utility in Situation 1.

Conversely, give the optimal strategy (x∗, c∗) in SeGDC,
we can generate a strategy of the defender at Situation 1
as follows: x1

i = c∗i + αi for all i. When the defender
plays {x1

i } in Situation 1, target i∗ is also the best re-
sponse of the attacker, and the defender’s utility at this target,
Udi∗(c

∗
i∗+αi∗), is no less than the defender’s utility in SeGDC,

Udi∗(x
∗
i ). Combining with the previous result, the defender’s

equilibrium utility thus must be the same in both cases.
Finally, our argument for the situation of k < L proceeds

by proving that — either (i) a strategy x1 for the defender
in Situation 1 can be carefully crafted based on the de-
ceptive strategy c∗, which leads to the same attacked tar-
get i∗ but with a strictly higher coverage x1

i∗ > x∗i∗ ; or
(ii) the defender’s coverage at i∗ satisfies: x∗i∗ ≤ x̄i∗ and
i∗ ∈ Γ(x̄) \ Γd(x̄), i.e., i∗ is not attacked in Situation 1.
Both (i) and (ii) imply that the defender achieves a strictly
higher utility in Situation 1 compared to SeGDC.

Theorem 4 shows that Situation 1 is never worse than
SeGDC (as opposed to Theorem 2 for ignorant attacker) when
facing a maximin attacker. In fact, Situation 1 is strictly bet-
ter when: (1) the defender does not have enough resources,

i.e., k < L 6= ∞; or (2) x̄i < αi for all i ∈ Γd(x̄). The
later situation is particularly interesting and is due to the fol-
lowing reason. The SSE strategy places x̄i(< αi) coverage
on the attacked target, however, the maximin attacker will al-
ways overestimate its coverage probability because he thinks
target i is covered with at least αi. As a result, the defender is
not able to induce the attacker to attack her favorable targets
from set Γd(x̄), thus resulting in utility decrease.

Equilibrium Attack Strategy
We now turn to the most sophisticated situation where each
player reasons about its opponent’s strategy to the infinity.
Given the attacker can only observe the defender’s commit-
ted strategy c but not the actual strategy x, this leads to our
study of the sequential equilibrium (Shoham, Leyton-Brown
et al. 2009). We denote by Ωtrue(c)={x∈X : ci−βi≤xi≤
ci+αi,∀i} the set of all possible actual defense strategies
given an observed strategy c. We start with a few necessary
definitions which we use to define a sequential equilibrium.
Definition 2 (Attacker Behavior Strategy). For each ob-
served strategy c (aka. information set), a behavior strat-
egy of the attacker is a randomization over targets to attack,
denoted by q(i | c) ∈ [0, 1], where

∑
i q(i | c) = 1.

Definition 3 (Defender Behavior Strategy). A behavior
strategy of the defender at his information set (which is the
∅ information set at the beginning of the game) is a ran-
domization over her strategies (x, c) in SeGDC, denoted by
p(x, c) ∈ [0, 1], where

∫
(x,c)∈Ω

p(x, c)d(x, c) = 1.

Definition 4 (Bayes Belief Update). Given a pair of strate-
gies (p,q), for each observed deceptive strategy c, the at-
tacker can update his belief, using the Bayes rule as follows:

b(x | c) ∝ p(x, c),∀x ∈ Ωtrue(c)

We are now ready to define the sequential equilibrium.
Definition 5 (Sequential equilibrium). A pair (p∗,q∗)
forms a sequential equilibrium if and only if there exist prob-
ability distributions b∗ such that:
1. (p∗,q∗,b∗) = limn→∞(pn,qn,bn) for some sequence

(p1,q1,b1), . . . where pn,qn is fully mixed, and the be-
lief bn is consistent with (pn,qn) (i.e., this belief is pre-
cisely the one defined by Bayes’ rule).

2. The attacker obtains the highest expected utility based on
his belief update b∗ at each of his information set (aka.
each of possible deceptive strategy c he would observe):∫

x∈Ωtrue(c)

b∗(x | c)
∑

i
q∗(i | c)Uai (xi)dx

≥
∫
x∈Ωtrue(c)

b∗(x | c)Uai (xi)dx,∀i

3. The defender obtains the highest expected utility at his
information set (which is the ∅ information set at the be-
ginning of the game) against the attacker’s strategy q∗:∫

(x,c)∈Ω

p∗(x, c)
∑

i
q∗(i | c)Udi (xi)d(x, c)

≥
∑

i
q∗(i | c)Udi (xi),∀(x, c) ∈ Ω



Since the defender strategy space is infinite, it is not
straightforward to show the existence of a sequential equilib-
rium. Nevertheless, our next result shows that there always
exists a sequential equilibrium of the game which is equiva-
lent to the Nash equilibrium of SSGs without deception.
Theorem 5. Given any non-deceptive Nash equilibrium
(x0,q0), there always exists a sequential equilibrium,
(p∗,q∗), of the game, which is equivalent to (x0,q0) in the
following sense:
1. Attacker: q∗(i | c) = q0

i ,∀i and c
2. Defender:

∫
(x,c)∈Ω

p∗(x, c)xid(x, c) = x0
i ,∀i

Proof Sketch. We first construct behavior strategies for the
players (p,q) based on (x0,q0) as follows:

Attacker behavior strategy. Given any observed c, the at-
tacker plays q(i | c) = q0

i .
Defender behavior strategy. We construct the distribution

p(x, c) = p(c)p(x | c) based on the determination of p(c)
and p(x | c) as follows: (i) p(c) can be any distribution
supported on the domain Ω(x0); and (ii) the distribution
p(x | c) is determined such that:

∀c ∈ Ω(x0) :

∫
x∈Ωtrue(c)

p(x | c)xidx = x0
i ,∀i,

∀c /∈ Ω(x0) : p(x | c) is arbitrary on the domain Ωtrue(c)

We follow the trembling-hand approach to build a sequen-
tial equilibrium (p∗,q∗,b∗). We only need to examine the
information sets of the attacker which has a a zero prob-
ability of occurrence. Note that only observation histories
of the attacker (aka. information sets) which correspond to
c /∈ Ω(x0) have a zero probability of occurrence. Therefore,
for each ε > 0, we construct a new strategy of the defender
pε with pε(x, c) = pε(c)pε(x | c), as follows:

• pε(c) = ε · volume(Ω(X))
volume(Ω(x0)) if c /∈ Ω(x0)

• pε(c) = p(c)− ε if c ∈ Ω(x0)
• pε(x | c) is defined the same as p(x | c)

where Ω(X) is the entire feasible domain of deceptive strate-
gies c and Ω(x0) is the feasible domain of c with respect to
the actual defense strategy x0. Based on this behavior strat-
egy pε of the defender, we construct the new belief of the
attacker at each observation history c /∈ Ω(x0) as follows:

b∗(x | c) = lim
ε→0

pε(x | c) = lim
ε→0

pε(x, c)∫
x′∈Ωtrue(c)

pε(x′, c)dx′

=
p(x | c)∫

x′∈Ωtrue(c)
p(x′ | c)dx′

while keeping beliefs at other observation histories c ∈
Ω(x0) unchanged, i.e., b∗(x | c) = b(x | c). We now con-
struct a sequential equilibrium (p∗,q∗) which is the same as
(p,q) except for the attacker strategies at observation his-
tories with a zero probability, c /∈ Ω(x0) — we replace
these strategies with the best response of the attacker with
respect to the new belief b∗(x | c). This is straightforward
to compute since we just need to find the target that maxi-
mizes the attacker expected utility with respect to this belief

at c. We can easily verify that p∗(x, c) = limε→0 pε(x, c)
and b∗(x | c) = limε→0 pε(x | c) (as defined).

Now, we only need to prove that (i) the attacker plays a
best response at every observation history, c ∈ Ω(x0), with
a non-zero probability of occurrence; and (ii) the defender
plays a best response at his information set (which is the ∅
information set at the beginning of the game). The detail of
this part is included in the appendix.

As a result, a sequential equilibrium can be computed
from the Nash equilibrium for the standard SSG, which is
known to admit efficient polynomial-time algorithms for
general SSGs (Korzhyk et al. 2011; Xu 2016). Moreover,
(Korzhyk et al. 2011) show that the attacker will achieve the
same utility in any Nash equilibrium as in the SSE whereas
the defender will achieve lower utility under mild assump-
tions. These results and Theorem 5 yield the following char-
acterization about SeGDCs.

Corollary 1 (Characterization of Equilibrium Utility). Un-
der mild non-degeneracy assumption,5 compared to the
standard SSE without deception, the attacker’s utility will
not change while the defender obtains a lower utility in
the sequential equilibrium strategies as determined in Theo-
rem 5 for any SeGDC.

Remark 1. The key conceptual message from Theorem 5
is that the defender loses her first-mover advantage during
deception despite that she can still commit to the deceptive
coverage c. This is due to the attacker’s uncertainty of the
mapping x→c. It forces the attacker to do Nash equilibrium
reasoning, which turns out to be harmful to the defender.
These results illustrate the double-edged role of deception
in SSGs, which depends on the sophistication of the attacker.

Experiments
Our experiments are conducted on a High Performance
Computing (HPC) cluster, with processors are dual E5-
2690v4 (28 cores) and 128 GB memory. Our experiments
use the standard covariance game generator GAMMUT (http:
//gamut.stanford/edu), to generate payoff matrices. A covari-
ance value r governs the correlation between the defender
and attacker’s payoffs. In particular, when r = −1.0, the
generated games are zero-sum. When r=0.0, the payoffs of
players are not correlated. The players’ rewards and penal-
ties are within [1, 10] and [−10,−1], respectively. We con-
sider four cases in our evaluation: (i) SSE — the defender
is not deceptive; (ii) Dec.Ignorant; (iii) Dec.Maximin;
and (iv) Dec.Equilibrium. In the last three cases, the de-
fender plays deceptively while the attacker plays the Ig-
norant, Maximin, and Equilibrium strategies, respectively.
We use Cplex to solve our optimization programs (https:
//www.ibm.com/analytics/cplex-optimizer). Each data point
is averaged over 200 games. Our results are statistically sig-
nificant (t-boostrap with α = 0.05 (Wilcox 2003)).

5Precisely, the assumption is P a
i 6=r∗, ∀i where r∗ is the mini-

max attacker utility. This is a standard non-degeneracy assumption
for security games; See (Korzhyk et al. 2011).



Solution quality. Our results are shown in Figure 1(a-h).
The x-axis is the ratio of the number of resources to targets
( kn ) or the covariance value. The y-axis is the defender or
attacker’s utility on average. We consider two cases of the
defender’s deception capability: (i) small deception interval,
i.e., αi=βi=0.05; and big deception interval, i.e., αi=βi=
0.15. We only highlight the results with n = 100 targets. Our
results on different n also exhibit similar trends.

Figure 1(a-h) shows that the defender gains a significantly
higher utility for playing deceptively when the attacker ei-
ther ignores the defender’s deception or plays the Maximin
attack strategy to counter that deception (Dec.Ignorant and
Dec.Maximin versus SSE). On the other hand, if the at-
tacker plays the sophisticated equilibrium strategy, the de-
fender suffers a great loss in utility (Dec.Equilibrium ver-
sus SSE). The defender’s benefit against Ignorant and Max-
imin attacker increases when the size of the deception inter-
val increases (αi = βi = 0.05 versus αi = βi = 0.15). Con-
versely, the attacker suffers a significant loss in utility on av-
erage when he plays either Dec.Ignorant or Dec.Maximin.
Finally, by following Dec.Equilibrium, the attacker ob-
tains the same utility as in SSE.

In Figure 1(a-b), the defender’s utility increases while
the attacker’s utility decreases gradually as the ratio ( kn ) in-
creases. This makes sense since the coverage probability of
the defender at each target increases when ( kn ) increases. In
addition, the maximin strategy helps the attacker in reduc-
ing the impact of the defender’s deception compared with
Dec.Ignorant and this help is substantial when the size of
the deception interval is large (Figure 1(c) versus 1(d)).

In Figure 1(e-f), the defender’s utility gradually decreases
as the covariance value r gets closer to −1. Indeed, when
the games become zero-sum (r = −1), the attacker would
aim to minimize the defender’s utility (which is equivalent to
maximize the attacker’s utility), leading to a roughly lower
utility for the defender compared with non-zero-sum games.

Runtime performance. We evaluate the runtime perfor-
mance of our algorithms to solve SeGDC w.r.t different at-
tack strategies. The results are shown in Figure 1(i). We only
show the results on small deception intervals αi = βi =
0.05 due to space limit. Note that the runtime of SSE and
Dec.Equilibrium is approximately the same based on The-
orem 5 and the results presented in (Korzhyk et al. 2011).
Overall, Figure 2 shows that our proposed algorithm can
scale up to large games. In particular, it takes all algorithms
less than 40 seconds on average to solve 200-target games.

Summary
This work investigates the complexity and effectiveness of
optimal defender deception in three attack models, with an
increasing sophistication: (i) Ignorance attack strategy; (ii)
Maximin attack strategy; and (iii) Equilibrium attack strat-
egy. In each case, we provide a polynomial-time algorithm
to compute an optimal defender deception. We show that
the defender’s deception becomes strictly less powerful, as
the attacker becomes more sophisticated, to the point where
deception even leads to a decrease in the defender’s utility
compared with the no-deception situation. Our results pro-
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Figure 1: Solution quality evaluation
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vide formal separations for the effectiveness of patrol decep-
tion when facing an attacker of increasing sophistication.
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APPENDIX

Proof of Theorem 1

Proof. We start by formulating the defender’s optimization
problem as a MILP, as follows, and then show that this MILP
can be converted into n linear programs (LPs):

max Ud (3)
s.t. xi − αi ≤ ci ≤ xi + βi,∀i (4)

Ud ≤ xiRdi + (1− xi)P di + (1− qi)M,∀i (5)
Ua ≤ ciP ai + (1− ci)Rai + (1− qi)M, ∀i (6)
Ua ≥ ciP ai + (1− ci)Rai ,∀i (7)∑
e∈E

e · pe = x,
∑

e∈E
pe = 1, pe ≥ 0 ∀e (8)∑

i∈[n]
qi = 1, qi ∈ {0, 1} ∀i (9)

which maximizes the defender’s expected utility, denoted by
Ud. The binary variable qi represents if the attacker attacks
target i (i.e., qi = 1) or not. The variables xi and ci are the
defender’s true coverage and deceptive coverage probability
at i, respectively. Constraint (4) corresponds to her limited
deception capability. Constraint (5) ensures that the defender
receives the utility which is equal to her expected utility at
i if the attacker attacks that target (qi = 1). Constraints (6)
and (7) guarantee that the attacker will choose to attack the
target with his highest expected utility, Ua, against c. Con-
straint (8) defines all possible marginal probability vectors
that satisfy all resource-allocation constraints. Constraint (9)
shows that the attacker will attack one of the targets. Finally,
M is a large constant.

To solve MILP (3–9), we first convert it to a set of n LPs
by enumerating the support q (of size n). Fixing qj = 1, i.e.,
the attacker is induced to attack j, the above MILP becomes
the following LPj .

max Ud

s.t. xi − ci ≤ αi,∀i
ci − xi ≤ βi,∀i
Ud ≤ xjRdj + (1− xj)P dj ,
Ua ≤ cjP aj + (1− cj)Raj ,
Ua ≥ ciP ai + (1− ci)Rai ,∀i

x−
∑
e∈E

e · pe = 0,∑
e∈E

pe = 1,

pe ≥ 0∀e

LPj has exponentially many variables. We thus look to solve
its dual linear program, with polynomially many variables

ai, bi, d, e, fi,w, g:

min

n∑
i=1

[αiai + βibi −Rai fi] + P dj d+Raj e+ g

s.t. ai − bi − wi = 0 ∀i 6= j

aj − bj + (P dj −Rdj )d+ wj = 0

− ai + bi + (P ai −Rai )fi = 0 ∀i 6= j

− aj + bj + (Raj − P aj )e+ (P aj −Raj )fj = 0

− e ·w + g ≥ 0,∀e ∈ E
d = 1

e−
n∑
i=1

fi = 0

ai, bi, d, e, fi ≥ 0

To solve the above linear program with exponentially many
constraints but polynomially many variables, we adopt the
ellipsoid method 6 to reduce this optimization problem to
an efficient separation oracle for the above LP — given any
variable values ai, bi, d, e, fi,w, g, assert whether they are
feasible to the above LP and if not, output a constraint that
is violated. Since the only constraint that is non-trivial to
directly check is g ≥ e · w for all e ∈ E . This is equiva-
lent to solving the optimization problem maxe∈E e ·w and
then check whether its optimal objective is less than g or not.
Previous results show that this optimization problem can be
solved in polynomial time if and only if the underlying stan-
dard security game model (without deception) can be solved
in polynomial time (Xu 2016). Therefore, if the underlying
standard security game can be solved in polynomial time,
then so is the above optimization problem and thus so is the
above LP and its dual LPj . This concludes our proof of the
theorem.

Proof of Theorem 2
Proof. Given any ε, we now construct such a game instance
with n targets and only one security resource. We require
n > max{3, 1/ε2}. The defender and attacker’s payoffs are
defined in the following table. In particular, target 2 to n
have identical payoffs. Target 1 is the only special target with
larger payoff scales for both the defender and the attacker.
Note that the payoff of target 2 to n is zero-sum, which will
simplify some of our calculations.

Targets Rdi P di Rai P ai
1 n3 2− 2n 2n− 2 −(n− 1)(n− 2)
2 0 −n n 0
· · · · ·
n 0 −n n 0

6One practical implementation is the widely adopted column
generation (CG) technique. Though CG is not provably in poly-
nomial time, but runs very efficiently for solving security games
(Tambe 2011).



We now consider the two different situations. In Situa-
tion 1, the defender is allowed to use arbitrary amount of
resources. Simple calculation shows that in this case, the de-
fender should protect target 2 to n with probability 1 and
target 1 with probability 2/n. This makes all targets to have
an equal attacker utility of zero: i.e., at target 1, the attacker’s
expected utility is as follows:

−(n− 1)(n− 2) · 2

n
+ (2n− 2) · n− 2

n
= 0.

Now from the defender’s perspective, her utility at target 1 is
2
n ·n

3− n−2
n ·2(n−1), which is at least 2n2−2n > 0 (recall

n > 3). Since the defender’s utility at other targets are 0 due
to their zero-sum payoff structure, the attacker will break
ties in favor of the defender and attacks target 1, resulting
in a defender utility achieved at target 1 by protecting that
target with probability 2/n. That exact utility number turns
out to not matter much as we will show next that at the equi-
librium of Situation 2, target 1 will be attacked as well but
under a much higher defender protection probability. It is
worthwhile to mention that if the defender tries to protect
target 1 with a probability higher than 2/n, the attacker will
then attack a target i > 1, reducing the defender utility to 0.
This is precisely the reason that more security resources are
not necessarily helpful.

In Situation 2, the defender can hide protection proba-
bility by at most ε. We will limit the defender’s deception
ability by not allowing her to exaggerate the protection. In-
terestingly, the defender can still do better compared with
Situation 1. Simple analysis shows that in this case, the de-
fender should cover target 1 with probability p1 such that
p1 − ε protection of target 1 is equally attractive to the at-
tacker as (1− p1)/(n− 1) protection for each of target 2 to
n, i.e.,

−(n− 1)(n− 2) · (p1 − ε) + 2(n− 1) · (1− p1 + ε)

= 0 · 1− p1

n− 1
+ n · (1− 1− p1

n− 1
)

Basic calculations shows that p1 = 1
n + ε (n−1)2

1+(n−1)2 . Since
n > max{3, 1/ε2}, we have ε > 1/

√
n. Therefore,

p1 =
1

n
+ ε

(n− 1)2

1 + (n− 1)2
≥ 1

n
+

1√
n
· 9

10
>

2

n

According to attacker’s perception, he is indifferent among
all targets. To break ties in favor of the defender, the attacker
will attack target 1, resulting in the true expected defender
utility:

p1 ·n3+(1−p1)·(2− 2n)=1+
(1/ε+2ε−4ε2+ε3)

1+3ε2
>

2

n

when n > 3. In fact, p1 = Ω(1/
√
n) can be much larger

than 2/n order-wise. This means, target 1 is protected with
a strictly larger probability in Situation 2 than in Situation
1. Since the attacker will attack target 1 in this case as well,
thus it yields strictly higher defender utility than that in Sit-
uation 1, concluding the proof.

Proof of Theorem 3
Proof. The proof starts with a simple characterization of the
optimal solution of the following maximin problem, which
turns out to be useful for our algorithm design:

i∗ ∈ argmaxi [minz Rai (1− zi) + P ai zi]

s.t. 0 ≤ zi ≤ 1, ci − βi ≤ zi ≤ ci + αi,∀i.

Lemma 1. For any given target i, the optimal solution of the
inner minimization in the above maximin problem is zworst

i =
min{ci + αi, 1}.

That is, the maximin attacker will always conservatively
overestimate the protection probability at each target to its
extreme. The proof of this lemma is straightforward: the
attacker’s utility at each target i is a decreasing function
of the defender’s coverage zi at that target; Therefore the
worst case is achieved at the highest possible coverage value,
which is min{ci + αi, 1}.

Lemma 1 shows that the attacker will choose the target
i which has the highest expected utility with respect to the
worse case coverage min{ci + αi, 1}. Utilizing this obser-
vation, we can formulate the problem of finding the optimal
defender strategy against a maximin attacker as an optimiza-
tion program (OP). Overall, this OP is similar to the MILP (3–
9) except that the attacker now responds to the worse case
of uncertainty (min{ci + αi, 1}) instead of the defender’s
deceptive strategy {ci}:

MILP(3− 9) except constraints (6− 7) (10)
Ua ≤ min{ci + αi, 1}(P ai −Rai ) +Rai + (1− qi)M,∀i

(11)
Ua ≥ min{ci + αi, 1}(P ai −Rai ) +Rai ,∀i (12)

Next we argue that OP (10-12) can be solved in polyno-
mial time by decomposing it into n linear programs. Our
key observation is that we can substitute min{ci + αi, 1} in
the program simply by ci + αi. More formally,

Lemma 2. There exists an optimal solution to OP (10-12)
where min{ci + αi, 1} = ci + αi for any i.

The proof of Lemma 2 goes as follows. Given any optimal
solution (x∗, c∗,q∗), for any i such that c∗i +αi > 1, we can
reduce the value of c∗i to be equal 1 − αi. This new value
will satisfy constraint (4) since xi − αi ≤ 1 − αi < c∗i ≤
xi+βi, and will not change any other constraints neither the
objective value. Thus, the new variable remains optimal and
satisfies min{ci + αi, 1} = ci + αi,∀i.

As a consequence of Lemma 2, we can w.l.o.g substitute
all the min{ci + αi, 1} in OP (10-12) by linear term ci +
αi. This results in a MILP with the only integer variable q.
To solve this MILP, we first convert it to a set of n LPs by
enumerating the support q (with size n). Fixing qj = 1, i.e.,
the attacker is induced to attack j, the above MILP becomes



the following LPj .

max xjR
d
j + (1− xj)P dj

s.t. xi − ci ≤ αi,∀i
ci − xi ≤ βi,∀i
Ua ≤ (cj + αj)(P

a
j −Raj ) +Raj

Ua ≥ (ci + αi)(P
a
i −Rai ) +Rai ,∀i (13)

x−
∑
e∈E

e · pe = 0,∑
e∈E

pe = 1,

pe ≥ 0 ∀e
LPj has exponentially many variables. We thus look to solve
its dual linear program, with polynomially many variables
ai, bi, e, fi,w, g:

min P dj +

n∑
i=1

[αiai + βibi − [Rai + αi(P
a
i −Rai )]fi]

+ [Raj + αj(P
a
j −Raj )]e+ g

s.t. ai − bi − wi = 0 ∀i 6= j

aj − bj + wj = Rdj − P dj
− ai + bi + (P ai −Rai )fi = 0 ∀i 6= j (14)
− aj + bj + (Raj − P aj )e+ (P aj −Raj )fj = 0

− e ·w + g ≥ 0,∀e ∈ E

e−
n∑
i=1

fi = 0

ai, bi, e, fi ≥ 0

Now we can see that the above dual LP (14) has exactly the
same constraints as the dual LP for ignorant attacker in the
proof of Theorem 1. The only difference is that the above LP
has an additional

∑
i−αi(P ai − Rai )fi term in its objective

which is always non-positive. This shows that the objective
of the above LP is always upper bounded by the objective
of the dual LP in the proof of Theorem 1. LP strong dual-
ity implies that the objective of the primal, i.e., the optimal
defender utility against a minimax attacker, is always upper
bounded by the optimal defender utility against the ignorant
attacker. (13).

Proof of Theorem 4
Proof. In the following, we prove a stronger statement of
Theorem 4. That is, Theorem 4 still holds true when there
is no resource-allocation constraint. Intuitively, if the de-
fender obtains a lower utility in SeGDC than in Situation
1 in the case of no resource-allocation constraint, then this
is also true for the case of having any resource constraints.
This is simply because the defender can not do better in the
resource-allocation-constraint case compared to the case of
no resource-allocation constraint.

The proof of the first part of Theorem 4 is straightfor-
ward. Given the optimal defender strategy (x∗, c∗) returned

by (10–12), we can generate a strategy of the defender at Sit-
uation 1 as follows: x̄i = c∗i +αi for all i. In this case, target
i∗ remains the best response of the attacker. In addition, we
have the defender’s utility at i∗ with respect to Situation 1
is equal to:

Udi∗(c
∗
i∗+αi∗)=Udi∗(max{x∗i∗−αi∗ , 0}+αi∗)

≥Udi∗(x∗i∗) since max{x∗i∗−αi∗ , 0}+ αi∗ ≥ x∗i∗ .

Next, we prove the second part regarding the the defender
obtains a strictly lower utility in SeGDC than in Situation 1
when k < L, and the defender’s utilities in both scenarios
are equal when k ≥ L.

Case 1: k < L. We divide this case into two sub-cases as
follows:

Sub-case 1.1. If c∗i +αi < 1 for all i ∈ Γ(c∗+α) (which
means the attacker’s most conservative estimation is strictly
less than 1 for all targets in the attack set Γ(c∗+α)), we can
create a defense strategy in Situation 1 as follows:

xi = c∗i + αi + εi,∀i ∈ Γ(c∗ + α)

xi = c∗i + αi,∀i /∈ Γ(c∗ + α)

where εi > 0 is a small positive number such that xi ≤ 1 for
all i ∈ Γ(c∗ + α) and the attack set does not change com-
pared to the SeGDC case, i.e., Γ(c∗ + α) = Γ(x). Note that,
in an SSE, the attacker breaks tie in favor of the defender.
Therefore, the defender’s expected utility for playing x at
Situation 1 is no less than her expected utility at target i∗,
which is equal to:

Udi∗(xi∗) = Udi∗(c
∗
i∗ + αi∗ + εi∗) > Udi∗(x

∗
i∗)

since c∗i∗+αi∗+εi∗ = max{x∗i∗−αi∗ , 0}+αi∗+εi∗ > x∗i∗ .
In other words, the defender’s utility at Situation 1 is strictly
better than in SeGDC.

Sub-case 1.2. If there is an i ∈ Γ(c∗ + α) such that c∗i +
αi = 1, we are going to show that either (a) i∗ ∈ Γd(x̄)
and x∗i∗ < x̄i∗ or (b) i∗ ∈ Γ(x̄) \ Γd(x̄) and x∗i∗ ≤ x̄i∗ .
Both these cases mean that the defender’s utility for playing
x̄ is strictly higher than playing (x∗, c∗) in SeGDC. We first
provide the following observations which characterize the
equilibrium strategies in SeGDC and Situation 1:

Observation 1. In SeGDC, for all targets j ∈ Γ(c∗+α), the
attacker’s worst-case utility at j is the same: Uaj (c∗j +αj) =
P ai . In addition, for all targets j /∈ Γ(c∗ + α), we have the
equilibrium coverages x∗j = 0 and c∗j = min{0+βj , 1−αi},
and Uaj (c∗j + αj) < P ai .

Observation 2. In Situation 1, there is a target k ∈ Γ(x̄)
such that x̄k = 1 and for all targets j ∈ Γ(x̄), we have
Uaj (x̄j) = P ak . In addition, for all j /∈ Γ(x̄), we have x̄j = 0
and Raj < P ak .

Observations 1 and 2 can be derived directly from Theo-
rem 2 in (Nguyen and Xu 2019). Essentially, Observation 1
says that all targets in the attack set Γ(c∗+α) have the same
highest attacker utility with respect to the attacker’s conser-
vative estimation (c∗ + α), and are all equal to the attacker
penalty P ai at target i since i ∈ Γ(c∗ + α) and c∗i + αi = 1.



In addition, all other targets j not in the attack set will have
a zero true coverage probability x∗j = 0, and have a strictly
lower attacker conservative utility than targets in the attack
set. Observation 2 is similar to Observation 1 but for the
standard SSE in Situation 1. Note that regarding Observa-
tion 2, we can always increase the defender’s coverage prob-
ability at targets until one of the targets, i.e., target k, in the
attack set is covered with a probability of 1: x̄k = 1. Based
on these two observations, we provide the following lemmas
based on which we prove the statements (a) and (b):

Lemma 3. The attacker penalties at targets i and k are the
same: P ai = P ak .

Proof. The proof of Lemma 3 is straightforward. Based on
Observation 1, we have P ai = Uaj (c∗j +αj) ≥ P aj for all j ∈
Γ(c+α) andP ai > P aj for all j /∈ Γ(c+α). In short, we have
P ai ≥ P ak . On the other hand, based on Observation 2, we
have P ak > Raj > P aj for all j /∈ Γ(x̄). Therefore, i ∈ Γ(x̄).
Now since i ∈ Γ(x̄), we have the attacker utility: Uai (x̄i) =
P ak ≥ P ai . As a result, P ai = P ak and x̄i = 1, concluding the
proof.

Essentially, Lemma 3 says that target iwith i ∈ Γ(c∗+α)
and c∗i + αi = 1 in SeGDC has the same attacker penalty as
target k with k ∈ Γ(x̄) and x̄k = 1 in Situation 1.

Lemma 4. The attack set Γ(c∗ + α) ⊆ Γ(x̄) and for all
targets j ∈ Γ(c∗ + α), we have: c∗j + αj = x̄j .

Proof. Indeed, according to Observation 1, for all targets
j ∈ Γ(c∗ + α), we have Raj ≥ Uaj (c∗j + αj) = P ai . On the
other hand, as shown above, P ai = P ak (Lemma 3). There-
fore, Raj ≥ P ak =⇒ j ∈ Γ(x̄) (otherwise, Raj < P ak
according to Observation 2).

Now, since Γ(c∗ + α) ⊆ Γ(x̄) (Lemma 4), we have: for
all targets j ∈ Γ(c∗ + α),

Uaj (x̄j) = P ak (Observation 2) and

Uaj (c∗j + αj) = P ai (Observation 1)

=⇒ c∗j + αj = x̄j since P ak = P ai (Lemma 3)

which concludes the proof.

Lemma 4 presents an interesting relationship between the
attacker’s conservative estimation c∗ + α (or equivalently,
the defender’s deceptive strategy c∗) in SeGDC and the de-
fender’s SSE strategy x̄ in Situation 1. That is, the attacker’s
estimation at all targets j in the attack set Γ(c∗+α) must be
the same as the defender’s equilibrium coverage x̄j at that
target in Situation 1. Note that this relationship exists as a
result of the existence of target i with the attacker’s estima-
tion: c∗i + αi = 1.

Lemma 5. The defender probability at target i∗ is higher in
Situation 1 than in SeGDC: x̄i∗ ≥ x∗i∗

The proof of Lemma 5 is straightforward. Since the target
i∗ ∈ Γ(c∗ + α), then we obtain:

x̄i∗ = c∗i∗ + αi∗ = max{x∗i∗ − αi∗ , 0}+ αi∗ ≥ x∗i∗
(according to Lemma 4)

Therefore, if i∗ /∈ Γd(x̄), we obtain (b). Conversely, if
i∗ ∈ Γd(x̄), we will show that x̄i∗ > x∗i∗ , which means we
obtain (a) as follows. First, we have αi∗ ≤ c∗i∗ + αi∗ = x̄i∗

(Lemma 4). In addition, we have L 6= +∞ since i∗ ∈ Γd(x̄)
and x̄i∗ ≥ αi∗ . Finally, we have the following lemma:

Lemma 6. For all targets j 6= i∗, the following inequality
holds true:

x∗j ≥ max{x̄j − αj − βj , 0} (15)

Proof. Indeed, for all targets j ∈ Γ(c∗+α)\{i∗}, we have:

x̄j − αj = c∗j (Lemma 4)

c∗j = min{x∗j + βj , 1− αj} ≤ x∗j + βj ( Proposition ??)

=⇒ x∗j ≥ max{x̄j − αj − βj , 0}

In addition, for all targets j ∈ Γ(x̄) \Γ(c∗+α), we have:

Uaj (αj + βj) < P ai = P ak = Uaj (x̄j)

=⇒ αj + βj > x̄j (Observations 1 and 2)

which also implies: x∗j ≥ max{x̄j − αj − βj , 0} = 0.
Finally, for all j /∈ Γ(x̄), we have x∗j = x̄j = 0. This

means x∗j ≥ max{x̄j − αj − βj , 0}.

Intuitively, Lemma 6 presents the lower bound of the de-
fender true coverage x∗j at all targets j 6= i∗ in SeGDC such
that the target i with i ∈ Γ(c∗ + α) and c∗i + αi = 1 ex-
ists. This lower bound is in fact equal to the coverage the
defender in the SSE strategy in Situation 1 reduced by the
deception capabilities. As a result, since k < L 6= ∞ and
i∗ ∈ Γd(x̄) with x̄i∗ ≥ αi∗ and (15), we have: x∗i∗ < x̄i∗ ac-
cording to the definition of L (which means we obtain (a)).

Case 2: k ≥ L which implies L 6= +∞. We denote by i′
the target which corresponds to the value of L in (2). Based
on x̄, we can generate the defender’s strategy (x∗, c∗) to
play in SeGDC as follows:

x∗i′ = x̄i′

x∗j = max{0, x̄j − αj − βj},∀j 6= i′

c∗i′ = max{x∗i′ − αi′ , 0} = x̄i′ − αi′ (since x̄i′ ≥ αi′ )
c∗j = x∗j + βj = max{βj , x̄j − αj},∀j 6= i′.

Note that the attacker responds according to {c∗j + αj}j .
Since i′ ∈ Γ(x̄) which means Uai′(x̄i′) ≥ Uaj (x̄j) for all
targets j, we obtain the following inequality for all targets j:

Uai′(c
∗
i′ + αi′) = Uai′(x̄i′) ≥ Uaj (x̄j) ≥ Uaj (c∗j + αj)

(since c∗j ≥ x̄j − αj)

As a result, i′ ∈ Γ(c∗ + α). Since the attacker break ties
in favor of the defender, the defender receives an utility in
SeGDC no less than Udi′(x

∗
i′) = Udi′(x̄i′) — the defender’s

utility in Situation 1 (since i′ ∈ Γd(x̄) according to the def-
inition of L in (2)). According to the first part of Theorem 4,
these two utilities are equal, concluding the proof.



Proof of Theorem 5
Proof. We first construct behavior strategies for the players
(p,q) based on (x0,q0) as follows:

Attacker behavior strategy. Given any observed c, the at-
tacker plays q(i | c) = q0

i .
Defender behavior strategy. We construct the distribution

p(x, c) = p(c)p(x | c) based on the determination of p(c)
and p(x | c) as follows: (i) p(c) can be any distribution
supported on the domain Ω(x0); and (ii) the distribution
p(x | c) is determined such that:

∀c ∈ Ω(x0) :

∫
x∈Ωtrue(c)

p(x | c)xidx = x0
i ,∀i,

∀c /∈ Ω(x0) : p(x | c) is arbitrary on the domain Ωtrue(c)

We follow the trembling-hand approach to build a sequen-
tial equilibrium (p∗,q∗,b∗). We only need to examine the
information sets of the attacker which has a a zero prob-
ability of occurrence. Note that only observation histories
of the attacker (aka. information sets) which correspond to
c /∈ Ω(x0) have a zero probability of occurrence. Therefore,
for each ε > 0, we construct a new strategy of the defender
pε with pε(x, c) = pε(c)pε(x | c), as follows:

• pε(c) = ε · volume(Ω(X))
volume(Ω(x0)) if c /∈ Ω(x0)

• pε(c) = p(c)− ε if c ∈ Ω(x0)

• pε(x | c) is defined the same as p(x | c)

where Ω(X) is the entire feasible domain of deceptive strate-
gies c and Ω(x0) is the feasible domain of c with respect to
the actual defense strategy x0. Based on this behavior strat-
egy pε of the defender, we construct the new belief of the
attacker at each observation history c /∈ Ω(x0) as follows:

b∗(x | c) = lim
ε→0

pε(x | c) = lim
ε→0

pε(x, c)∫
x′∈Ωtrue(c)

pε(x′, c)dx′

=
p(x | c)∫

x′∈Ωtrue(c)
p(x′ | c)dx′

while keeping beliefs at other observation histories c ∈
Ω(x0) unchanged, i.e., b∗(x | c) = b(x | c). We now con-
struct a sequential equilibrium (p∗,q∗) which is the same as
(p,q) except for the attacker strategies at observation his-
tories with a zero probability, c /∈ Ω(x0) — we replace
these strategies with the best response of the attacker with
respect to the new belief b∗(x | c). This is straightforward
to compute since we just need to find the target that maxi-
mizes the attacker expected utility with respect to this belief
at c. We can easily verify that p∗(x, c) = limε→0 pε(x, c)
and b∗(x | c) = limε→0 pε(x | c) (as defined).

Now, we only need to prove that (i) the attacker plays a
best response at every observation history, c ∈ Ω(x0), with
a non-zero probability of occurrence; and (ii) the defender
plays a best response at his information set (which is the ∅
information set at the beginning of the game).

Indeed, for the attacker, at each information set, c ∈
Ω(x0), we have:∫

x

b∗(x | c)
∑

i
q∗(i | c)Uai (xi)dx

=
∑

i
q0
i

∫
x

p∗(x | c)(xi(P
a
i −Rai ) +Rai )dx

=
∑

i
q0
i (x0

i (P
a
i −Rai ) +Rai )

≥ x0
i (P

a
i −Rai ) +Rai =

∫
x

b∗(x | c)Uai (x)dx,∀i

(since (x0,q0) is a Nash equilibrium)

On the other hand, for the defender, we have:∫
(x,c)∈Ω

p∗(x, c)
∑

i
q∗(i | c)Udi (xi)d(x, c)

=

∫
c

p∗(c)
∑

i
q0
i

[∫
x

p∗(x |c)(xi(R
d
i −P di )+P di )dx

]
dc

=

∫
c

p∗(c)
∑

i
q0
i (x0

i (R
d
i − P di ) + P di )dc

=
∑

i
q0
i (x0

i (R
d
i − P di ) + P di )

≥
∑

i
q0
iU

d
i (xi),∀(x, c) ∈ Ω

(since (x0,q0) is a Nash equilibrium)


